Evaluación de la eficiencia energética en un evaporador de película descendente
dc.contributor.advisor | Pinzón Casallas, Nelson Aníbal | |
dc.contributor.author | Ayala Tez, Darwin Alcides | |
dc.contributor.cvlac | Ayala Tez, Darwin Alcides [0001520920] | |
dc.contributor.orcid | Ayala Tez, Darwin Alcides [0009000894804590] | |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.date.accessioned | 2025-09-05T16:06:50Z | |
dc.date.available | 2025-09-05T16:06:50Z | |
dc.date.issued | 2025 | |
dc.description | fotografías, graficas, tablas | spa |
dc.description.abstract | La energía ha sido un factor determinante en el desarrollo de la humanidad, impulsando el crecimiento de la población y la transformación de materias primas. Actualmente, es fundamental reducir los impactos ambientales derivados de las actividades económicas, promoviendo el uso de fuentes energéticas limpias y renovables, mejorar la eficiencia energética y disminución de la huella de carbono en los procesos industriales. Para lograrlo, es necesario adaptar y modernizar las tecnologías existentes, integrando sistemas de control que optimicen las operaciones. En este contexto, los evaporadores de película descendente (EPD) son objeto de estudio por su capacidad para mejorar la transferencia de calor y aumentar la eficiencia. Se llevó a cabo el diseño y construcción de dos prototipos de EPD calentados por vapor y resistencias eléctricas como fuentes alternativas con el propósito de evaluar la eficiencia energética en tres sistemas de suministro de calor en el calentamiento de tres espesores de película líquida y el desarrollo del modelo dinámico en los dos EPD. Las pruebas se centraron en el comportamiento térmico del sistema, sin cambios de fase en el líquido tratado. Se realizo la validación para el modelo matemático mediante un análisis estadístico de error cuadrático medio MSE, RMSE y coeficiente de determinación R^2 entre los datos experimentales obtenidos y los datos calculados por el modelo dinámico, se determinó en los resultados analizados un ajuste significativo del modelo matemático y la variación de la eficiencia en cada prueba (Texto tomado de la fuente). | spa |
dc.description.abstract | Energy has been a determining factor in the development of humanity, driving population growth and the transformation of raw materials. Currently, it is essential to reduce the environmental impacts of economic activities by promoting the use of clean and renewable energy sources, improving energy efficiency, and reducing the carbon footprint of industrial processes. To achieve this, it is necessary to adapt and modernize existing technologies, integrating control systems that optimize operations. In this context, falling film evaporators (FFEs) are being studied for their ability to improve heat transfer and increase efficiency. Two prototype FFEs heated by steam and electric resistances as alternative sources were designed and built to evaluate energy efficiency in three heat supply systems for heating three liquid film thicknesses and to develop a dynamic model for the two FFEs. Tests focused on the thermal behavior of the system, without phase changes in the treated liquid. The mathematical model was validated using a statistical analysis of the root mean square error (MSE), RMSE, and coefficient of determination (R^2) between the experimental data obtained and the data calculated by the dynamic model. The analyzed results revealed a significant fit of the mathematical model and a variation in efficiency in each test. | eng |
dc.description.curriculararea | Ingeniería Química y Ambiental.Sede Bogotá | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | |
dc.description.methods | Esta investigación empleó una metodología mixta, combinando enfoques cuantitativo y cualitativo con un diseño de investigación aplicada y experimental. El enfoque cuantitativo permitió la recolección y análisis de datos medidos directamente en el evaporador de película descendente, como temperaturas, caudales y eficiencia térmica, bajo distintas condiciones operativas. Paralelamente, el enfoque cualitativo facilitó la observación y descripción de fenómenos no cuantificables directamente, como la estabilidad de la película y el comportamiento visual del flujo. La metodología aplicada se orientó a resolver un problema técnico real vinculado al rendimiento energético del equipo, mientras que el componente experimental se basó en pruebas controladas en laboratorio. Esta combinación metodológica proporcionó una visión integral y robusta del desempeño térmico del sistema. | spa |
dc.description.notes | Este documento presenta los resultados de una investigación aplicada sobre eficiencia energética en un evaporador de película descendente (EPD). La tesis incluye el diseño, desarrollo y validación experimental de dos prototipos de EPD con diferentes fuentes de calor: vapor y resistencias eléctricas. Se evaluaron parámetros térmicos clave y se desarrolló un modelo dinámico validado mediante datos experimentales. | spa |
dc.description.researcharea | Bioprocesos | spa |
dc.description.technicalinfo | El sistema desarrollado consta de un evaporador de película descendente (EPD) de 0.613 m de longitud, con análisis térmico basado en transferencia de calor sin cambio de fase por vacío, y evaluación con y sin efectos de evaporación. El diseño incluye sensores de temperatura, recirculación de agua caliente y sistema de suministro controlado de calor o calentamiento por vapor o resistencias eléctricas. Se implementó una simulación en MATLAB para validar el modelo dinámico con datos experimentales, y se analizaron la eficiencia energética, coeficiente global y de película, considerando condiciones reales de operación. | spa |
dc.format.extent | xviii, 125 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88633 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Adekoya, O. B., Olabode, J. K., & Rafi, S. K. (2021). Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions. Renewable Energy. https://doi.org/10.1016/J.RENENE.2021.08.019 | spa |
dc.relation.references | Ahmed, K., Khan, B., & Shahbaz, M. (2024). Pathways to China’s carbon neutrality and clean energy transition: Evidence from the three decades long stricter environmental regulations. Sustainable Futures, 8(July), 100296. https://doi.org/10.1016/j.sftr.2024.100296 | spa |
dc.relation.references | Åkesjö, A., Gourdon, M., Jongsma, A., & Sasic, S. (2023). Enhancing industrial vertical falling film evaporation through modification of heat transfer surfaces – an experimental study. Chemical Engineering and Processing - Process Intensification, 191(June). https://doi.org/10.1016/j.cep.2023.109456 | spa |
dc.relation.references | Alvarado, J. P., Palma, H. H., Ramos, C. G., Moreno-Ríos, A. L., Osio, E. M., Horta, R. G., Caraveo, G. I. D. A. P., & Moreno, S. E. R. (2024). Evaporation automation at the Central de Mieles de Útica, Colombia, for non-centrifugal sugar cane production: Sustainable optimization strategies. Bioresource Technology Reports, 26(January). https://doi.org/10.1016/j.biteb.2024.101850 | spa |
dc.relation.references | Azimibavil, S., & Jafarian, A. (2021). Heat transfer evaluation and economic characteristics of falling fi lm brine concentrator in zero liquid discharge processes. Journal of Cleaner Production, 285, 124892. https://doi.org/10.1016/j.jclepro.2020.124892 | spa |
dc.relation.references | Azimifar, M., Moradian, A., & Jafarian, A. (2024). A numerical investigation on the dynamics of particle deposition and fouling on a vertical falling film pipe. Journal of Water Process Engineering, 66(May), 105990. https://doi.org/10.1016/j.jwpe.2024.105990 | spa |
dc.relation.references | Barra, C., Falcone, P. M., & Giganti, P. (2025). Jo ur f. In International Economics. Centre d’Etudes prospectives et d’Information International (CEPII), affiliated with the Centre d’Analyse Strategiqie. https://doi.org/10.1016/j.inteco.2025.100592 | spa |
dc.relation.references | Bhadbhade, N., & Patel, M. K. (2020). Analysis of energy efficiency improvement and carbon dioxide abatement potentials for Swiss Food and Beverage sector. Resources, Conservation and Recycling, 161, 104967. https://doi.org/10.1016/J.RESCONREC.2020.104967 | spa |
dc.relation.references | Canela-Sánchez, I. J., Juárez-Romero, D., & Escobar-Jiménez, R. F. (2023). Modeling and simulation of a helical falling film evaporator to improve its performance and design. Applied Thermal Engineering, 228(February), 120445. https://doi.org/10.1016/j.applthermaleng.2023.120445 | spa |
dc.relation.references | Cao, G., Min, X., Xi, W., Wu, S., Zhang, S., Liu, G., Zhang, X., & Yan, K. (2023). Experimental study of the flow dynamics and thermodynamic properties of a tube in vertical falling film evaporator for data center cabinets. Case Studies in Thermal Engineering, 50(June), 103436. https://doi.org/10.1016/j.csite.2023.103436 | spa |
dc.relation.references | Cao, G., Zhang, Q., Zhang, S., Liu, G., Feng, R., Cui, H., Tian, W., Ding, K., Hu, Z., & Zhang, X. (2024). Experimental study on the effect of tube surface modifications and in-channel baffle plates on falling film evaporator heat transfer properties for sever cabinets. International Communications in Heat and Mass Transfer, 158(August), 107943. https://doi.org/10.1016/j.icheatmasstransfer.2024.107943 | spa |
dc.relation.references | Çengel, Y. (2006). Heat transfer: A practical approach (2da ed). Mc. Graw Hill Higher Education. New York. | spa |
dc.relation.references | Chen, H., & Wang, Y. (2021). Flash evaporation heat transfer enhancement via spray film dynamics. Applied Thermal Engineering, 195, 117165 | spa |
dc.relation.references | Chowdhury, H. (2020). Review of falling film evaporators in industrial applications: Integration with heat pumps for energy savings. Renewable and Sustainable Energy Reviews. | spa |
dc.relation.references | García-Payo, M. C. (2022). Recent developments in evaporation technologies for food and pharma: Recubrimientos antiadherentes nanotecnológicos en evaporadores de capa agitada. Journal of Food Engineering. | spa |
dc.relation.references | Guichet, V., & Jouhara, H. (2020). Condensation, evaporation and boiling of falling films in wickless heat pipes (two-phase closed thermosyphons): A critical review of correlations. International Journal of Thermofluids, 1–2, 100001. https://doi.org/10.1016/j.ijft.2019.100001 | spa |
dc.relation.references | Heggs, P. J., & Al-Zuhair, S. (2019). Modelling rising film evaporators for viscous liquids. Chemical Engineering Research and Design, 144, 1–9. | spa |
dc.relation.references | Jelsch, M., Roggo, Y., Brewer, M., Géczi, Z. A., Heger, P., Kleinebudde, P., & Krumme, M. (2023). Advanced process automation of a pharmaceutical continuous wet granulation line: Perspectives on the application of a model predictive control from solid feeders to dryer. Powder Technology, 429(August). https://doi.org/10.1016/j.powtec.2023.118936 | spa |
dc.relation.references | Jiang, X., Liu, Y., Zhang, C., & Xu, L. (2022). Performance enhancement in falling film evaporators using structured surfaces. International Journal of Heat and Mass Transfer, 181, 122026. | spa |
dc.relation.references | Kumar, A., Sharma, R., & Singh, A. (2022). Design and performance analysis of scraped surface evaporators in food processing. Food and Bioproducts Processing, 131, 150–160. | spa |
dc.relation.references | Kumar, A., & Singh, R. (2023). Evaporation techniques in wastewater and food processing industries: Sistemas híbridos de evaporación más membranas. Environmental Science and Pollution Research. | spa |
dc.relation.references | Li, J., & Tang, J. (2020). Vacuum evaporators: Principles and energy considerations. Módulos compactos al vacío para pequeños laboratorios. Journal of Thermal Science and Engineering Applications. | spa |
dc.relation.references | Li, X., Dong, X., Wang, J., Tu, X., Huang, H., Cao, Y., Wang, C., & Huang, Y. (2023). Fast and Precise Temperature Control for Axon Stretch Growth Bioreactor Based on Fuzzy PID Control. Applied Biochemistry and Biotechnology, 195(12), 7446–7464. https://doi.org/10.1007/s12010-023-04449-2 | spa |
dc.relation.references | Lin, B., & Guan, C. (2023). Assessing consumption-based carbon footprint of China’s food industry in global supply chain. Sustainable Production and Consumption, 35, 365–375. https://doi.org/10.1016/j.spc.2022.11.013 | spa |
dc.relation.references | Lin, H. Y., Muneeshwaran, M., Yang, C. M., Nawaz, K., & Wang, C. C. (2024). On falling film evaporator – A review of mechanisms and critical assessment of correlation on a horizontal tube bundle with updated development. International Communications in Heat and Mass Transfer, 150, 107165. https://doi.org/10.1016/j.icheatmasstransfer.2023.107165 | spa |
dc.relation.references | Lin, X. (2024). Evaporadores de alta entalpía para procesos a más de 200 °C: Condiciones extremas de operación en extracción química. Journal of Chemical Engineering. | spa |
dc.relation.references | Liu, H., Guo, R., & Sun, D. (2025). A probability model for churn flow in vertical pipes: Predicting the distribution of disturbance wave scale and void fraction. International Journal of Multiphase Flow, 186(November 2024). https://doi.org/10.1016/j.ijmultiphaseflow.2025.105150 | spa |
dc.relation.references | Maiti, S., Das, S., & Banerjee, T. (2020). Thermal analysis and optimization of falling film evaporators for waste heat recovery. Applied Thermal Engineering, 168, 114838. | spa |
dc.relation.references | Math, P., Chandrakar, T. K., Kumar, S., Bhamniya, R. J., Rinawa, M. L., & Ankit. (2021). Experimental and CFD simulation of performance analysis of steam generators of boilers. Materials Today: Proceedings, xxxx, 11–14. https://doi.org/10.1016/j.matpr.2021.07.084 | spa |
dc.relation.references | Mohamed, H., & Biancofiore, L. (2020). International Journal of Multiphase Flow Linear stability analysis of evaporating falling liquid films. 130. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103354 | spa |
dc.relation.references | Müller, J., Hofmann, M., & Beckmann, G. (2021). Evaporation of high-viscosity mixtures in agitated thin film evaporators. Journal of Process Mechanical Engineering, 235(4), 1239–1250. | spa |
dc.relation.references | Muneeshwaran, M., Lin, H. Y., Yang, C. M., Nawaz, K., & Wang, C. C. (2025). Universal correlation for falling film evaporation heat transfer coefficients of water and seawater. Applied Thermal Engineering, 259(March 2024), 124881. https://doi.org/10.1016/j.applthermaleng.2024.124881 | spa |
dc.relation.references | Nebylov, A. V., & Nebylov, V. A. (2020). Automatic Control Theory as a Part of Aerospace Training in Russia. IFAC-PapersOnLine, 53(2), 17144–17149. https://doi.org/10.1016/j.ifacol.2020.12.1715 | spa |
dc.relation.references | Okwabi, R., Mensah, G., Fiagbe, Y. A. K., & Davis, F. (2023). Towards the estimation of quantity of fuel consumed in steam generation through predictive modelling of feedwater temperature. Scientific African, 20. https://doi.org/10.1016/j.sciaf.2023.e01650 | spa |
dc.relation.references | Pariasamy, S. G., Venkateswaran, V. K., Singh, D. K., & Chauhan, V. K. S. (2024). Study on steam energy efficiency enhancement, cost management and CO2 emissions in the food industry. Energy, 313(September 2022), 133757. https://doi.org/10.1016/j.energy.2024.133757 | spa |
dc.relation.references | Patel, R., & Jha, R. (2021). Design and analysis of thermal evaporators in process industries: Miniaturización con microcanales y compuestos. Chemical Engineering Journal Advances. | spa |
dc.relation.references | Ramírez-Rivera, M. J., Díaz-Ovalle, C. O., Ramos-Ojeda, E., & Castrejón-González, E. O. (2024). CFD simulation analysis of fouling formation in a milk falling-film evaporator. Food and Bioproducts Processing, 143(October 2023), 242–254. https://doi.org/10.1016/j.fbp.2023.12.003 | spa |
dc.relation.references | Sánchez-Sánchez, H. (2019). Organización de las Naciones Unidas. Código de Derecho Internacional Tomo I, 15900, 273–299. https://doi.org/10.2307/j.ctvm7bb4n.14 | spa |
dc.relation.references | Shah, M. M. (2021). A General Correlation for Heat Transfer During Evaporation of Falling Films on Single Horizontal Plain Tubes. International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2021.04.025 | spa |
dc.relation.references | Singh, D., & Ahmed, M. (2024). Design optimization of falling film evaporator tubes using CFD: Optimización geométrica interna por CFD. Computational Thermal Sciences. | spa |
dc.relation.references | Soni, S., Jindal, M. K., Tewari, P. K., & Anand, V. (2025). Potential and challenges of desalination technologies for arid and semiarid regions: A comprehensive review. Desalination, 600(December 2024), 118458. https://doi.org/10.1016/j.desal.2024.118458 | spa |
dc.relation.references | Sui, R., Zhao, Y., Ge, B., & Wang, W. (2021). Failure analysis of leakage at tube-to-tubesheet joints of a waste heat boiler. Engineering Failure Analysis, 105639. https://doi.org/10.1016/j.engfailanal.2021.105639 | spa |
dc.relation.references | Takahama, H., & Kato, S. (1980). Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow. International Journal of Multiphase Flow, 6(3), 203–215. https://doi.org/10.1016/0301-9322(80)90011-7 | spa |
dc.relation.references | Wang, L., & Pang, J. (2025). Assessing the impact of climate mitigation technology and environmental tax on renewable energy development: A dynamic threshold approach. Renewable Energy, 244(December 2024), 122683. https://doi.org/10.1016/j.renene.2025.122683 | spa |
dc.relation.references | Wang, Q., Li, M., Xu, W., Yao, L., Liu, X., Su, D., & Wang, P. (2020). International Journal of Heat and Mass Transfer Review on liquid film flow and heat transfer characteristics outside horizontal tube falling film evaporator : Cfd numerical simulation. International Journal of Heat and Mass Transfer, 163, 120440. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120440 | spa |
dc.relation.references | Wang, Y. (2021). Energy-efficient evaporation systems: A review. Estudios de integración de energía solar térmica en evaporadores múltiples efectos. Energy Reports. | spa |
dc.relation.references | Xue, Y., Stewart, C., Kelly, D., Campbell, D., & Gormley, M. (2024). Experimental study of developing free-falling annular flow in a large-scale vertical pipe. Experimental Thermal and Fluid Science, 150(September 2023), 111064. https://doi.org/10.1016/j.expthermflusci.2023.111064 | spa |
dc.relation.references | Zhang, B., Yu, F., & Liu, H. (2023). Experimental study of rotating thin film evaporation for industrial solvents. Chemical Engineering Journal, 452, 139275. | spa |
dc.relation.references | Zhang, Y., Zhao, Z., Li, H., Li, X., & Gao, X. (2021). Numerical modeling and optimal design of microwave-heating falling film evaporation. Chemical Engineering Science, 240, 116681. https://doi.org/10.1016/j.ces.2021.116681 | spa |
dc.relation.references | Zhao, A. (2024). Digital Twin Development of a R134a Plate-Tube Evaporator: Implementación de gemelos digitales para monitoreo predictivo en evaporadores. Proceedings of the ASME Heat Transfer Conference 2024. | spa |
dc.relation.references | Zheng, Y., Chen, G., Zhao, X., Sun, W., & Ma, X. (2020). International Journal of Heat and Mass Transfer Falling liquid film periodical fluctuation over a superhydrophilic horizontal tube at low spray density. International Journal of Heat and Mass Transfer, 147, 118938. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118938 | spa |
dc.relation.references | Zhou, H. (2022). Efficient rotary evaporator control optimization via IA y automatización: Optimización de vacío y velocidad con IA para uniformidad de evaporación. Industrial \& Engineering Chemistry Research. SSRN Proceedings. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
dc.subject.proposal | Evaporador de película descendente | spa |
dc.subject.proposal | Modelo dinámico | spa |
dc.subject.proposal | Validación experimental | spa |
dc.subject.proposal | transferencia de calor | spa |
dc.subject.proposal | eficiencia energética | spa |
dc.subject.proposal | Falling film evaporator | eng |
dc.subject.proposal | dynamic model | eng |
dc.subject.proposal | experimental validation | eng |
dc.subject.proposal | heat transfer | eng |
dc.subject.proposal | energy efficiency | eng |
dc.subject.unesco | Fuente de energía renovable | spa |
dc.subject.unesco | Renewable energy sources | eng |
dc.subject.unesco | Recursos energéticos | spa |
dc.subject.unesco | Energy resources | eng |
dc.title | Evaluación de la eficiencia energética en un evaporador de película descendente | spa |
dc.title.translated | Assessment of energy efficiency in a falling film evaporator | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 14702716.2025.pdf
- Tamaño:
- 9.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: