Assessment of aerosols concentration variability and dispersion in the Aburrá Valley atmosphere at different spatial and temporal scales

dc.contributor.advisorHoyos Ortiz, Carlos Davidspa
dc.contributor.advisorHerrera Mejía, Lauraspa
dc.contributor.authorJaramillo Gil, Santiagospa
dc.date.accessioned2021-02-05T15:57:56Zspa
dc.date.available2021-02-05T15:57:56Zspa
dc.date.issued2020-04-27spa
dc.description.abstractThe Aburrá Valley is a narrow, 1000mdeep, tropical valley located in the Colombian Andes. This valley is inhabited by more than 4 million people, living in Medellín and 9 surrounding cities. In recent years, PM2.5 (aerosol particles whose diameter is<2.5μm) has been the most critical air pollutant in the region, with frequent peak values in March, reaching historical maximum daily averages over 100μg m−3in 2016. In order to improve the understanding of the variability and dispersion of aerosols in the region and their impact on air quality, analysis on three different spatial scales are performed in this work. Firstly, regional aerosols conditions are analyzed during four high air pollution events in the Aburrá Valley between 2014 and 2019. Using ground-based data (AOD in Medellín, PM2.5 and PM10 in Medellín and Bogotá), satellite measurements (MODIS, CALIPSO), and reanalysis data (CAMS) it is established that mesoscale aerosol transport events occurred in each of the four cases analyzed, and evidence suggests that they may have directly contributed to the particulate matter peak events in the Aburrá Valley. Secondly, lidar vertical profiles for the lowest 3km, retrieved from a ground-based lidar located in the Aburrá Valley, are used to identify internal boundary layer structures associated with the complex dynamics of the valley atmosphere and with possible implications for aerosol dispersion. Different structure patterns are identified. Special emphasis is put on the effects of updrafts associated to local convective storms and on the waves at the top of the nocturnal stable layer. Finally, on a local scale, the formation and dispersion of a dust plume inside the valley triggered by the implosion of a 6-story building are evaluated. In-situ and remote sensors (such as a scanning lidar and a ceilometer) lead us to conclude that atmospheric instability and surface wind direction favored the rise of the plume and its southward advection. PM2.5 values in the implosion zone exceeded 104μg m−3, however, effects on PM2.5 at a few hundred meters away from the implosion zone were low. Furthermore, the depolarization ratio for the particles triggered by the implosion was estimated and then compared to the ratio obtained for industrial chimneys emissions, verifying that the first ones were characterized by a more irregular shape.spa
dc.description.abstractEl Valle de Aburrá es un valle tropical estrecho, de 1000mde profundidad, localizado en los Andes colombianos. Este valle es habitado por más de 4 millones de personas, en Medellín y otras 9 ciudades. En los últimos años el PM2.5 (aerosoles con diámetro menor a 2.5μm) ha sido el contaminente más crítico en la región, con recurrentes picos durante marzo, llegando a superar promedios diarios de 100μg m−3 en 2016. Para entender mejor la variabilidad y dispersión de los aerosoles en la región y su impacto en la calidad del aire, en este trabajo se desarollan análisis en tres diferentes escalas espaciales. En primer lugar se analizan las condiciones regionales de aerosoles durante cuatro eventos de alta contaminación en el valle entre 2014 y 2019. A partir de mediciones en tierra (AOD en Medellín, PM2.5 y PM10 en Medellín y Bogotá), mediciones satelitales (MODIS, CALIP-SO) y datos de reanálisis (CAMS) se encuentra que durante cada uno de los cuatro casos analizados se presentaron eventos de transporte de aerosoles en mesoescala que, según la evidencia presentada, pudieron contribuir de forma directa en los incrementos de material particulado en el Valle de Aburrá. En segundo lugar, a partir de perfiles verticales de señal de lidar para los primeros 3km de la atmósfera obtenidos a partir de un Lidar ubicado en la base del Valle de Aburrá, se identifican estructuras internas en la capa límite asociadas a la compleja dinámica de la atmósfera de valle y con posibles implicaciones en dispersión de aerosoles. Diferentes patrones de estructuras son identificados con la señal del Lidar. Se hace especial énfasis en eventos de corrientes ascendentes asociados a tormentas convectivas locales, y a ondas observadas en el tope de la capa estable nocturna. Finalmente, a escala local, se evalúa la formación y dispersión de una pluma de polvo al interor del valle generada por la implosión de un edificio de 6 pisos. A partir de sensores in-situ y remotos (como scanning lidar y ceilómetro) se encuentra que la inestabilidad atmosférica y la dirección de los vientos superficiales favorecieron el ascenso de a pluma y su desplazamiento hacia el sur. El PM2.5 cerca a la implosión llegó a superar104μg m−3, sin embargo su efecto a algunos cientos de metros fue bajo. Además, se estimó la tasa de depolarización de las partículas generadas por la implosión y se comparó con la obtenida para emisiones de chimeneas industriales, logrando verificar que las primeras presentan una mayor irregularidad en su forma.spa
dc.description.additionalLínea de investigación: Ciencias Atmosféricas, Calidad del Airespa
dc.description.degreelevelMaestríaspa
dc.format.extent103spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationJaramillo Gil, S. (2020). Assessment of aerosols concentration variability and dispersion in the Aburrá Valley atmosphere at different spatial and temporal scales. Universidad Nacional de Colombia - Sede Medellín.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79090
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAnsmann, A., Baars, H., Tesche, M., Mu, D., and Althausen, D. (2009). Dust and smoke transport from Africa to South America : Lidar profiling over Cape Verde and the Amazon rainforest. GEOPHYSICAL RESEARCH LETTERS, 36:2–6.spa
dc.relation.referencesAnsmann, A., Fruntke, J., and Engelmann, R. (2010). Updraft and downdraft characterization with Doppler lidar : Cloud – free versus cumuli – topped mixed – layer. Atmos. Chem. Phys, (July).spa
dc.relation.referencesAntao, V. C., Pallos, L. L., Graham, S. L., Shim, Y. K., Sapp, J. H., Lewis, B., Bullard, S., Alper, H. E., Cone, J. E., Farfel, M. R., and Brackbill, R. M. (2019). 9/11 residential exposures: The impact of world trade center dust on respiratory outcomes of lower Manhattan residents. International Journal of Environmental Research and Public Health, 16(5).spa
dc.relation.referencesArmenteras-pascual, D., Retana-alumbreros, J., Molowny-horas, R., Roman-cuesta, R. M., Gonzalez-alonso, F., and Morales-rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3):279–289.spa
dc.relation.referencesAzarmi, F. and Kumar, P. (2016). Ambient exposure to coarse and fine particle emissions from building demolition. Atmospheric Environment, 137:62–79.spa
dc.relation.referencesBanta, R., Olivier, L., Holloway, E., Kropfly, R., Bartram, B., Cupp, R., and Post, M. (1992). Smoke-Column Observations from Two Forest Fires Using Doppler Lidar and Doppler Radar. Journal of applied meteorology, pages 1328–1349.spa
dc.relation.referencesBeck, C. M., Geyh, A., Srinivasan, A., Breysse, P. N., Eggleston, P. A., and Buckley, T. J. (2003). The Impact of a Building Implosion on Airborne Particulate Matter in an Urban Community. Journal of the Air and Waste Management Association, 53(10):1256–1264.spa
dc.relation.referencesBedoya, A., Nisperuza, D., Alegría, D., Múnera, M., Rascado, J.-L. G., Zapata, C. E., Jiménez, J. F., Landulfo, E., and Bastidas, Á. (2016). Strong saharan dust event detected at lalinet loa-unal station, over medellín, colombia by active and passive. EPJ Web of Conferences, 08006:2014–2017.spa
dc.relation.referencesBergin, M. S., West, J. J., Keating, T. J., and Russell, A. G. (2005). REGIONAL ATMOSPHERIC POLLUTION AND TRANSBOUNDARY AIR QUALITY MANAGEMENT. Annu. Rev. Environmental Resources, pages 1–37.spa
dc.relation.referencesChacón Rivera, L. M. and Belalcazar, L. (2015). Efecto de los Incendios forestales sobre la calidad del aire en dos ciudades colombianas. PhD thesis.spa
dc.relation.referencesCharland, A. M. and Clements, C. B. (2013). Kinematic structure of a wildland fire plume observed by Doppler lidar.spa
dc.relation.referencesColarco, P. R., Schoeberl, M. R., Doddridge, B. G., Marufu, L. T., Torres, O., and Welton, E. J. (2004). Transport of smoke from Canadian forest fires to the surface nearWashington , D . C .: Injection height , entrainment , and optical properties. Journal of Geophysical Research, 109:1–12.spa
dc.relation.referencesCorrea, M., Zuluaga, C., Palacio, C., Pérez, J., and Jiménez, J. (2008). ACOPLAMIENTO DE LA ATMÓSFERA LIBRE CON EL CAMPO DE VIENTOS LOCALES EN UNA REGIÓN TROPICAL DE TOPOGRAFÍA COMPLEJA. CASO DE ESTUDIO: VALLE DE ABURRÁ, ANTIOQUIA, COLOMBIA SURFACE. Dyna, pages 17–27.spa
dc.relation.referencesDupont, E., Pelon, J., and Flamant, C. (1994). STUDY OF THE MOIST CONVECTIVE BOUNDARY- LAYER STRUCTURE BY BACKSCATTERING LIDAR. Boundary- Layer Meteorology, pages 1–25.spa
dc.relation.referencesEmeis, S., Schäfer, K., and Münkel, C. (2008). Surface-based remote sensing of the mixinglayer height - A review. Meteorologische Zeitschrift, 17(5):621–630.spa
dc.relation.referencesFeingold, G. (2003). Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements. JOURNAL OF GEOPHYSICAL RESEARCH, 108:1–11.spa
dc.relation.referencesFochesatto, G. J. and Drobinski, P. (2000). EVIDENCE OF DYNAMICAL COUPLING BETWEEN THE RESIDUAL LAYER AND THE DEVELOPING CONVECTIVE BOUNDARY LAYER. Boundary-Layer Meteorology, pages 451–464.spa
dc.relation.referencesGibert, F., Arnault, N., Cuesta, J., and Flamant, P. H. (2011). Internal gravity waves convectively forced in the atmospheric residual layer during the morning transition. Royal Meteorological Society, (July):1610–1624.spa
dc.relation.referencesGibert, F., Cuesta, J., Arnault, N., and Flamant, P. H. (2007). On the correlation between convective plume updrafts and downdrafts , lidar reflectivity and depolarization ratio. Boundary-Layer Meteorology, pages 553–573.spa
dc.relation.referencesGraf, H.-F. (2004). The complex interaction of aerosols and clouds. Science, 303(5662):1309– 1311.spa
dc.relation.referencesHealth Effects Institute (2018). State of Global Air 2018. Special Report. Health Effects Institute.spa
dc.relation.referencesHernandez, A. J., Morales-rincon, L. A., Wu, D., Mallia, D., Lin, J. C., and Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45):1–8.spa
dc.relation.referencesHerrera, L. and Hoyos, C. D. (2019). Characterization of the Atmospheric Boundary Layer in a Narrow Tropical Valley Using Remote Sensing and Radiosonde Observations, and the WRF Model: The Aburrá Valley Case Study. Quarterly Journal of the Royal Meteorological Society, page qj.3583.spa
dc.relation.referencesHerrera Mejía, L. and Hoyos, C. D. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá partir de la información de sensores remotos y radiosondeos. Universidad Nacional de Colombia - Tesis Maestría.spa
dc.relation.referencesHerrera-Mejía, L. and Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model : the Aburrá Valley case-study. (November 2018):2641–2665.spa
dc.relation.referencesHervo, M., Quennehen, B., Kristiansen, N. I., Boulon, J., Stohl, A., Fréville, P., Pichon, J. M., Picard, D., Labazuy, P., Gouhier, M., Roger, J. C., Colomb, A., Schwarzenboeck, A., and Sellegri, K. (2012). Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: Ground-based, Lidar and airborne measurements in France. Atmospheric Chemistry and Physics, 12(4):1721–1736.spa
dc.relation.referencesHoff, R. M., Christopher, S. A., Hoff, R. M., and Christopher, S. A. (2012). Remote Sensing of Particulate Pollution from Space : Have We Reached the Promised Land ? Journal of the Air & Waste Management Association, 2247.spa
dc.relation.referencesHoyos, C. D., Herrera-Mejía, L., Roldán-Henao, N., and Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: the case of the medellín metropolitan area. Environmental Monitoring and Assessment, 192(1):6.spa
dc.relation.referencesInness, A., Ades, M., Agustí-panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-m., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-h., Razinger, M., Remy, S., Schulz, M., Suttie, M., and Park, S. (2019). The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, pages 3515–3556.spa
dc.relation.referencesIsaza-Uribe, A. (2018). Evaluación de la variabilidad temporal de la estructura termodinámica de la atmósfera y su influencia en las concentraciones de material particulado dentro del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellín. Línea de Investigación: Hidroclimatología, Calidad del Aire.spa
dc.relation.referencesJiménez, J. F. and Palacio, C. A. (2016). Altura de la Capa de Mezcla en un área urbana, montañosa y tropical. Universidad de Antioquia - Tesis de Doctorado.spa
dc.relation.referencesJones, T. A. and Christopher, S. A. (2010). Satellite and Radar Remote Sensing of Southern Plains Grass Fires : A Case Study. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, (April 2009):2133–2146.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalAir Qualityeng
dc.subject.proposalCalidad del Airespa
dc.subject.proposalAerosolspa
dc.subject.proposalAerosoleng
dc.subject.proposalAtmospheric Boundary Layereng
dc.subject.proposalCapa Límite Atmosféricaspa
dc.subject.proposalLidarspa
dc.subject.proposalLidareng
dc.subject.proposalMaterial particuladospa
dc.subject.proposalparticulate mattereng
dc.subject.proposalComplex terraineng
dc.subject.proposalTerreno complejospa
dc.titleAssessment of aerosols concentration variability and dispersion in the Aburrá Valley atmosphere at different spatial and temporal scalesspa
dc.title.alternativeEvaluación de la variabilidad de la concentración y la dispersión de aerosoles en la atmósfera del Valle de Aburrá en diferentes escalas espaciales y temporalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017214208_2020.pdf
Tamaño:
100.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: