Evaluación de la eficiencia energética en un evaporador de película descendente

dc.contributor.advisorPinzón Casallas, Nelson Aníbal
dc.contributor.authorAyala Tez, Darwin Alcides
dc.contributor.cvlacAyala Tez, Darwin Alcides [0001520920]
dc.contributor.orcidAyala Tez, Darwin Alcides [0009000894804590]
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2025-09-05T16:06:50Z
dc.date.available2025-09-05T16:06:50Z
dc.date.issued2025
dc.descriptionfotografías, graficas, tablasspa
dc.description.abstractLa energía ha sido un factor determinante en el desarrollo de la humanidad, impulsando el crecimiento de la población y la transformación de materias primas. Actualmente, es fundamental reducir los impactos ambientales derivados de las actividades económicas, promoviendo el uso de fuentes energéticas limpias y renovables, mejorar la eficiencia energética y disminución de la huella de carbono en los procesos industriales. Para lograrlo, es necesario adaptar y modernizar las tecnologías existentes, integrando sistemas de control que optimicen las operaciones. En este contexto, los evaporadores de película descendente (EPD) son objeto de estudio por su capacidad para mejorar la transferencia de calor y aumentar la eficiencia. Se llevó a cabo el diseño y construcción de dos prototipos de EPD calentados por vapor y resistencias eléctricas como fuentes alternativas con el propósito de evaluar la eficiencia energética en tres sistemas de suministro de calor en el calentamiento de tres espesores de película líquida y el desarrollo del modelo dinámico en los dos EPD. Las pruebas se centraron en el comportamiento térmico del sistema, sin cambios de fase en el líquido tratado. Se realizo la validación para el modelo matemático mediante un análisis estadístico de error cuadrático medio MSE, RMSE y coeficiente de determinación R^2 entre los datos experimentales obtenidos y los datos calculados por el modelo dinámico, se determinó en los resultados analizados un ajuste significativo del modelo matemático y la variación de la eficiencia en cada prueba (Texto tomado de la fuente).spa
dc.description.abstractEnergy has been a determining factor in the development of humanity, driving population growth and the transformation of raw materials. Currently, it is essential to reduce the environmental impacts of economic activities by promoting the use of clean and renewable energy sources, improving energy efficiency, and reducing the carbon footprint of industrial processes. To achieve this, it is necessary to adapt and modernize existing technologies, integrating control systems that optimize operations. In this context, falling film evaporators (FFEs) are being studied for their ability to improve heat transfer and increase efficiency. Two prototype FFEs heated by steam and electric resistances as alternative sources were designed and built to evaluate energy efficiency in three heat supply systems for heating three liquid film thicknesses and to develop a dynamic model for the two FFEs. Tests focused on the thermal behavior of the system, without phase changes in the treated liquid. The mathematical model was validated using a statistical analysis of the root mean square error (MSE), RMSE, and coefficient of determination (R^2) between the experimental data obtained and the data calculated by the dynamic model. The analyzed results revealed a significant fit of the mathematical model and a variation in efficiency in each test.eng
dc.description.curricularareaIngeniería Química y Ambiental.Sede Bogotá
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.methodsEsta investigación empleó una metodología mixta, combinando enfoques cuantitativo y cualitativo con un diseño de investigación aplicada y experimental. El enfoque cuantitativo permitió la recolección y análisis de datos medidos directamente en el evaporador de película descendente, como temperaturas, caudales y eficiencia térmica, bajo distintas condiciones operativas. Paralelamente, el enfoque cualitativo facilitó la observación y descripción de fenómenos no cuantificables directamente, como la estabilidad de la película y el comportamiento visual del flujo. La metodología aplicada se orientó a resolver un problema técnico real vinculado al rendimiento energético del equipo, mientras que el componente experimental se basó en pruebas controladas en laboratorio. Esta combinación metodológica proporcionó una visión integral y robusta del desempeño térmico del sistema.spa
dc.description.notesEste documento presenta los resultados de una investigación aplicada sobre eficiencia energética en un evaporador de película descendente (EPD). La tesis incluye el diseño, desarrollo y validación experimental de dos prototipos de EPD con diferentes fuentes de calor: vapor y resistencias eléctricas. Se evaluaron parámetros térmicos clave y se desarrolló un modelo dinámico validado mediante datos experimentales.spa
dc.description.researchareaBioprocesosspa
dc.description.technicalinfoEl sistema desarrollado consta de un evaporador de película descendente (EPD) de 0.613 m de longitud, con análisis térmico basado en transferencia de calor sin cambio de fase por vacío, y evaluación con y sin efectos de evaporación. El diseño incluye sensores de temperatura, recirculación de agua caliente y sistema de suministro controlado de calor o calentamiento por vapor o resistencias eléctricas. Se implementó una simulación en MATLAB para validar el modelo dinámico con datos experimentales, y se analizaron la eficiencia energética, coeficiente global y de película, considerando condiciones reales de operación.spa
dc.format.extentxviii, 125 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88633
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAdekoya, O. B., Olabode, J. K., & Rafi, S. K. (2021). Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions. Renewable Energy. https://doi.org/10.1016/J.RENENE.2021.08.019spa
dc.relation.referencesAhmed, K., Khan, B., & Shahbaz, M. (2024). Pathways to China’s carbon neutrality and clean energy transition: Evidence from the three decades long stricter environmental regulations. Sustainable Futures, 8(July), 100296. https://doi.org/10.1016/j.sftr.2024.100296spa
dc.relation.referencesÅkesjö, A., Gourdon, M., Jongsma, A., & Sasic, S. (2023). Enhancing industrial vertical falling film evaporation through modification of heat transfer surfaces – an experimental study. Chemical Engineering and Processing - Process Intensification, 191(June). https://doi.org/10.1016/j.cep.2023.109456spa
dc.relation.referencesAlvarado, J. P., Palma, H. H., Ramos, C. G., Moreno-Ríos, A. L., Osio, E. M., Horta, R. G., Caraveo, G. I. D. A. P., & Moreno, S. E. R. (2024). Evaporation automation at the Central de Mieles de Útica, Colombia, for non-centrifugal sugar cane production: Sustainable optimization strategies. Bioresource Technology Reports, 26(January). https://doi.org/10.1016/j.biteb.2024.101850spa
dc.relation.referencesAzimibavil, S., & Jafarian, A. (2021). Heat transfer evaluation and economic characteristics of falling fi lm brine concentrator in zero liquid discharge processes. Journal of Cleaner Production, 285, 124892. https://doi.org/10.1016/j.jclepro.2020.124892spa
dc.relation.referencesAzimifar, M., Moradian, A., & Jafarian, A. (2024). A numerical investigation on the dynamics of particle deposition and fouling on a vertical falling film pipe. Journal of Water Process Engineering, 66(May), 105990. https://doi.org/10.1016/j.jwpe.2024.105990spa
dc.relation.referencesBarra, C., Falcone, P. M., & Giganti, P. (2025). Jo ur f. In International Economics. Centre d’Etudes prospectives et d’Information International (CEPII), affiliated with the Centre d’Analyse Strategiqie. https://doi.org/10.1016/j.inteco.2025.100592spa
dc.relation.referencesBhadbhade, N., & Patel, M. K. (2020). Analysis of energy efficiency improvement and carbon dioxide abatement potentials for Swiss Food and Beverage sector. Resources, Conservation and Recycling, 161, 104967. https://doi.org/10.1016/J.RESCONREC.2020.104967spa
dc.relation.referencesCanela-Sánchez, I. J., Juárez-Romero, D., & Escobar-Jiménez, R. F. (2023). Modeling and simulation of a helical falling film evaporator to improve its performance and design. Applied Thermal Engineering, 228(February), 120445. https://doi.org/10.1016/j.applthermaleng.2023.120445spa
dc.relation.referencesCao, G., Min, X., Xi, W., Wu, S., Zhang, S., Liu, G., Zhang, X., & Yan, K. (2023). Experimental study of the flow dynamics and thermodynamic properties of a tube in vertical falling film evaporator for data center cabinets. Case Studies in Thermal Engineering, 50(June), 103436. https://doi.org/10.1016/j.csite.2023.103436spa
dc.relation.referencesCao, G., Zhang, Q., Zhang, S., Liu, G., Feng, R., Cui, H., Tian, W., Ding, K., Hu, Z., & Zhang, X. (2024). Experimental study on the effect of tube surface modifications and in-channel baffle plates on falling film evaporator heat transfer properties for sever cabinets. International Communications in Heat and Mass Transfer, 158(August), 107943. https://doi.org/10.1016/j.icheatmasstransfer.2024.107943spa
dc.relation.referencesÇengel, Y. (2006). Heat transfer: A practical approach (2da ed). Mc. Graw Hill Higher Education. New York.spa
dc.relation.referencesChen, H., & Wang, Y. (2021). Flash evaporation heat transfer enhancement via spray film dynamics. Applied Thermal Engineering, 195, 117165spa
dc.relation.referencesChowdhury, H. (2020). Review of falling film evaporators in industrial applications: Integration with heat pumps for energy savings. Renewable and Sustainable Energy Reviews.spa
dc.relation.referencesGarcía-Payo, M. C. (2022). Recent developments in evaporation technologies for food and pharma: Recubrimientos antiadherentes nanotecnológicos en evaporadores de capa agitada. Journal of Food Engineering.spa
dc.relation.referencesGuichet, V., & Jouhara, H. (2020). Condensation, evaporation and boiling of falling films in wickless heat pipes (two-phase closed thermosyphons): A critical review of correlations. International Journal of Thermofluids, 1–2, 100001. https://doi.org/10.1016/j.ijft.2019.100001spa
dc.relation.referencesHeggs, P. J., & Al-Zuhair, S. (2019). Modelling rising film evaporators for viscous liquids. Chemical Engineering Research and Design, 144, 1–9.spa
dc.relation.referencesJelsch, M., Roggo, Y., Brewer, M., Géczi, Z. A., Heger, P., Kleinebudde, P., & Krumme, M. (2023). Advanced process automation of a pharmaceutical continuous wet granulation line: Perspectives on the application of a model predictive control from solid feeders to dryer. Powder Technology, 429(August). https://doi.org/10.1016/j.powtec.2023.118936spa
dc.relation.referencesJiang, X., Liu, Y., Zhang, C., & Xu, L. (2022). Performance enhancement in falling film evaporators using structured surfaces. International Journal of Heat and Mass Transfer, 181, 122026.spa
dc.relation.referencesKumar, A., Sharma, R., & Singh, A. (2022). Design and performance analysis of scraped surface evaporators in food processing. Food and Bioproducts Processing, 131, 150–160.spa
dc.relation.referencesKumar, A., & Singh, R. (2023). Evaporation techniques in wastewater and food processing industries: Sistemas híbridos de evaporación más membranas. Environmental Science and Pollution Research.spa
dc.relation.referencesLi, J., & Tang, J. (2020). Vacuum evaporators: Principles and energy considerations. Módulos compactos al vacío para pequeños laboratorios. Journal of Thermal Science and Engineering Applications.spa
dc.relation.referencesLi, X., Dong, X., Wang, J., Tu, X., Huang, H., Cao, Y., Wang, C., & Huang, Y. (2023). Fast and Precise Temperature Control for Axon Stretch Growth Bioreactor Based on Fuzzy PID Control. Applied Biochemistry and Biotechnology, 195(12), 7446–7464. https://doi.org/10.1007/s12010-023-04449-2spa
dc.relation.referencesLin, B., & Guan, C. (2023). Assessing consumption-based carbon footprint of China’s food industry in global supply chain. Sustainable Production and Consumption, 35, 365–375. https://doi.org/10.1016/j.spc.2022.11.013spa
dc.relation.referencesLin, H. Y., Muneeshwaran, M., Yang, C. M., Nawaz, K., & Wang, C. C. (2024). On falling film evaporator – A review of mechanisms and critical assessment of correlation on a horizontal tube bundle with updated development. International Communications in Heat and Mass Transfer, 150, 107165. https://doi.org/10.1016/j.icheatmasstransfer.2023.107165spa
dc.relation.referencesLin, X. (2024). Evaporadores de alta entalpía para procesos a más de 200 °C: Condiciones extremas de operación en extracción química. Journal of Chemical Engineering.spa
dc.relation.referencesLiu, H., Guo, R., & Sun, D. (2025). A probability model for churn flow in vertical pipes: Predicting the distribution of disturbance wave scale and void fraction. International Journal of Multiphase Flow, 186(November 2024). https://doi.org/10.1016/j.ijmultiphaseflow.2025.105150spa
dc.relation.referencesMaiti, S., Das, S., & Banerjee, T. (2020). Thermal analysis and optimization of falling film evaporators for waste heat recovery. Applied Thermal Engineering, 168, 114838.spa
dc.relation.referencesMath, P., Chandrakar, T. K., Kumar, S., Bhamniya, R. J., Rinawa, M. L., & Ankit. (2021). Experimental and CFD simulation of performance analysis of steam generators of boilers. Materials Today: Proceedings, xxxx, 11–14. https://doi.org/10.1016/j.matpr.2021.07.084spa
dc.relation.referencesMohamed, H., & Biancofiore, L. (2020). International Journal of Multiphase Flow Linear stability analysis of evaporating falling liquid films. 130. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103354spa
dc.relation.referencesMüller, J., Hofmann, M., & Beckmann, G. (2021). Evaporation of high-viscosity mixtures in agitated thin film evaporators. Journal of Process Mechanical Engineering, 235(4), 1239–1250.spa
dc.relation.referencesMuneeshwaran, M., Lin, H. Y., Yang, C. M., Nawaz, K., & Wang, C. C. (2025). Universal correlation for falling film evaporation heat transfer coefficients of water and seawater. Applied Thermal Engineering, 259(March 2024), 124881. https://doi.org/10.1016/j.applthermaleng.2024.124881spa
dc.relation.referencesNebylov, A. V., & Nebylov, V. A. (2020). Automatic Control Theory as a Part of Aerospace Training in Russia. IFAC-PapersOnLine, 53(2), 17144–17149. https://doi.org/10.1016/j.ifacol.2020.12.1715spa
dc.relation.referencesOkwabi, R., Mensah, G., Fiagbe, Y. A. K., & Davis, F. (2023). Towards the estimation of quantity of fuel consumed in steam generation through predictive modelling of feedwater temperature. Scientific African, 20. https://doi.org/10.1016/j.sciaf.2023.e01650spa
dc.relation.referencesPariasamy, S. G., Venkateswaran, V. K., Singh, D. K., & Chauhan, V. K. S. (2024). Study on steam energy efficiency enhancement, cost management and CO2 emissions in the food industry. Energy, 313(September 2022), 133757. https://doi.org/10.1016/j.energy.2024.133757spa
dc.relation.referencesPatel, R., & Jha, R. (2021). Design and analysis of thermal evaporators in process industries: Miniaturización con microcanales y compuestos. Chemical Engineering Journal Advances.spa
dc.relation.referencesRamírez-Rivera, M. J., Díaz-Ovalle, C. O., Ramos-Ojeda, E., & Castrejón-González, E. O. (2024). CFD simulation analysis of fouling formation in a milk falling-film evaporator. Food and Bioproducts Processing, 143(October 2023), 242–254. https://doi.org/10.1016/j.fbp.2023.12.003spa
dc.relation.referencesSánchez-Sánchez, H. (2019). Organización de las Naciones Unidas. Código de Derecho Internacional Tomo I, 15900, 273–299. https://doi.org/10.2307/j.ctvm7bb4n.14spa
dc.relation.referencesShah, M. M. (2021). A General Correlation for Heat Transfer During Evaporation of Falling Films on Single Horizontal Plain Tubes. International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2021.04.025spa
dc.relation.referencesSingh, D., & Ahmed, M. (2024). Design optimization of falling film evaporator tubes using CFD: Optimización geométrica interna por CFD. Computational Thermal Sciences.spa
dc.relation.referencesSoni, S., Jindal, M. K., Tewari, P. K., & Anand, V. (2025). Potential and challenges of desalination technologies for arid and semiarid regions: A comprehensive review. Desalination, 600(December 2024), 118458. https://doi.org/10.1016/j.desal.2024.118458spa
dc.relation.referencesSui, R., Zhao, Y., Ge, B., & Wang, W. (2021). Failure analysis of leakage at tube-to-tubesheet joints of a waste heat boiler. Engineering Failure Analysis, 105639. https://doi.org/10.1016/j.engfailanal.2021.105639spa
dc.relation.referencesTakahama, H., & Kato, S. (1980). Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow. International Journal of Multiphase Flow, 6(3), 203–215. https://doi.org/10.1016/0301-9322(80)90011-7spa
dc.relation.referencesWang, L., & Pang, J. (2025). Assessing the impact of climate mitigation technology and environmental tax on renewable energy development: A dynamic threshold approach. Renewable Energy, 244(December 2024), 122683. https://doi.org/10.1016/j.renene.2025.122683spa
dc.relation.referencesWang, Q., Li, M., Xu, W., Yao, L., Liu, X., Su, D., & Wang, P. (2020). International Journal of Heat and Mass Transfer Review on liquid film flow and heat transfer characteristics outside horizontal tube falling film evaporator : Cfd numerical simulation. International Journal of Heat and Mass Transfer, 163, 120440. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120440spa
dc.relation.referencesWang, Y. (2021). Energy-efficient evaporation systems: A review. Estudios de integración de energía solar térmica en evaporadores múltiples efectos. Energy Reports.spa
dc.relation.referencesXue, Y., Stewart, C., Kelly, D., Campbell, D., & Gormley, M. (2024). Experimental study of developing free-falling annular flow in a large-scale vertical pipe. Experimental Thermal and Fluid Science, 150(September 2023), 111064. https://doi.org/10.1016/j.expthermflusci.2023.111064spa
dc.relation.referencesZhang, B., Yu, F., & Liu, H. (2023). Experimental study of rotating thin film evaporation for industrial solvents. Chemical Engineering Journal, 452, 139275.spa
dc.relation.referencesZhang, Y., Zhao, Z., Li, H., Li, X., & Gao, X. (2021). Numerical modeling and optimal design of microwave-heating falling film evaporation. Chemical Engineering Science, 240, 116681. https://doi.org/10.1016/j.ces.2021.116681spa
dc.relation.referencesZhao, A. (2024). Digital Twin Development of a R134a Plate-Tube Evaporator: Implementación de gemelos digitales para monitoreo predictivo en evaporadores. Proceedings of the ASME Heat Transfer Conference 2024.spa
dc.relation.referencesZheng, Y., Chen, G., Zhao, X., Sun, W., & Ma, X. (2020). International Journal of Heat and Mass Transfer Falling liquid film periodical fluctuation over a superhydrophilic horizontal tube at low spray density. International Journal of Heat and Mass Transfer, 147, 118938. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118938spa
dc.relation.referencesZhou, H. (2022). Efficient rotary evaporator control optimization via IA y automatización: Optimización de vacío y velocidad con IA para uniformidad de evaporación. Industrial \& Engineering Chemistry Research. SSRN Proceedings.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.proposalEvaporador de película descendentespa
dc.subject.proposalModelo dinámicospa
dc.subject.proposalValidación experimentalspa
dc.subject.proposaltransferencia de calorspa
dc.subject.proposaleficiencia energéticaspa
dc.subject.proposalFalling film evaporatoreng
dc.subject.proposaldynamic modeleng
dc.subject.proposalexperimental validationeng
dc.subject.proposalheat transfereng
dc.subject.proposalenergy efficiencyeng
dc.subject.unescoFuente de energía renovablespa
dc.subject.unescoRenewable energy sourceseng
dc.subject.unescoRecursos energéticosspa
dc.subject.unescoEnergy resourceseng
dc.titleEvaluación de la eficiencia energética en un evaporador de película descendentespa
dc.title.translatedAssessment of energy efficiency in a falling film evaporatoreng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
14702716.2025.pdf
Tamaño:
9.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: