Metodología para ejecución de pruebas eléctricas con sistemas resonantes de alta tensión
dc.contributor.advisor | Román Campos, Francisco José | |
dc.contributor.author | Limas-Lesmez, Daniel | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001665934 | spa |
dc.contributor.researchgroup | Grupo de Investigación Emc-Un | spa |
dc.date.accessioned | 2024-02-05T17:44:54Z | |
dc.date.available | 2024-02-05T17:44:54Z | |
dc.date.issued | 2024-02-01 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Este documento presenta los resultados de un trabajo investigativo y experimental, donde se complementa con la experiencia del autor, sobre el sistema de alta tensión para pruebas de aislamiento eléctrico en un transformador de potencia como objeto bajo prueba, siendo uno de los principales elementos del sistema eléctrico de potencia. En una primera fase se desarrolla una caracterización de los sistemas de alta tensión para pruebas eléctricas, al tener claros los 2 tipos de sistemas que se utilizan en este trabajo, se procede a realizar un modelo del aislamiento eléctrico del transformador. Por medio de cálculos y valores experimentales de laboratorio, se obtienen los resultados de capacitancia del aislamiento eléctrico dentro del transformador. Mediante el software Matlab-Simulink® se realizan 2 simulaciones de los 2 tipos de sistemas resonantes de alta tensión, con el fin de analizar el comportamiento en tiempo real de las variables eléctricas en un transformador de potencia como objeto bajo prueba, después se realiza una guía para aplicar una prueba de tensión aplicada basado en normativa internacional, un procedimiento paso a paso, teniendo en cuenta todos los parámetros importantes en cuestión de seguridad y aplicabilidad. Finalmente, se realizan las pruebas en laboratorio utilizando uno de los sistemas resonante de alta tensión (ACRL) para poder contrastar los resultados de simulación con los obtenidos en laboratorio. Todo lo anterior con el fin, a futuro, de predecir valores y comportamientos de los sistemas antes de realizar pruebas de tensión aplicada en fábrica o sitio y así, minimizar el riesgo de daño por excesos de tensión eléctrica y corriente, siendo este el principal aporte del documento presente en la ingeniería eléctrica.(Texto tomado de la fuente) | spa |
dc.description.abstract | This document presents the results of a research and experimental work, complemented with the author's experience, focused on the high voltage resonant system used for electrical insulation testing in power transformers, being an important equipment of electrical power systems. The initial stage of this work deals with the characterization of the high voltage systems used in electrical tests, distinguishing between the two types of systems presented in this study, ACRF (variable frequency) and ACRL (variable inductance). A model of the transformer electrical insulation is then developed by combining theoretical calculations with laboratory experiments to obtain accurate transformer insulation capacitance values. Subsequently, using Matlab-Simulink® software, real-time simulations of both high-voltage resonant systems were performed, allowing us to analyze the electrical variables inside the power transformer under test conditions. Next, a complete guide for the application of the applied voltage test based on international standards is provided, offering a step-by-step procedure that carefully considers essential parameters related to safety and technical requirements. To conclude this work, the results of theoretical calculations were compared with the results of laboratory tests using one of the high voltage resonant systems, the ACRL system. Finally, it is concluded that this final master's work serves as a tool to predict values and behaviors of real resonant systems before performing applied voltage tests in factory or site and thus, minimize the risk of damage due to excess voltage and current, being this the main contribution of this paper in electrical engineering. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería de Eléctrica | spa |
dc.description.researcharea | Energía y electromagnetismo – Alta tensión | spa |
dc.format.extent | xx, 109 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85614 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Kuffel, E., Zaengl, W. S., & Kuffel, J. (2000). Overvoltages, testing procedures and insulation coordination. En High Voltage Engineering Fundamentals (pp. 460–508). Elsevier. https://doi.org/10.1016/B978-075063634-6/50009-5 | spa |
dc.relation.references | Limas, D., & Medina, C. (2023, octubre). Dificultades de pruebas en sitio para la medición de descargas parciales en subestaciones GIS y transformadores de potencia. XXI Conferencia Doble Latinoamericana. https://web.cvent.com/event/75ea9b1e-b781-432a-bc58-bba332737249/websitePage:04499f2c-afe9-410d-a08b-a28f68fa3091 | spa |
dc.relation.references | Limas, D., & Román, F. (2023, septiembre). Utilización de sistemas resonantes para pruebas eléctricas en elementos de subestaciones eléctricas. Jornadas técnicas de transmisión. https://www.cno.org.co/content/jornadas-tecnicas-de-transmision-2023-agenda-dia-2 | spa |
dc.relation.references | COMSOL. (2023). Computation of losses in a three-phase power transformer. Application ID: 54471. https://www.comsol.com/model/computation-of-losses-in-a-three-phase-power-transformer-54471 | spa |
dc.relation.references | HIGHVOLT Prüftechnik Dresden GmbH. (2023a). AC test systems with variable frequency. https://www.highvolt.com/en/productdetail/ac-test-systems/wrv-m#v-pills- | spa |
dc.relation.references | HIGHVOLT Prüftechnik Dresden GmbH. (2023b). HVAC Power frequency resonant test system. https://www.highvolt.com/en/productdetail/ac-test-systems/wrm#v-pills- | spa |
dc.relation.references | Megger. (2023). Mediciones del factor de potencia disipación a la frecuencia de 1 Hz en aislamientos impregnados. https://youtu.be/JOVvH3ryk14 | spa |
dc.relation.references | Omicron electronics. (2023). Offline Testing on Power Transformers. https://www.omicronenergy.com/en/application/offline-testing/power-transformer/ | spa |
dc.relation.references | PowerHV. (2023a). AC resonant test system (variable frequency). https://www.powerhv.com/pages/product_info_series/5_8_99_147-Variable-frequency-resonant-system.html | spa |
dc.relation.references | PowerHV. (2023b). AC resonant test system (variable inductance). https://www.powerhv.com/pages/product_info_series/5_8_99_145-AC-resonant-test-system.html | spa |
dc.relation.references | Sieyuan Electric Co. (2023). Variable frequency series resonant test system. https://en.sieyuan.com/68/34/ | spa |
dc.relation.references | VOLTAMP POWER SAOC | Voltamp Omán. (2023). CORE COIL ASSEMBLY. https://voltampoman.com/facilites-voltamp-power-llc/ | spa |
dc.relation.references | Acosta, J., Amortegui, F., Escobar, A., Leon, L., & Rivera, S. (2020). Design and implementation of prototype for XLPE cable aging test. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 36. https://doi.org/10.23967/j.rimni.2020.07.002 | spa |
dc.relation.references | CIGRE. (2002). Technical Brochure 254: Dielectric Response Methods for Diagnostics of Power Transformers. | spa |
dc.relation.references | CIGRE Study Committee A2: Transformers. (2022). Transformer and Reactor Procurement (G. M. Bastos, T. Breckenridge, M. Lamb, T.-L. MacArthur, & S. Ryder, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-030-80469-5 | spa |
dc.relation.references | García, B., Urquiza, D., & Burgos, J. C. (2016). Investigating the influence of moisture on the 2FAL generation rate of transformers: A new model to estimate the DP of cellulosic insulation. Electric Power Systems Research, 140, 87–94. https://doi.org/10.1016/j.epsr.2016.06.036 | spa |
dc.relation.references | Gnanasekaran, D., & Chavidi, V. P. (2018). Vegetable Oil based Bio-lubricants and Transformer Fluids. Springer Singapore. https://doi.org/10.1007/978-981-10-4870-8 | spa |
dc.relation.references | Gockenbach, E., W.Hauschild, S.Schierig, Muhr, M., Lick, W., & Berlijn, S. (2007, octubre). Challenges on the measuring and testing techniques for UHV AC and DC equipment. https://www.researchgate.net/publication/230952440_Challenges_on_the_measuring_and_testing_techniques_for_UHV_AC_and_DC_equipment | spa |
dc.relation.references | Hart, D. W. (2005). Electrónica de potencia (1a ed.). Prentice Hall. | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019a). Basics of High-Voltage Test Techniques. En High-Voltage Test and Measuring Techniques (pp. 17–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_2 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019b). High-Voltage Test and Measuring Techniques. Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019c). High-Voltage Test Laboratories. En High-Voltage Test and Measuring Techniques (pp. 413–450). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_9 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019d). High-Voltage Testing on Site. En High-Voltage Test and Measuring Techniques (pp. 451–506). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_10 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019e). Introduction. En High-Voltage Test and Measuring Techniques (pp. 1–15). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_1 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019f). Measurement of Dielectric Properties. En High-Voltage Test and Measuring Techniques (pp. 253–270). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_5 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019g). Partial Discharge Measurement. En High-Voltage Test and Measuring Techniques (pp. 169–251). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_4 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019h). Tests with Combined and Composite Voltages. En High-Voltage Test and Measuring Techniques (pp. 401–411). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_8 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019i). Tests with High Alternating Voltages. En High-Voltage Test and Measuring Techniques (pp. 89–167). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_3 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019j). Tests with High Direct Voltages. En High-Voltage Test and Measuring Techniques (pp. 271–309). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_6 | spa |
dc.relation.references | Hauschild, W., & Lemke, E. (2019k). Tests with High Lightning and Switching Impulse Voltages. En High-Voltage Test and Measuring Techniques (pp. 311–399). Springer International Publishing. https://doi.org/10.1007/978-3-319-97460-6_7 | spa |
dc.relation.references | Herrera, F., Amórtegui, F., León, L., Escobar, A., & García, R. (2020). Desarrollo del primer campo de pruebas para cables subterráneos de transmisión y distribución como herramienta para la gestión y evaluación de activos. XXII Congreso Internacional de Mantenimiento y Gestión de Activos. https://www.researchgate.net/publication/344365333_Desarrollo_del_Primer_Campo_de_Pruebas_para_Cables_Subterraneos_de_Transmision_y_Distribucion_como_Herramienta_para_la_Gestion_y_Evaluacion_de_Activos?enrichId=rgreq-e551a9583d8d550df5f313ab043ec3c0-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM2NTMzMztBUzo5MzkzMDcwODI3MTUxNDFAMTYwMDk1OTY2ODg4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf | spa |
dc.relation.references | NTC 836:2019 Electrotecnia. niveles de aislamiento y ensayos para transformadores sumergidos en líquido refrigerante, Pub. L. No. 836 (2019). | spa |
dc.relation.references | NTC 837:2023 Transformadores. Ensayo del dieléctrico., Pub. L. No. 837 (2023). | spa |
dc.relation.references | IEEE Guide for Diagnostic Field Testing of Fluid-Filled Power Transformers, Regulators, and Reactors, Pub. L. No. C57.152-2013 (2013). https://doi.org/10.1109/IEEESTD.2013.6544533 | spa |
dc.relation.references | Institute of Electrical and Electronics Engineers. (2013). IEEE Standard for High-Voltage Testing Techniques. IEEE Std 4-2013 (Revision of IEEE Std 4-1995), 1–213. https://doi.org/10.1109/IEEESTD.2013.6515981 | spa |
dc.relation.references | IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers, IEEE Std C57.12.00-2021 (Revision of IEEE Std C57.12.00-2015) 1 (2022). https://doi.org/10.1109/IEEESTD.2022.9690124 | spa |
dc.relation.references | IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers, IEEE Std C57.12.90-2021 (Revision of IEEE Std C57.12.90-2015) 1 (2022). https://doi.org/10.1109/IEEESTD.2022.9707753 | spa |
dc.relation.references | IEC 60270:2000 High-voltage test techniques - Partial discharge measurements, Pub. L. No. TC 42 (2000). | spa |
dc.relation.references | IEC 60076-1:2011 Power transformers - Part 1: General, Pub. L. No. TC 14 (2011). | spa |
dc.relation.references | IEC 60076-3:2013 - Power transformers - Part 3: Insulation levels, dielectric tests and external clearances in air, (2013). | spa |
dc.relation.references | Power transformers - Part 14: Liquid-immersed power transformers using high-temperature insulation materials, Pub. L. No. IEC 60076-14 (2013). | spa |
dc.relation.references | Koch, M. (2008). RELIABLE MOISTURE DETERMINATION IN POWER TRANSFORMERS [PhD.]. Institut für Energieübertragung und Hochspannungstechnik der Universität Stuttgart. | spa |
dc.relation.references | Kuffel, E., Kuffel, J., & Zaengl W.S. (2000). High Voltage Engineering Fundamentals. Elsevier. https://doi.org/10.1016/B978-0-7506-3634-6.X5000-X | spa |
dc.relation.references | Kulkarni, S. V., & Khaparde, S. A. (2017). Transformer Engineering (2a ed.). CRC Press. https://doi.org/10.1201/b13011 | spa |
dc.relation.references | Maller, V. N., & NAIDU, M. S. (1981). Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum. Elsevier. https://doi.org/10.1016/C2013-0-03238-0 | spa |
dc.relation.references | Megger®. (2023). BOLETÍN DE GESTIÓN DE LA VIDA ÚTIL DEL TRANSFORMADOR (TLM): Factor de potencia/Factor de disipación y capacitancia. https://www.artec-ingenieria.com/pdf/TransformerBulletinTLM/Castellano/TLM6_Bulletin_PowerFactor_es_V02.pdf | spa |
dc.relation.references | Reglamento Técnico de Instalaciones Eléctricas RETIE 2013, (2013). https://repositoriobi.minenergia.gov.co/bitstream/handle/123456789/2440/6052.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Pagger, E. P., Pattanadech, N., Uhlig, F., & Muhr, M. (2023). Biological Insulating Liquids. Springer International Publishing. https://doi.org/10.1007/978-3-031-22460-7 | spa |
dc.relation.references | Purkait, P., Biswas, B., Das, S., & Koley, C. (2013). Schering Bridge. En Electrical and Electronics Measurements and Instrumentation (1a ed., Vol. 1, pp. 231–232). McGraw Hill Education. | spa |
dc.relation.references | Rafiq, M., Chengrong, L., & Lv, Y. (2019). Effect of Al2O3 nanorods on dielectric strength of aged transformer oil/paper insulation system. Journal of Molecular Liquids, 284, 700–708. https://doi.org/10.1016/j.molliq.2019.04.041 | spa |
dc.relation.references | Rao, U. M., Fofana, I., & Sarathi, R. (2022). Alternative liquid dielectrics for high voltage transformer insulation systems. John Wiley & Sons, Inc. | spa |
dc.relation.references | Sadiku, M. (2018). Elements of Electromagnetics (7a ed.). Oxford University Press. | spa |
dc.relation.references | Sarria Panesso, L. M. (2015). Diseño de un sistema de costos aplicado al laboratorio de alta tensión (LAT) de la Universidad del Valle - Sede Meléndez de la ciudad Santiago de Cali. https://hdl.handle.net/10893/17112 | spa |
dc.relation.references | Siegert, L. A. (2002). Alta tensión y sistemas de transmisión. En Book (2a ed.). Editorial Limusa S.A. De C.V. | spa |
dc.relation.references | Song, F., & Tong, S. (2022). Comprehensive evaluation of the transformer oil-paper insulation state based on RF-combination weighting and an improved TOPSIS method. Global Energy Interconnection, 5(6), 654–665. https://doi.org/10.1016/j.gloei.2022.12.007 | spa |
dc.relation.references | Wadhwa, C. L. (2017). Electrical Power System (7a ed.). New Age International. | spa |
dc.relation.references | Zhang, M., Lei, S., Liu, H., Shen, Y., Liu, J., Shi, Y., Jia, H., & Li, L. (2022). Research on nonlinear characteristics for frequency domain dielectric response of transformer oil-paper insulation. Measurement, 204, 112103. https://doi.org/10.1016/j.measurement.2022.112103 | spa |
dc.relation.references | Zhu, F., & Yang, B. (2021). Power transformer design practices. CRC Press. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.lemb | Distribución de energía eléctrica-alta tensión | spa |
dc.subject.lemb | Electric power distribution - high tension | eng |
dc.subject.lemb | Método de proyecto | spa |
dc.subject.lemb | Project method in teaching | eng |
dc.subject.lemb | Circuitos de absorción | spa |
dc.subject.lemb | Tank circuits | eng |
dc.subject.proposal | Resonant systems | eng |
dc.subject.proposal | High voltage | eng |
dc.subject.proposal | Electrical testing | eng |
dc.subject.proposal | Power transformer | eng |
dc.subject.proposal | ACRL | eng |
dc.subject.proposal | ACRF | eng |
dc.subject.proposal | Capacitance | eng |
dc.subject.proposal | Electrical insulation | eng |
dc.subject.proposal | Electrical substations | eng |
dc.title | Metodología para ejecución de pruebas eléctricas con sistemas resonantes de alta tensión | spa |
dc.title.translated | Methodology for the execution of electrical tests with high voltage resonant systems | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_18ww | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 3. DocumentoFinal1018474576 - Daniel Limas Lesmez.pdf
- Tamaño:
- 2.44 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Electrónica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: