Metabarcoding de comunidades microbianas del suelo en ecosistemas de bosques y páramo en el Valle del Cauca

dc.contributor.advisorMuñoz Flórez, Jaime Eduardo
dc.contributor.advisorRugeles Silva, Paula Andrea
dc.contributor.authorVélez Martínez, Glever Alexander
dc.contributor.orcidVelez Martinez, Glever Alexander [0009-0002-9029-0154]spa
dc.contributor.orcidMuñoz Flórez, Jaime Eduardo [0000-0002-8237-0499]spa
dc.contributor.orcidRugeles Silva, Paula Andrea [0000-0002-7419-6638]spa
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológicaspa
dc.coverage.regionValle del Cauca, Colombia
dc.date.accessioned2023-06-05T16:51:04Z
dc.date.available2023-06-05T16:51:04Z
dc.date.issued2023-04-20
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLos microorganismos del suelo en bosques y páramos son ejes claves en el mantenimiento de los ecosistemas por sus actividades de descomposición, nutrición de plantas e intervención en los ciclos biogeoquímicos. En esta investigación se recolectaron muestras de suelo en cuatro localidades en la cordillera central de los Andes en el Valle del Cauca, Colombia siguiendo un gradiente altitudinal entre los 1000 y 3800 msnm. Seguidamente se secuenciaron el gen 16S de ARNr para bacterias y la región ITS1 para hongos empleando metabarcoding. Los análisis de composición taxonómica de microorganismos mostraron variaciones de abundancias a través del gradiente altitudinal, siendo las bacterias Acidobacteriota y Proteobacteriota favorecidas en las mayores alturas y Actinobacteria, Firmicutes y Verrucomicrobia en las menores elevaciones. En hongos, Ascomycota tuvo asignación máxima de lecturas en la mayor elevación, Basidiomycota tendió a dominar en las dos menores altitudes y Mortierellomycota reportó la mayoría de sus lecturas en elevaciones intermedias. Las tendencias de esas clasificaciones presentaron relaciones con parámetros fisicoquímicos del suelo como el carbono orgánico, nitrógeno y pH. El índice de Shannon indicó alta diversidad de bacterias y hongos (>3) en todas las localidades, presentándose un patrón de “U” invertida con máximos de diversidad en la reserva el Pailón a 2400 msnm. Además, se evidenciaron asociaciones de géneros de microorganismos con plantas dentro de los ecosistemas y anotaciones funcionales predictivas diferenciales a través el gradiente. Concluimos que las comunidades de bacterias y hongos del suelo difirieron en estructura y diversidad conforme variaron factores preponderantes para los microorganismos edáficos. (Texto tomado de la fuente)spa
dc.description.abstractSoil microorganisms in forests and páramos are key axes in the maintenance of ecosystems due to their decomposition activities, plant nutrition and intervention in biogeochemical cycles. In this research, soil samples were collected in four localities in the central Andes mountain range in Valle del Cauca, Colombia, following an altitudinal gradient between 1000 and 3800 masl. The 16S rRNA gene for bacteria and the ITS1 region for fungi were sequenced using metabarcoding. Analysis of the taxonomic composition of microorganisms showed variations in abundance across the altitudinal gradient, with Acidobacteriota and Proteobacteriota being favored at higher altitudes and Actinobacteria, Firmicutes and Verrucomicrobia at lower elevations. In fungi, Ascomycota was more abundant at higher elevations, Basidiomycota tended to dominate at lower elevations and Mortierellomycota reported most of their readings at intermediate elevations. Trends in these classifications showed relationships with soil physicochemical parameters such as organic carbon, nitrogen and pH. The Shannon index indicated high diversity of bacteria and fungi (>3) in all localities, presenting an inverted "U" pattern with maximum diversity in the Pailón reserve at 2400 masl. In addition, associations of microorganism genera with plants within the ecosystems and differential predictive functional annotations across the gradient were evidenced. We conclude that soil bacterial and fungal communities differed in structure and diversity as factors preponderant for edaphic microorganisms varied.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.methodsLas localidades del estudio fueron el parque natural regional El Vínculo (bosque seco tropical, 1000 msnm), el parque natural regional Mateguadua (bosque seco tropical, 1200 msnm), la reserva de la sociedad civil El Pailón (bosque andino, 2400 msnm) y distrito regional de manejo integrado páramo Las Domínguez (páramo, 3800 msnm) (Figura 1). En cada localidad se conformaron tres parcelas de 10 m x 10 m, separadas entre sí por 20 metros (12 parcelas en total). Para análisis microbiano, de cada parcela se obtuvieron tres muestras de suelo en tubos falcon de 15 mL de los primeros 25 centímetros de profundidad (36 muestras en total). Además, se recolectaron tres muestras de un kilogramo de suelo en los mismos puntos para análisis fisicoquímico y se realizó una caracterización taxonómica de las plantas presentes en el área de las parcelas. Las muestras de suelo se transportaron al laboratorio de Biología Molecular de la Universidad Nacional de Colombia sede Palmira, en donde se mantuvo el suelo para el análisis microbiano a -80 °C hasta la extracción del ADNspa
dc.format.extentxii, 81 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83966
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAshraf, M., Hussain, M., Ahmad, M. S. A., Al-Qurainy, F., & Hameed, M. (2012). Strategies for conservation of endangered ecosystems. Pakistan Journal of Botany, 44 (SPL. ISS. 2).spa
dc.relation.referencesBayranvand, M., Akbarinia, M., Salehi Jouzani, G., Gharechahi, J., Kooch, Y., & Baldrian, P. (2021). Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microbiology Ecology, 97(1). https://doi.org/10.1093/femsec/fiaa201spa
dc.relation.referencesBellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. In Ecology Letters (Vol. 15, Issue 4). https://doi.org/10.1111/j.1461-0248.2011.01736.xspa
dc.relation.referencesBilen, S., Bilen, M., & Bardhan, S. (2011). The effects of boron management on soil microbial population and enzyme activities. African Journal of Biotechnology, 10(27).spa
dc.relation.referencesBonilla, C., Gómez, E., & Sánchez, M. (2002). El suelo: los organismos que lo habitan. Cuadernos Ambientales de La Universidad Nacional de Colombia, 5.spa
dc.relation.referencesBrewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A., & Fierer, N. (2016). Genome reduction in an abundant and ubiquitous soil bacterium “Candidatus Udaeobacter copiosus.” Nature Microbiology, 2. https://doi.org/10.1038/nmicrobiol.2016.198spa
dc.relation.referencesCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pẽa, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. In Nature Methods (Vol. 7, Issue 5). https://doi.org/10.1038/nmeth.f.303spa
dc.relation.referencesCastaño, C. (2002). Páramos y ecosistemas altoandinos de Colombia en condición hotspot y global climatic tensor. IDEAM, Bogotá.spa
dc.relation.referencesCleveland, C. C., Nemergut, D. R., Schmidt, S. K., & Townsend, A. R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82(3). https://doi.org/10.1007/s10533-006-9065-zspa
dc.relation.referencesDaims, H., Lebedeva, E. v., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583). https://doi.org/10.1038/nature16461spa
dc.relation.referencesDEFORESTACIÓN EN COLOMBIA - IDEAM. (s/f). Gov.co. Recuperado el 1 de febrero de 2022, de http://www.ideam.gov.co/web/bosques/deforestacion-colombiaspa
dc.relation.referencesDobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. In Critical Reviews in Plant Sciences (Vol. 22, Issue 2). https://doi.org/10.1080/713610853spa
dc.relation.referencesdos Banhos, E. F., de Souza, A. Q. L., de Andrade, J. C., de Souza, A. D. L., Koolen, H. H. F., & Albuquerque, P. M. (2014). Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: Distribution and bioactivity. Brazilian Journal of Microbiology, 45(1). https://doi.org/10.1590/S1517-83822014005000027spa
dc.relation.referencesDunbar, J., Barns, S. M., Ticknor, L. O., & Kuske, C. R. (2002). Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology, 68(6). https://doi.org/10.1128/AEM.68.6.3035-3045.2002spa
dc.relation.referencesDworkin, M., & Falkow, S. (2006). The Prokaryotes: Ecophysiology and biochemistry. In Springer (Vol. 2).spa
dc.relation.referencesEaton, W. D., & Hamilton, D. A. (2022). Enhanced carbon, nitrogen and associated bacterial community compositional complexity, stability, evenness, and differences within the tree-soils of Inga punctata along an age gradient of planted trees in reforestation plots. Plant and Soil. https://doi.org/10.1007/s11104-022-05793-8spa
dc.relation.referencesFrancioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., and Reitz, T. (2016). Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7:1446.spa
dc.relation.referencesFAO. (2015). Estado mundial del recurso del suelo (EMRS) - Resumen Tecnico. In Fao.spa
dc.relation.referencesFierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354–1364. https://doi.org/10.1890/05-1839spa
dc.relation.referencesGalindo, G., Cabrera, E., Otero, J., Bernal, N.R., & Palacios, S. (2009). Planificación Ecorregional Para La Conservación De La Biodiversidad En Los Andes Y El Piedemonte Amazónico Colombianos. Nat. Conserv. e Inst. Hidrol Meteorol. y Estud. Ambient, 2, 24.spa
dc.relation.referencesGaravito, N. (2016). Los páramos en Colombia, un ecosistema en riesgo. Ingeniare, 19.spa
dc.relation.referencesGeml, J., Pastor, N., Fernandez, L., Pacheco, S., Semenova, T. A., Becerra, A. G., Wicaksono, C. Y., & Nouhra, E. R. (2014). Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Molecular Ecology, 23(10), 2452–2472. https://doi.org/10.1111/mec.12765spa
dc.relation.referencesGiri, S., & Pati, B. R. (2004). A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiologica et Immunologica Hungarica, 51(1–2). https://doi.org/10.1556/AMicr.51.2004.1-2.3spa
dc.relation.referencesGómez-Rubio, V. (2017). ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) . Journal of Statistical Software, 77(Book Review 2). https://doi.org/10.18637/jss.v077.b02spa
dc.relation.referencesGonzález, A., Cárdenas, M., & Restrepo, S. (2012). Metagenómica: Revelación de comunidades microbianas. Hipótesis, Apuntes Científicos Uniandinos, 12.spa
dc.relation.referencesHjelmsø, M. H., Hansen, L. H., Bælum, J., Feld, L., Holben, W. E., & Jacobsen, C. S. (2014). High-resolution melt analysis for rapid comparison of bacterial community compositions. Applied and Environmental Microbiology, 80(12). https://doi.org/10.1128/AEM.03923-13spa
dc.relation.referencesHuang, S., Bao, J., Shan, M., Qin, H., Wang, H., Yu, X., Chen, J., & Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211. https://doi.org/10.1016/j.chemosphere.2018.07.133spa
dc.relation.referencesJacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01617spa
dc.relation.referencesJanssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. In Applied and Environmental Microbiology (Vol. 72, Issue 3). https://doi.org/10.1128/AEM.72.3.1719-1728.2006spa
dc.relation.referencesJi, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P. M., Woodcock, P., Edwards, F. A., Larsen, T. H., Hsu, W. W., Benedick, S., Hamer, K. C., Wilcove, D. S., Bruce, C., Wang, X., Levi, T., Lott, M., … Yu, D. W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16(10). https://doi.org/10.1111/ele.12162spa
dc.relation.referencesKattán, G. (2003). Bosques Andinos y Subandinos del departamento del Valle de Cauca,Colombia. Corporación Autónoma Regional del Valle del Cauca. Santiago de Cali, Colombia.spa
dc.relation.referencesKeller, I., Alexander, J. M., Holderegger, R., & Edwards, P. J. (2013). Widespread phenotypic and genetic divergence along altitudinal gradients in animals. In Journal of Evolutionary Biology (Vol. 26, Issue 12). https://doi.org/10.1111/jeb.12255spa
dc.relation.referencesKielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of Acidobacteria: Moving beyond genes and genomes. In Frontiers in Microbiology (Vol. 7, Issue MAY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2016.00744spa
dc.relation.referencesLauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15). https://doi.org/10.1128/AEM.00335-09spa
dc.relation.referencesLauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9). https://doi.org/10.1016/j.soilbio.2008.05.021spa
dc.relation.referencesLiang, S., Deng, J., Jiang, Y., Wu, S., Zhou, Y., & Zhu, W. (2020). Functional distribution of bacterial community under different land use patterns based on faprotax function prediction. Polish Journal of Environmental Studies, 29(2). https://doi.org/10.15244/pjoes/108510spa
dc.relation.referencesLin, H. F., Xiong, J., Zhou, H. M., Chen, C. M., Lin, F. Z., Xu, X. M., Oelmüller, R., Xu, W. F., & Yeh, K. W. (2019). Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1649-6spa
dc.relation.referencesLópez, A. J. (2006). MANUAL DE EDAFOLOGÍA. Media, 806 (Enero).spa
dc.relation.referencesLouca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305). https://doi.org/10.1126/science.aaf4507spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/s13059-014-0550-8spa
dc.relation.referencesLundell, T. K., Mäkelä, M. R., & Hildén, K. (2010). Lignin-modifying enzymes in filamentous basidiomycetes - Ecological, functional and phylogenetic review. In Journal of Basic Microbiology (Vol. 50, Issue 1). https://doi.org/10.1002/jobm.200900338spa
dc.relation.referencesMantilla-Paredes, A. J., Cardona, G. I., Peña-Venegas, C. P., Murcia, U., Rodríguez, M., & Zambrano, M. M. (2009). Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Revista de Biologia Tropical, 57(4). https://doi.org/10.15517/rbt.v57i4.5436spa
dc.relation.referencesMcMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217spa
dc.relation.referencesMeng, H., Li, K., Nie, M., Wan, J. R., Quan, Z. X., Fang, C. M., Chen, J. K., Gu, J. D., & Li, B. (2013). Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Applied Microbiology and Biotechnology, 97(5). https://doi.org/10.1007/s00253-012-4063-7spa
dc.relation.referencesMenkis, A., Urbina, H., James, T. Y., & Rosling, A. (2014). Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biology, 118(12), 943–955. https://doi.org/10.1016/j.funbio.2014.08.005spa
dc.relation.referencesMichalet, R., Schöb, C., Lortie, C. J., Brooker, R. W., & Callaway, R. M. (2014). Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Functional Ecology, 28(1). https://doi.org/10.1111/1365-2435.12136spa
dc.relation.referencesMorales, J., Van der Hammen, T., Torres A., C. C., C., P., Rodríguez N., F. C., J.C., B., Olaya E., P. E., & L., C. (2007). Atlas de Páramos de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt., 1.spa
dc.relation.referencesMorrissey, E. M., Mau, R. L., Schwartz, E., McHugh, T. A., Dijkstra, P., Koch, B. J., Marks, J. C., & Hungate, B. A. (2017). Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME Journal, 11(8). https://doi.org/10.1038/ismej.2017.43spa
dc.relation.referencesNavarrete, A. A., Kuramae, E. E., de Hollander, M., Pijl, A. S., van Veen, J. A., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83(3), 607–621. https://doi.org/10.1111/1574-6941.12018spa
dc.relation.referencesNguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20. https://doi.org/10.1016/j.funeco.2015.06.006spa
dc.relation.referencesPacheco Flores de Valgaz, A., Barcos-Arias, M., Naranjo-Morán, J., Peña Tapia, D., & Moreira-Gómez, R. (2022). Ericaceous Plants: A Review for the Bioprospecting of Ericoid Mycorrhizae from Ecuador. In Diversity (Vol. 14, Issue 8). MDPI. https://doi.org/10.3390/d14080648spa
dc.relation.referencesPatiño López, C. O., & Sanclemente Reyes, O. E. (2014). Los microorganismos solubilizadores de fósforo (MSF): Una alternativa biotecnólogica para una agricultura sostenible. Entramado, 10(2).spa
dc.relation.referencesPessoa-Filho, M., Barreto, C. C., dos Reis Junior, F. B., Fragoso, R. R., Costa, F. S., de Carvalho Mendes, I., & de Andrade, L. R. M. (2015). Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 107(4), 935–949. https://doi.org/10.1007/S10482-015-0386-6/METRICSspa
dc.relation.referencesPeters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., … Steffan-Dewenter, I. (2019). Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568(7750). https://doi.org/10.1038/s41586-019-1048-zspa
dc.relation.referencesPievani, T. (2014). The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rendiconti Lincei, 25(1). https://doi.org/10.1007/s12210-013-0258-9spa
dc.relation.referencesPimm, S. L., & Raven, P. (2000). Biodiversity. Extinction by numbers. Nature, 403(6772). https://doi.org/10.1038/35002708spa
dc.relation.referencesPinto-Figueroa, E. A., Seddon, E., Yashiro, E., Buri, A., Niculita-Hirzel, H., Van Der Meer, J. R., & Guisan, A. (2019). Archaeorhizomycetes Spatial Distribution in Soils along Wide Elevational and Environmental Gradients Reveal Co-abundance Patterns with Other Fungal Saprobes and Potential Weathering Capacities. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00656spa
dc.relation.referencesPizano, C., & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Fundación CIPAV, 1822(September).spa
dc.relation.referencesPizano, C., González-M., R., López, R., Jurado, R. D., Cuadros, H., Castaño-Naranjo, A., Rojas, A., Peréz, K., Vergara-Varela, H., Idárraga, Á., Isaacs, P., & García, H. (2016). El bosque seco tropical en Colombia. In Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia. https://doi.org/10.21068/b001.2015.202spa
dc.relation.referencesQuintero, Benavides, A. M., Moreno, N. & Gonzales, S. (2017). BOSQUES ANDINOS, Estado actual y retos para su conservación en Antioquía. Fundación Jardín Botánico de Medellín Joaquín Antonio Uribe, Programa Bosques Andinos (COSUDE). Medellín, Antioquia.spa
dc.relation.referencesR Core Team. (2022). R Core Team 2021 R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Foundation for Statistical Computing, 2.spa
dc.relation.referencesRahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. In Ecology Letters (Vol. 8, Issue 2). https://doi.org/10.1111/j.1461-0248.2004.00701.xspa
dc.relation.referencesRamírez-Carvajal, R. (1997). Propiedades físicas, químicas y biológicas del suelo. Convenio FENALCE-SENA-SAC, 9–23.spa
dc.relation.referencesRamírez, C., Duarte, C., & Galeano, J. (2010). Estudio de suelos y su relación con las plantas en el páramo el verjón ubicado en el municipio de choachí cundinamarca. Tecciencia, 6(12).spa
dc.relation.referencesRawat, S. R., Männistö, M. K., Bromberg, Y., & Häggblom, M. M. (2012). Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiology Ecology, 82(2). https://doi.org/10.1111/j.1574-6941.2012.01381.xspa
dc.relation.referencesRen, C., Zhang, W., Zhong, Z. K., Han, X., Yang, G., Feng, Y., & Ren, G. (2018). Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610–611, 750–758. https://doi.org/10.1016/j.scitotenv.2017.08.110spa
dc.relation.referencesRen, C., Zhou, Z., Guo, Y., Yang, G., Zhao, F., Wei, G., Han, X., Feng, L., Feng, Y., & Ren, G. (2021). Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena, 196. https://doi.org/10.1016/j.catena.2020.104921spa
dc.relation.referencesRiechers, M., Balázsi, Á., Betz, L., Jiren, T. S., & Fischer, J. (2020). The erosion of relational values resulting from landscape simplification. Landscape Ecology, 35(11). https://doi.org/10.1007/s10980-020-01012-wspa
dc.relation.referencesRomaniuk, R. I., Venece, M., Cosentino, V. R. N., Alvarez, C. R., Ciarlo, E. A., Rimski Korsakov, H., Steinbach, H. S., & Lupi, A. M. (2021). Dinámica del carbono lábil del suelo en sistemas forestales de Eucalyptus grandis Hill ex Maiden en la Mesopotamia Argentina. Bosque (Valdivia), 42(3). https://doi.org/10.4067/s0717-92002021000300343spa
dc.relation.referencesRosling, A., Cox, F., Cruz-Martinez, K., Ihrmark, K., Grelet, G. A., Lindahl, B. D., Menkis, A., & James, T. Y. (2011). Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science, 333(6044). https://doi.org/10.1126/science.1206958spa
dc.relation.referencesRuiz-Pérez, C. A., Restrepo, S., & Zambrano, M. M. (2016). Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean high-mountain ecosystem. Applied and Environmental Microbiology, 82(6). https://doi.org/10.1128/AEM.02781-15spa
dc.relation.referencesShen, C., Ge, Y., Yang, T., & Chu, H. (2017). Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. Journal of Soils and Sediments, 17(10). https://doi.org/10.1007/s11368-017-1680-xspa
dc.relation.referencesShen, C., Shi, Y., Fan, K., He, J. S., Adams, J. M., Ge, Y., & Chu, H. (2019). Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiology Ecology, 95(2). https://doi.org/10.1093/femsec/fiz003spa
dc.relation.referencesSiles, J. A., & Margesin, R. (2016). Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors? Microbial Ecology, 72(1), 207–220. https://doi.org/10.1007/s00248-016-0748-2spa
dc.relation.referencesSingh, D., Takahashi, K., Kim, M., Chun, J., & Adams, J. M. (2012). A Hump-Backed Trend in Bacterial Diversity with Elevation on Mount Fuji, Japan. Microbial Ecology, 63(2), 429–437. https://doi.org/10.1007/s00248-011-9900-1spa
dc.relation.referencesSt. Leger, R. J., & Wang, J. B. (2020). Metarhizium: jack of all trades, master of many. Open Biology, 10(12). https://doi.org/10.1098/rsob.200307spa
dc.relation.referencesŚwieciło, A., & Zych-Wezyk, I. (2013). Bacterial stress response as an adaptation to life in a soil environment. In Polish Journal of Environmental Studies (Vol. 22, Issue 6).spa
dc.relation.referencesThe jamovi. (2022). The Jamovi Project (Version 2.3) [Computer Software]. In Retrieved from https://www.jamovi.org.spa
dc.relation.referencesToro, D. (2004). LA BIODIVERSIDAD MICROBIANA DEL SUELO, UN MUNDO POR DESCUBRIR. Lunazul Uniacaldas, 1(1).spa
dc.relation.referencesValderrama Ardila, C. H. (2012). Estado de fragmentación del bosque seco de la cuenca alta del río Cauca, Colombia. Biota Colombiana, 13(2).spa
dc.relation.referencesVallejo, V. (2013). Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles. Colombia Forestal, 16(1).spa
dc.relation.referencesVětrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B. D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z. R., Lepinay, C., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., … Baldrian, P. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13164-8spa
dc.relation.referencesViitamäki, S., Pessi, I. S., Virkkala, A.-M., Niittynen, P., Kemppinen, J., Eronen-Rasimus, E., Luoto, M., & Hultman, J. (2022). The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiology Ecology, 98(8). https://doi.org/10.1093/femsec/fiac079spa
dc.relation.referencesWang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., & Shen, J. (2011). Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 38(3). https://doi.org/10.1111/j.1365-2699.2010.02423.xspa
dc.relation.referencesWillms, I. M., Bolz, S. H., Yuan, J., Krafft, L., Schneider, D., Schöning, I., Schrumpf, M., & Nacke, H. (2021). The ubiquitous soil verrucomicrobial clade ‘Candidatus Udaeobacter’ shows preferences for acidic pH. Environmental Microbiology Reports, 13(6), 878–883. https://doi.org/10.1111/1758-2229.13006spa
dc.relation.referencesWillms, I. M., Rudolph, A. Y., Göschel, I., Bolz, S. H., Schneider, D., Penone, C., Poehlein, A., Schöning, I., & Nacke, H. (2020). Globally Abundant “ Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging . MSphere, 5(4). https://doi.org/10.1128/msphere.00186-20spa
dc.relation.referencesWWF-Colombia. (2017). Colombia viva: Un país megadiverso de cara al futuro. Informe 2017. 165.spa
dc.relation.referencesYang, N., Li, X., Liu, D., Zhang, Y., Chen, Y., Wang, B., Hua, J., Zhang, J., Peng, S., Ge, Z., Li, J., Ruan, H., & Mao, L. (2022). Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China. Applied Soil Ecology, 178. https://doi.org/10.1016/j.apsoil.2022.104563spa
dc.relation.referencesZhang, Y., Heal, K. V., Shi, M., Chen, W., & Zhou, C. (2022). Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient. Science of the Total Environment, 818. https://doi.org/10.1016/j.scitotenv.2021.151823spa
dc.relation.referencesZou, X. M., Ruan, H. H., Fu, Y., Yang, X. D., & Sha, L. Q. (2005). Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biology and Biochemistry, 37(10). https://doi.org/10.1016/j.soilbio.2005.02.028spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocRNA sequence
dc.subject.agrovocSecuencia de ARN
dc.subject.agrovocNext Generation Sequencing
dc.subject.agrovocMicrobial Communities
dc.subject.agrovocMetagenomics
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.proposalColombian terrestrial ecosystemseng
dc.subject.proposalEcosistemas terrestres colombianosspa
dc.subject.proposalMeta-taxonomíaspa
dc.subject.proposalEcología microbianaspa
dc.subject.proposalGradiente altitudinalspa
dc.subject.proposalMeta-taxonomyeng
dc.subject.proposalMicrobial ecologyeng
dc.subject.proposalAltitudinal gradienteng
dc.subject.unescoEcosistemas terrestres
dc.subject.unescoTerrestrial ecosystems
dc.titleMetabarcoding de comunidades microbianas del suelo en ecosistemas de bosques y páramo en el Valle del Caucaspa
dc.title.translatedMetabarcoding of soil microbial communities in forest and páramo ecosystems in Valle del Cauca.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleRelaciones Multiescalares de la Biodiversidad en Gradientes Altitudinales del Bosque Tropical, con Código: 1106-852-70306. Contrato: No. 491-2020.spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia (MINCIENCIAS), PATRIMONIO AUTÓNOMO FONDO NACIONAL DE FINANCIAMIENTO PARA LA CIENCIA, LA TECNOLOGÍA Y LA INNOVACIÓN “FRANCISCO JOSÉ DE CALDAS”spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1127585019.2023.pdf
Tamaño:
2.81 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: