Identificación de factores de riesgo en un scoring crediticio mediante técnicas de estadística espacial
dc.contributor | Salazar Uribe, Juan Carlos | spa |
dc.contributor.author | González Fernández, Karen Liseth | spa |
dc.date.accessioned | 2019-07-02T13:51:46Z | spa |
dc.date.available | 2019-07-02T13:51:46Z | spa |
dc.date.issued | 2016-12-08 | spa |
dc.description.abstract | Las instituciones financieras utilizan modelos de riesgo para el otorgamiento de créditos y el comportamiento de pago del cliente. La posibilidad de asignar un préstamo a una persona puede ser evaluada a través de variables económicas regionales que caracterizan de donde el cliente viene. En este trabajo se propone el uso de un análisis espacial basado en modelos lattice para identificar los factores que ayudan a identificar comportamientos de pagos por departamentos. Para evaluar el desempeño de este modelo se compara con un modelo que no incluye la información espacial regionalizada. Se ilustra la metodología propuesta por medio de una aplicación con datos reales. | spa |
dc.description.abstract | Abstract: Financial institutions use risk models for measure both credit granting and customer behavior. The possibility of assigning a loan to a person could be assessed through regional economic variables that characterize where the customer comes from. This work presents a spatial analysis based in lattice models to identify factors that help identify behaviors payments department. To evaluate the performance of this model it compare it with a model which does not include regionalized spatial information. It illustrated the methodology proposed by an application with real data. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.eprints | http://bdigital.unal.edu.co/54905/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/58232 | |
dc.language.iso | spa | spa |
dc.relation.ispartof | Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Estadística | spa |
dc.relation.ispartof | Escuela de Estadística | spa |
dc.relation.references | González Fernández, Karen Liseth (2016) Identificación de factores de riesgo en un scoring crediticio mediante técnicas de estadística espacial. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 51 Matemáticas / Mathematics | spa |
dc.subject.proposal | Scoring crediticio | spa |
dc.subject.proposal | Datos regionales | spa |
dc.subject.proposal | Modelos lattice | spa |
dc.subject.proposal | Estadística espacial | spa |
dc.subject.proposal | Credit scoring | spa |
dc.subject.proposal | Regional data | spa |
dc.subject.proposal | Lattice models | spa |
dc.subject.proposal | Spatial statistics | spa |
dc.title | Identificación de factores de riesgo en un scoring crediticio mediante técnicas de estadística espacial | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 50937936.2016.pdf
- Tamaño:
- 2.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística