Mitigación de cadmio en suelos cacaoteros mediante bacterias ureolíticas
dc.contributor.advisor | de Brito Brandão, Pedro Filipe | spa |
dc.contributor.advisor | Castillo Serna, Elianna | spa |
dc.contributor.author | Adarme Duran, Carlos Alberto | spa |
dc.contributor.researchgroup | Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina | spa |
dc.date.accessioned | 2025-05-27T18:58:32Z | |
dc.date.available | 2025-05-27T18:58:32Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La presencia de metales tóxicos en suelos agrícolas es una problemática global, ya que pueden ser absorbidos por las plantas, y traslocados hacia sus partes comestibles, entrando en la cadena alimentaria. Particularmente, el Cd en los suelos cacaoteros es tomado por la planta de cacao y bioacumulado en los granos, los cuales son utilizados para la fabricación de alimentos. Por esta razón, se establecieron diversas regulaciones sobre el contenido máximo permitido del metal en productos derivados del cacao. Esto representa un problema para los cacaocultores en zonas afectadas por la presencia de Cd, como es el caso del Departamento de Santander – Colombia, y propició la búsqueda de estrategias para mitigar la disponibilidad de Cd en los suelos cacaoteros. El uso de bacterias ureolíticas capaces de inducir la precipitación de carbonatos, es una alternativa biotecnológica que ha sido empleada para la biorremediación de suelos contaminados con Cd. De esta forma, en esta investigación se evaluó el aprovechamiento de rizobacterias aisladas de fincas cacaoteras de Santander, que inducen la precipitación de carbonatos, como estrategia de mitigación de Cd en suelos cacaoteros. En la primera etapa de la investigación, se recolectaron suelos cacaoteros rizosféricos, no rizosféricos, y material vegetal de la planta de cacao. Se determinó la presencia de Cd y se realizó un estudio sobre la disponibilidad del metal en ambos tipos de suelos. Además, se determinó su correlación con el Cd presente en la planta. El contenido de Cd pseudo-total y disponible (Cd-DTPA) fue mayor en los suelos rizosféricos en comparación con los suelos no rizosféricos. Mediante estadística clásica y multivariada, se encontraron diferencias entre las asociaciones de Cd disponible con propiedades del suelo (pH, Cd pseudo-total, Ca, Mg, K, Na, carbono orgánico del suelo (SOC), P, Zn, actividad ureasa, acidez intercambiable y capacidad de intercambio catiónico), al comparar ambos tipos de suelos. El carbono orgánico del suelo y el Zn fueron impulsores importantes de Cd disponible en los suelos rizosféricos. En la segunda etapa, se realizó el aislamiento de 54 bacterias ureolíticas capaces de inducir la precipitación de carbonatos, a partir de suelos rizosféricos de cacao, y se evaluó su capacidad para precipitar el Cd en un medio de cultivo con una concentración de 60 mg L-1. Estas bacterias exhibieron actividades ureolíticas entre 0,31 y 1,01 µmol NH4+ mL-1 h-1 y porcentajes de remoción de Cd entre 4,4 % y 87,0 % en 48 h. Dentro de las 10 bacterias con mayor remoción de Cd (60,3 % – 87,0 %) se encontraron los géneros Serratia, Klebsiella, Stenotrophomonas, Comamonas, Bacillus y Citrobacter. El estudio del proceso de remoción de Cd en solución mostró que la bioadsorción contribuye de forma significativa durante los ensayos de bioprecipitación, por lo que es importante considerar este aspecto para evaluar el potencial de las bacterias. Considerando lo anterior, se seleccionó la cepa Bacillus sp. 85d para su aplicación en suelos cacaoteros. Finalmente, se evaluó la aplicación de la bacteria ureolítica Bacillus sp. 85d para la inmovilización de Cd en suelos cacaoteros a nivel laboratorio y de vivero. Para ambos experimentos, los resultados mostraron que la aplicación de la bacteria permitió la precipitación carbonatada de Cd intercambiable de los suelos cacaoteros en 5 días. Sin embargo, luego de 3 meses, el Cd en la fracción carbonatada disminuyó, lo cual fue atribuido a la reducción del pH. Además, no se observaron cambios significativos en la concentración de Cd en la planta de cacao para el experimento en vivero, luego del tratamiento con la bacteria. Este estudio demostró que el contenido de Cd en los suelos rizosféricos de la planta de cacao tiene una mayor correlación con el Cd en la planta, comparado con los suelos no rizosféricos, lo que aumenta el entendimiento de la dinámica de Cd en el sistema suelo-cacao. Además, se evidenció el potencial de las rizobacterias ureolíticas que inducen la precipitación de carbonatos para la mitigación de Cd disponible en los suelos cacaoteros. El tratamiento de suelos cacaoteros con Bacillus sp. 85d establece una línea base para entender la aplicabilidad de esta biotecnología. (Texto tomado de la fuente). | spa |
dc.description.abstract | The presence of toxic metals in agricultural soils is of global concern, since they can be absorbed by plants and translocated to their edible parts, entering the food chain. Particularly, Cd in cacao-growing soils is taken up by the cacao plant and bioaccumulated in the beans, which are used as ingredient in food products. For this reason, regulations have been established on the maximum permissible limit of the metal in cacao-derived products. This represents a problem for cacao farmers in areas affected by the presence of Cd, such as the Department of Santander – Colombia, and has led to the search for strategies to mitigate the availability of Cd in cacao-growing soils. Ureolytic bacteria that induce carbonate precipitation is a biotechnological alternative that has been used for the bioremediation of soils contaminated with Cd. Thus, in this research, the use of rhizobacteria that induce carbonate precipitation from cacao-growing soils in Santander was evaluated as a Cd mitigation strategy. In the first stage of the research, rhizosphere and non-rhizosphere cacao-growing soils and plant material from cacao were collected. Pseudo-total and available Cd were assessed in both soil types. In addition, the relationships between soil available Cd and plant Cd were determined. The pseudo-total and available Cd (Cd-DTPA) concentration was higher in rhizosphere soils compared to non-rhizosphere soils. Using classical and multivariate statistics, differences were found between the associations of available Cd with soil properties (pH, pseudo-total Cd, Ca, Mg, K, Na, soil organic carbon (SOC), P, Zn, urease activity, exchangeable acidity and cation exchange capacity), when comparing both soil types. Soil organic carbon and Zn were important drivers of available Cd in rhizosphere soils. In the second stage, 54 ureolytic bacteria that induce carbonate precipitation were isolated from cacao rhizosphere soils, and their capacity to precipitate Cd in a culture medium with a concentration of 60 mg L-1 was evaluated. These bacteria exhibited ureolytic activities between 0.31 and 1.01 µmol NH4+ mL-1 h-1 and Cd removal percentages between 4.4% and 87.0% in 48 h. Among the 10 bacteria with the highest Cd removal (60.3% – 87.0%) were found the genera Serratia, Klebsiella, Stenotrophomonas, Comamonas, Bacillus and Citrobacter. The study of Cd removal process in solution showed that bioadsorption contributes significantly during bioprecipitation tests, so it is important to consider this aspect to evaluate the MICP potential of the bacteria. Considering the above, the strain Bacillus sp. 85d was selected for its application in cacao-growing soils. Finally, the application of the ureolytic bacteria Bacillus sp. 85d for Cd immobilization in cacao-growing soils at laboratory and nursery level was evaluated. For both experiments, the results showed that the application of the bacteria allowed the carbonated precipitation of the exchangeable Cd at 5 days. However, after 3 months, the Cd in the carbonated fraction decreased, which was attributed to the reduction in pH. In addition, after the treatment with Bacillus sp. 85d, no significant changes were observed in cacao Cd concentration in the nursery experiment. This study demonstrated that Cd content in cacao rhizosphere soils has a higher correlation with Cd in the plant, compared to non-rhizosphere soils, which increases the understanding of Cd dynamics in the soil-cacao system. Furthermore, the potential of ureolytic rhizobacteria that induce carbonate precipitation for the mitigation of available Cd in cacao-growing soils was demonstrated. The treatment of these soils with Bacillus sp. 85d establishes a baseline to understand the applicability of this biotechnology. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Biotecnología | spa |
dc.description.researcharea | Biotecnología ambiental | spa |
dc.format.extent | xxii, 191 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88189 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Instituto de Biotecnología | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Abbott, P. C., Benjamin, T. J., Burniske, G. R., Croft, M., Fenton, M., Colleen, R., Lundy, M., Rodriguez, F., & Wilcox, M. (2018). An analysis of the supply chain of cacao in Colombia. United States Agency for International Development. https://www.purdue.edu/colombia/partnerships/cacaoforpeace/docs/Cacao%20for%20Peace%20Final%20English.pdf. Fecha de acceso: 01/06/2024 | spa |
dc.relation.references | Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101 | spa |
dc.relation.references | Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605. https://doi.org/10.1016/J.ECOLENG.2011.06.008 | spa |
dc.relation.references | Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840–857. https://doi.org/10.1080/10408390701719272 | spa |
dc.relation.references | Ahmad, I., Akhtar, M. J., Zahir, Z. A., Naveed, M., Mitter, B., & Sessitsch, A. (2014). Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environmental Science and Pollution Research, 21(18), 11054–11065. https://doi.org/10.1007/s11356-014-3010-9 | spa |
dc.relation.references | Aikpokpodion, P. E., Lajide, L., & Aiyesanmi, A. F. (2012). Metal fractionation in soils collected from selected cocoa plantations in ogun state, Nigeria. World Applied Sciences Journal, 20(5), 628–636. https://doi.org/10.5829/idosi.wasj.2012.20.05.2769 | spa |
dc.relation.references | Ajmal, A. W., Saroosh, S., Mulk, S., Hassan, M. N., Yasmin, H., Jabeen, Z., Nosheen, A., Shah, S. M. U., Naz, R., Hasnain, Z., Qureshi, T. M., Waheed, A., & Mumtaz, S. (2021). Bacteria isolated from wastewater irrigated agricultural soils adapt to heavy metal toxicity while maintaining their plant growth promoting traits. Sustainability, 13(14), 7792. https://doi.org/10.3390/su13147792 | spa |
dc.relation.references | Almeida, A.-A. F., Valle, R. R., Almeida, A.-A. F., & Valle, R. R. (2007). Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(4), 425-448. https://doi.org/10.1590/S1677-04202007000400011 | spa |
dc.relation.references | Anand, S., Kumar, V., Singh, A., Phukan, D., & Pandey, N. (2024). Statistical modelling, optimization, and mechanistic exploration of novel ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium immobilization under microbial inclusive and cell-free conditions through microbially induced calcite precipitation. Environmental Pollution, 348, 123880. https://doi.org/10.1016/J.ENVPOL.2024.123880 | spa |
dc.relation.references | Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605–606, 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122 | spa |
dc.relation.references | Arévalo-Gardini, E., Obando-Cerpa, M. E., Zúñiga-Cernades, L. B., Arévalo-Hernández, C. O., Baligar, V., & He, Z. (2016). METALES PESADOS EN SUELOS DE PLANTACIONES DE CACAO (Theobroma cacao L.) EN TRES REGIONES DEL PERÚ. Ecología Aplicada, 15(2), 81. https://doi.org/10.21704/rea.v15i2.747 | spa |
dc.relation.references | Arévalo-Hernández, C. O., Arévalo-Gardini, E., Barraza, F., Farfán, A., He, Z., & Baligar, V. C. (2021). Growth and nutritional responses of wild and domesticated cacao genotypes to soil Cd stress. Science of the Total Environment, 763, 144021. https://doi.org/10.1016/j.scitotenv.2020.144021 | spa |
dc.relation.references | Argüello, D., Chavez, E., Gutierrez, E., Pittomvils, M., Dekeyrel, J., Blommaert, H., & Smolders, E. (2023). Soil amendments to reduce cadmium in cacao (Theobroma cacao L.): A comprehensive field study in Ecuador. Chemosphere, 324, 138318. https://doi.org/10.1016/j.chemosphere.2023.138318 | spa |
dc.relation.references | Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292 | spa |
dc.relation.references | Argüello, D., Dekeyrel, J., Chavez, E., & Smolders, E. (2022). Gypsum application lowers cadmium uptake in cacao in soils with high cation exchange capacity only: A soil chemical analysis. European Journal of Soil Science, 73(2), e13230. https://doi.org/10.1111/ejss.13230 | spa |
dc.relation.references | Aruga, R. (1997). Treatment of responses below the detection limit: some current techniques compared by Factor Analysis on environmental data. Analytica Chimica Acta, 354(1–3), 255–262. https://doi.org/10.1016/S0003-2670(97)00463-7 | spa |
dc.relation.references | Arvelo, M. Á. S., González, D. L., Maroto, S. A., Delgado, T. L., & Montoya, P. L. (2017). Manual técnico del cultivo de cacao: prácticas latinoamericanas. Instituto Interamericano de Cooperación para la Agricultura (IICA). https://repositorio.iica.int/handle/11324/6181. Fecha de acceso: 15/01/2023 | spa |
dc.relation.references | Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? In Analyst, 133(1), 25–46. Royal Society of Chemistry. https://doi.org/10.1039/b711896a | spa |
dc.relation.references | Barraza, F., Schreck, E., Lévêque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080 | spa |
dc.relation.references | Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196(1), 80–83. https://doi.org/10.1016/0003-2697(91)90120-I | spa |
dc.relation.references | Bhattacharya, A., Naik, S. N., & Khare, S. K. (2018). Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 215, 143–152. https://doi.org/10.1016/j.jenvman.2018.03.055 | spa |
dc.relation.references | Bibi, S., Oualha, M., Ashfaq, M. Y., Suleiman, M. T., & Zouari, N. (2018). Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Advances, 8(11), 5854–5863. https://doi.org/10.1039/c7ra12758h | spa |
dc.relation.references | Blommaert, H., Aucour, A. M., Wiggenhauser, M., Moens, C., Telouk, P., Campillo, S., Beauchêne, J., Landrot, G., Testemale, D., Pin, S., Lewis, C., Umaharan, P., Smolders, E., & Sarret, G. (2022). From soil to cacao bean: Unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L. Frontiers in Plant Science, 13, 1055912. https://doi.org/10.3389/fpls.2022.1055912 | spa |
dc.relation.references | Blommaert, H., De Meese, C., Wiggenhauser, M., Sarret, G., & Smolders, E. (2024). Evidence of cadmium transport via the phloem in cacao seedlings. Plant and Soil, 507, 603-615. https://doi.org/10.1007/s11104-024-06753-0 | spa |
dc.relation.references | Brandão, P. F., Torimura, M., Kurane, R., & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Applied Microbiology and Biotechnology, 58(1), 77–83. https://doi.org/10.1007/S00253-001-0855-X/METRICS | spa |
dc.relation.references | Bravo, D., & Braissant, O. (2022). Cadmium-tolerant bacteria: current trends and applications in agriculture. In Letters in Applied Microbiology, 74(3), 311–333. https://doi.org/10.1111/lam.13594 | spa |
dc.relation.references | Bravo, D., Araujo-Carrillo, G., Carvalho, F., Chaali, N., León-Moreno, C., Quiroga-Mateus, R., Lopez-Zuleta, S., Domínguez, O., Arenas, P., & Avella, E. (2024a). First national mapping of cadmium in cacao beans in Colombia. Science of The Total Environment, 954, 176398. https://doi.org/10.1016/j.scitotenv.2024.176398 | spa |
dc.relation.references | Bravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & Leon-Moreno, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698 | spa |
dc.relation.references | Bravo, D., Quiroga-Mateus, R., López-Casallas, M., Torres, S., Contreras, R., Otero, A. C. M., Araujo-Carrillo, G. A., & González-Orozco, C. E. (2024b). Assessing the cadmium content of cacao crops in Arauca, Colombia. Environmental Monitoring and Assessment, 196, 387. https://doi.org/10.1007/s10661-024-12539-9 | spa |
dc.relation.references | Breakwell, D., Woolverton, C., Macdonald, B., Smith, K., & Robison, R. (2007). Colony Morphology Protocol. American Society for Microbiology, 1-7. https://asm.org/asm/media/protocol-images/colony-morphology-protocol.pdf?ext=.pdf. Fecha de acceso: 15/01/2021 | spa |
dc.relation.references | Cáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086 | spa |
dc.relation.references | Cai, Q., Xu, M., Ma, J., Zhang, X., Yang, G., Long, L., Chen, C., Wu, J., Song, C., & Xiao, Y. (2023). Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw. Science of The Total Environment, 874, 162594. https://doi.org/10.1016/J.SCITOTENV.2023.162594 | spa |
dc.relation.references | Carrillo, K., Martínez, M., Ramírez, L., Argüello, D., & Chavez, E. (2023). Cadmium (Cd) distribution and soil-plant relationship in cacao farms in Costa Rica. Environmental Monitoring and Assessment, 195, 1209. https://doi.org/10.1007/s10661-023-11817-2 | spa |
dc.relation.references | Castañeda, G. A. A., Serna, D. Y. C., Morales, M. Á. P., Gáfaro, M. B., & Nopsa, J. F. H. (2021). Manual técnico para la producción de semilla de cacao en vivero para los Santanderes y Boyacá. Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.manual.7404586. Fecha de acceso: 22/03/2023 | spa |
dc.relation.references | Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 126. https://doi.org/10.3389/fmats.2019.00126 | spa |
dc.relation.references | Chaney, R. L. (2015). How Does Contamination of Rice Soils with Cd and Zn Cause High Incidence of Human Cd Disease in Subsistence Rice Farmers. Current Pollution Reports, 1(1), 13–22. https://doi.org/10.1007/s40726-015-0002-4 | spa |
dc.relation.references | Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO 2 storage and utilization: A review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5, 17. https://doi.org/10.3389/fenrg.2017.00017 | spa |
dc.relation.references | Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106 | spa |
dc.relation.references | Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., & Baligar, V. C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere, 150, 57–62. https://doi.org/10.1016/j.chemosphere.2016.02.013 | spa |
dc.relation.references | Chen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705–713. https://doi.org/10.1016/J.JHAZMAT.2019.01.108 | spa |
dc.relation.references | Chen, Y., Jiang, Y., Huang, H., Mou, L., Ru, J., Zhao, J., & Xiao, S. (2018). Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Science of the Total Environment, 637, 1400-1412. https://doi.org/10.1016/j.scitotenv.2018.05.109 | spa |
dc.relation.references | Chien, C. C., Hung, C. W., & Han, C. T. (2007). Removal of cadmium ions during stationary growth phase by an extremely cadmium-resistant strain of Stenotrophomonas sp. Environmental Toxicology and Chemistry, 26(4), 664–668. https://doi.org/10.1897/06-280R.1 | spa |
dc.relation.references | Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. Journal of bacteriology, 52(4), 461-466. https://doi.org/10.1128/jb.52.4.461-466.1946 | spa |
dc.relation.references | Chuo, S. C., Mohamed, S. F., Setapar, S. H. M., Ahmad, A., Jawaid, M., Wani, W. A., Yaqoob, A. A., & Ibrahim, M. N. M. (2020). Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials 13(21), 1–28. https://doi.org/10.3390/ma13214993 | spa |
dc.relation.references | COMMISSION REGULATION (EU). (2014). COMMISSION REGULATION (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Official Journal of the European Union. https://eur-lex.europa.eu/eli/reg/2014/488/oj. Fecha de Acceso: 02/03/2024 | spa |
dc.relation.references | Cordoba-Novoa, H. A., Cáceres-Zambrano, J., & Torres-Rojas, E. (2023). Isolation of native cadmium-tolerant bacteria and fungi from cacao (Theobroma cacao L.) - Cultivated soils in central Colombia. Heliyon, 9(12), e22489. https://doi.org/10.1016/j.heliyon.2023.e22489 | spa |
dc.relation.references | Dala-Paula, B. M., Custódio, F. B., Knupp, E. A. N., Palmieri, H. E. L., Silva, J. B. B., & Glória, M. B. A. (2018). Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution, 242, 383–389. https://doi.org/10.1016/J.ENVPOL.2018.04.101 | spa |
dc.relation.references | Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109 | spa |
dc.relation.references | De Boer, W., & Kowalchuk, G. A. (2001). Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology and Biochemistry, 33(7–8), 853–866. https://doi.org/10.1016/S0038-0717(00)00247-9 | spa |
dc.relation.references | Dhami, N., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707–714. https://doi.org/10.4014/jmb.1212.11087 | spa |
dc.relation.references | Diez-Marulanda, J. C., & Brandão, P. F. B. (2023). Isolation of urease-producing bacteria from cocoa farms soils in Santander, Colombia, for cadmium remediation. 3 Biotech, 13, 98. https://doi.org/10.1007/s13205-023-03495-1 | spa |
dc.relation.references | Diez-Marulanda, J. C., & Brandão, P. F. B. (2024). Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. Environmental Science and Pollution Research International, 31(4), 5319–5330. https://doi.org/10.1007/s11356-023-31062-x | spa |
dc.relation.references | Diez-Marulanda, J. C. (2019). Aislamiento y discriminación molecular de microorganismos que inducen la precipitación de carbonato de cadmio de una región cacaotera de Colombia [Tesis de Pregrado]. Universidad Nacional de Colombia. | spa |
dc.relation.references | Diez-Marulanda, J.C. (2022). Estudio de la bioprecipitación de cadmio por bacterias ureolíticas aisladas de fincas cacaoteras de Santander, Colombia [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co | spa |
dc.relation.references | Disi, Z. Al, Attia, E., Ahmad, M. I., & Zouari, N. (2022). Immobilization of heavy metals by microbially induced carbonate precipitation using hydrocarbon-degrading ureolytic bacteria. Biotechnology Reports, 35, e00747. https://doi.org/10.1016/j.btre.2022.e00747 | spa |
dc.relation.references | Dong, J., Mao, W. H., Zhang, G. P., Wu, F. B., & Cai, Y. (2007). Root excretion and plant tolerance to cadmium toxicity-a review. Plant, Soil and Environment, 53(5), 193–200. https://doi.org/https://doi.org/10.17221/2205-PSE | spa |
dc.relation.references | Dotaniya, M. L., & Meena, V. D. (2015). Rhizosphere Effect on Nutrient Availability in Soil and Its Uptake by Plants: A Review. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 85(1), 1–12. https://doi.org/10.1007/s40011-013-0297-0 | spa |
dc.relation.references | Duan, C. da, Yu, X. yang, Yao, X. wei, Zhu, J. hua, & Li, G. yue. (2023). Coupling reinforcement of uranium tailings via Klebsiella-induced calcium carbonate precipitation and waterborne polyurethane. Construction and Building Materials, 400, 132641. https://doi.org/10.1016/j.conbuildmat.2023.132641 | spa |
dc.relation.references | Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 | spa |
dc.relation.references | EFSA. (2012). Cadmium dietary exposure in the European population. EFSA Journal, 10(1). Wiley-Blackwell Publishing Ltd. https://doi.org/10.2903/j.efsa.2012.2551 | spa |
dc.relation.references | El-Nahrawy, S., Elhawat, N., & Alshaal, T. (2019). Biochemical traits of Bacillus subtilis MF497446: Its implications on the development of cowpea under cadmium stress and ensuring food safety. Ecotoxicology and Environmental Safety, 180, 384–395. https://doi.org/10.1016/J.ECOENV.2019.04.088 | spa |
dc.relation.references | Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660–670. https://doi.org/10.1016/j.scitotenv.2019.05.001 | spa |
dc.relation.references | Fakhar, A., Gul, B., Gurmani, A. R., Khan, S. M., Ali, S., Sultan, T., Chaudhary, H. J., Rafique, M., & Rizwan, M. (2022). Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review. Critical Reviews in Environmental Science and Technology, 52(11), 1868-1914. https://doi.org/10.1080/10643389.2020.1863112 | spa |
dc.relation.references | Falster, G., Delean, S., & Tyler, J. (2018). Hydrogen Peroxide Treatment of Natural Lake Sediment Prior to Carbon and Oxygen Stable Isotope Analysis of Calcium Carbonate. Geochemistry, Geophysics, Geosystems, 19(9), 3583–3595. https://doi.org/10.1029/2018GC007575 | spa |
dc.relation.references | Fan, T., Long, T., Lu, Y., Yang, L., Mi, N., Xia, F., Wang, X., Deng, S., Hu, Q., & Zhang, F. (2022). Meta-analysis of Cd input-output fluxes in agricultural soil. Chemosphere, 303, 134974. https://doi.org/10.1016/j.chemosphere.2022.134974 | spa |
dc.relation.references | Fang, J., Wen, B., Shan, X. quan, Lin, J. ming, & Owens, G. (2007). Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils. Environmental Pollution, 150(2), 209–217. https://doi.org/10.1016/J.ENVPOL.2007.01.019 | spa |
dc.relation.references | Fang, L., Niu, Q., Cheng, L., Jiang, J., Yu, Y. Y., Chu, J., Achal, V., & You, T. (2021). Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii. Science of the Total Environment, 787, 147627. https://doi.org/10.1016/j.scitotenv.2021.147627 | spa |
dc.relation.references | FAO & WHO. (2023). Code of practice for the prevention and reduction of cadmium contamination in cocoa beans. In Code of practice for the prevention and reduction of cadmium contamination in cocoa beans. Food and Agriculture Organization of the United Nations & World Health Organization. Codex Alimentarius Commission. Roma. https://doi.org/10.4060/cc5333en. Fecha de acceso: 18/06/2024 | spa |
dc.relation.references | FAO. (2021). Standard operating procedure for soil available phosphorus, Bray I and Bray II method. Food and Agriculture Organization of the United Nations. Roma. https://openknowledge.fao.org/items/85ca8099-eb7e-415f-a2f3-678b6dd28b7f. Fecha de acceso: 05/05/2021 | spa |
dc.relation.references | FAO. (2022). Standard operating procedure for soil available micronutrients (Cu, Fe, Mn, Zn) and heavy metals (Ni, Pb, Cd) DTPA extraction method. Food and Agriculture Organization of the United Nations. Roma. https://openknowledge.fao.org/server/api/core/bitstreams/cb40ac6e-68d6-437e-be4d-62094487abe0/content. Fecha de acceso: 06/05/2021 | spa |
dc.relation.references | FAO. (n.d.). FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data. Fecha de acceso: 15/03/2024 | spa |
dc.relation.references | FAO & WHO. (2011). Safety evaluation of certain contaminants in food. Food and Agriculture Organization of the United Nations & World Health Organization. Expert Committee on Food Additives. https://iris.who.int/bitstream/handle/10665/44521/9789241660648_eng.pdf?sequence=1. Fecha de acceso: 11/08/2024 | spa |
dc.relation.references | Fathollahi, A., Khasteganan, N., Coupe, S. J., & Newman, A. P. (2021). A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere, 268, 129290. https://doi.org/10.1016/j.chemosphere.2020.129290 | spa |
dc.relation.references | FEDECACAO. (2024). Economía Nacional. Federación Nacional de Cacaoteros. https://www.fedecacao.com.co/economianacional. Fecha de acceso: 30/06/2024. | spa |
dc.relation.references | FEDECACAO. (2024a). Construcción de estadísticas del sector cacaotero. Federación Nacional de Cacaoteros. https://www.fedecacao.com.co/documentos-tecnicos. Fecha de acceso: 30/04/2024 | spa |
dc.relation.references | FEDECACAO. (2024b). Economía Nacional. Federación Nacional de Cacaoteros. https://www.fedecacao.com.co/economianacional. Fecha de acceso: 30/06/2024. | spa |
dc.relation.references | Feria-Cáceres, P. F., Penagos-Velez, L., & Moreno-Herrera, C. X. (2022). Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Increased Metal Content. Microbiology Research, 13(3), 556–573. https://doi.org/10.3390/microbiolres13030039 | spa |
dc.relation.references | Fernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-Mediated Genetic Variance in Cadmium Uptake by Juvenile Cacao (Theobroma cacao L.) Genotypes, and Its Effect on Growth and Physiology. Frontiers in Plant Science, 12, 777842. https://doi.org/10.3389/fpls.2021.777842 | spa |
dc.relation.references | Ferrer, M. R., Quevedo-Sarmiento, J., Rivadeneyra, M. A., Bejar, V., Delgado, R., & Ramos-Cormenzana, A. (1988). Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Current Microbiology, 17, 221–227. https://doi.org/10.1007/BF01589456 | spa |
dc.relation.references | Figueroa B., E. (2008). Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Science of the Total Environment, 389(1), 1–9. https://doi.org/10.1016/j.scitotenv.2007.08.015 | spa |
dc.relation.references | Gao, Y., Jia, J., Xi, B., Cui, D., & Tan, W. (2021). Divergent response of heavy metal bioavailability in soil rhizosphere to agricultural land use change from paddy fields to various drylands. Environmental Science: Processes & Impacts, 23(3), 417–428. https://doi.org/10.1039/D0EM00501K | spa |
dc.relation.references | Gao, Y., Tan, Z., Wang, H., & Zhu, Y. (2023). Nitrogen fertilization and the rhizosphere effect on nitrogen cycling: A meta-analysis. Applied Soil Ecology, 186, 104788. https://doi.org/10.1016/J.APSOIL.2022.104788 | spa |
dc.relation.references | García, J. L., Romero, M. C., & Ortiz, L. A. (2007). Evaluación edafoclimática de las tierras del trópico bajo colombiano para el cultivo de cacao. Corporación Colombiana de Investigación Agropecuaria (Corpoica). https://repository.agrosavia.co/handle/20.500.12324/2189 | spa |
dc.relation.references | Gat, D., Ronen, Z., & Tsesarsky, M. (2016). Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation. Environmental Science and Technology, 50(2), 616–624. https://doi.org/10.1021/acs.est.5b04033 | spa |
dc.relation.references | Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in life sciences, 4(3), 219-232. https://doi.org/10.1002/elsc.200420026 | spa |
dc.relation.references | Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782 | spa |
dc.relation.references | Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-x | spa |
dc.relation.references | Gómez, J., & Montes, N. E. (2020). Mapa Geológico de Colombia en Relieve. Servicio Geológico Colombiano. https://www2.sgc.gov.co/MGC/Paginas/mgc_1M2020.aspx#. Fecha de acceso: 30/10/2023. | spa |
dc.relation.references | Gorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., Jeong, J. H., & So, J. S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering, 18(5), 903–908. https://doi.org/10.1007/s12257-013-0030-0 | spa |
dc.relation.references | Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014 | spa |
dc.relation.references | Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of the Total Environment, 612, 370–378. https://doi.org/10.1016/j.scitotenv.2017.08.145 | spa |
dc.relation.references | Grant, C. A. (2018). Influence of phosphate fertilizer on cadmium in agricultural soils and crops. In Selim, H. M. (Ed), Phosphate in Soils (1.a ed., pp. 140–165). CRC Press. https://doi.org/10.1201/9781351228909 | spa |
dc.relation.references | Guarín, D., Martín-López, J. M., Libohova, Z., Benavides-Bolaños, J., Maximova, S. N., Guiltinan, M. J., Spargo, J., da Silva, M., Fernandez, A., & Drohan, P. (2024). Accumulation of cadmium in soils, litter and leaves in cacao farms in the North Sierra Nevada de Santa Marta, Colombia. Geoderma Regional, 36, e00762. https://doi.org/10.1016/j.geodrs.2024.e00762 | spa |
dc.relation.references | Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696–704. https://doi.org/10.1080/10635150390235520 | spa |
dc.relation.references | Hall, T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Oxford University Press | spa |
dc.relation.references | Hamid, Y., Tang, L., Sohail, M. I., Cao, X., Hussain, B., Aziz, M. Z., Usman, M., He, Z. li, & Yang, X. (2019). An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Science of the Total Environment, 660, 80–96. https://doi.org/10.1016/j.scitotenv.2018.12.419 | spa |
dc.relation.references | Han, H., Cai, H., Wang, X., Hu, X., Chen, Z., & Yao, L. (2020). Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Ecotoxicology and Environmental Safety, 195, 110375. https://doi.org/10.1016/j.ecoenv.2020.110375 | spa |
dc.relation.references | He, D., Cui, J., Gao, M., Wang, W., Zhou, J., Yang, J., Wang, J., Li, Y., Jiang, C., & Peng, Y. (2019). Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Science of The Total Environment, 654, 1364–1371. https://doi.org/10.1016/J.SCITOTENV.2018.11.059 | spa |
dc.relation.references | He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/J.JTEMB.2005.02.010 | spa |
dc.relation.references | Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321(1–2), 117–152. https://doi.org/10.1007/s11104-008-9885-9 | spa |
dc.relation.references | Hoffmann, T. D., Reeksting, B. J., & Gebhard, S. (2021). Bacteria-induced mineral precipitation: A mechanistic review. Microbiology, 167, 001049. https://doi.org/10.1099/mic.0.001049 | spa |
dc.relation.references | Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth and Environment, 1(7), 366–381. https://doi.org/10.1038/s43017-020-0061-y | spa |
dc.relation.references | Hu, L., McBride, M. B., Cheng, H., Wu, J., Shi, J., Xu, J., & Wu, L. (2011). Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environmental Research, 111(3), 356–361. https://doi.org/10.1016/J.ENVRES.2011.01.012 | spa |
dc.relation.references | Hu, X., Yu, C., Shi, J., He, B., Wang, X., & Ma, Z. (2024). Biomineralization mechanism and remediation of Cu, Pb and Zn by indigenous ureolytic bacteria B. intermedia TSBOI. Journal of Cleaner Production, 436, 140508. https://doi.org/10.1016/j.jclepro.2023.140508 | spa |
dc.relation.references | Huang, J., Fan, G., Liu, C., & Zhou, D. (2023). Predicting soil available cadmium by machine learning based on soil properties. Journal of Hazardous Materials, 460, 132327. https://doi.org/10.1016/J.JHAZMAT.2023.132327 | spa |
dc.relation.references | Huang, S., Liu, R., Sun, M., Li, X., Guan, Y., & Lian, B. (2022). Transcriptome expression analysis of the gene regulation mechanism of bacterial mineralization tolerance to high concentrations of Cd2+. Science of the Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.150911 | spa |
dc.relation.references | Huo, X. N., Li, H., Sun, D. F., Zhou, L. Di, & Li, B. G. (2012). Combining geostatistics with moran’s i analysis for mapping soil heavy metals in Beijing, China. International Journal of Environmental Research and Public Health, 9(3), 995–1017. https://doi.org/10.3390/ijerph9030995 | spa |
dc.relation.references | Hussain, B., Abbas, Y., ur-Rahman, S., Ali, H., Zafar, M., Ali, S., Ashraf, M. N., Zehra, Q., Espinoza, S. T. L., & Valderrama, J. R. D. (2022). Metal and metalloids speciation, fractionation, bioavailability, and transfer toward plants. In Aftab, T., & Hakeem, K. (Eds) Metals Metalloids Soil Plant Water Systems (pp. 29–50). Elsevier. https://doi.org/10.1016/B978-0-323-91675-2.00026-3 | spa |
dc.relation.references | IARC. (2012). Agents Classified by the IARC Monographs, Volumes 1-136. International Agency for Research on Cancer. https://monographs.iarc.who.int/list-of-classifications. Fecha de acceso: 04/10/2022 | spa |
dc.relation.references | ICCO. (2024). List of Fine Flavour cacao exporting countries by the 109th Ordinary Session of the International Cacao Council. International Cacao Organization. https://www.icco.org/fine-or-flavor-cacao/ Fecha de acceso: 30/06/2024 | spa |
dc.relation.references | IDEAM. (2022). Atlas Climatológico de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales. http://atlas.ideam.gov.co/visorAtlasClimatologico.html. Fecha de acceso: 04/10/2022. | spa |
dc.relation.references | IGAC. (2006). Métodos Analíticos del Laboratorio de Suelos (6.a ed.). Instituto Geografico Agustin Codazzi. Imprenta Nacional de Colombia. | spa |
dc.relation.references | Jafarnejadi, A. R., Homaee, M., Sayyad, G., & Bybordi, M. (2011). Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil and Sediment Contamination, 20(1), 98–113. https://doi.org/10.1080/15320383.2011.528472 | spa |
dc.relation.references | Jaimes, S. Y. Y., Agudelo, C. G. A., Báez, D. E. Y., Montealegre, B. F., Rengifo, E. G. A., & Rojas, M. J. (2022). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) en el departamento de Santander (2.a ed.). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.model.7405538 | spa |
dc.relation.references | Jalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2019). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206–219. https://doi.org/10.1007/s42729-019-00121-z | spa |
dc.relation.references | Jaramillo-Mazo, C., Bravo, D., Guerra Sierra, B. E., & Alvarez, J. C. (2024). Association between bacterial community and cadmium distribution across Colombian cacao crops. Microbiology Spectrum, 12(7), e03363-23. https://doi.org/10.1128/spectrum.03363-23 | spa |
dc.relation.references | Chakraborty, J., Dash, H. R., & Das, S. (2017). Metals and Their Toxic Effects An Introduction to Noxious Elements: An Introduction to Noxious Elements. In Das, S., & Dash, H. R. (Eds) Handbook of Metal-Microbe Interactions and Bioremediation (1.a ed., pp. 3–24). CRC Press. https://doi.org/10.1201/9781315153353 | spa |
dc.relation.references | Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11(7), 1658–1671. https://doi.org/10.1111/j.1462-2920.2009.01891.x | spa |
dc.relation.references | Jin, B., Wang, S., Lei, Y., Jia, H., Niu, Q., Dapaah, M. F., Gao, Y., & Cheng, L. (2024). Green and effective remediation of heavy metals contaminated water using CaCO3 vaterite synthesized through biomineralization. Journal of Environmental Management, 353, 120136. https://doi.org/10.1016/j.jenvman.2024.120136 | spa |
dc.relation.references | Jing, R., & Kjellerup, B. V. (2018). Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. Journal of Environmental Sciences, 66, 146–154. https://doi.org/10.1016/J.JES.2017.04.035 | spa |
dc.relation.references | Jolliffe, I. T. (1972). Discarding Variables in a Principal Component Analysis. I: Artificial Data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 21(2), 160–173. Oxford University Press | spa |
dc.relation.references | Joya-Barrero, V., Huguet, C., & Pearse, J. (2023). Natural and Anthropogenic Sources of Cadmium in Cacao Crop Soils of Santander, Colombia. Soil Systems, 7(1), 12. https://doi.org/10.3390/soilsystems7010012 | spa |
dc.relation.references | Kandeler, E., Poll, C., Frankenberger Jr, W. T., & Ali Tabatabai, M. (2011). Nitrogen cycle enzymes. In Dick R. P. (Ed.) Methods of Soil Enzymology (pp. 211–245). Wiley. | spa |
dc.relation.references | Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and fertility of Soils, 6, 68-72. https://doi.org/10.1007/BF00257924 | spa |
dc.relation.references | Kato, C., Li, L., Tamaoka, J., & Horikoshi, K. (1997). Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles, 1(3), 117–123. https://doi.org/10.1007/S007920050024/METRICS | spa |
dc.relation.references | Kaur, M., Sidhu, N., & Reddy, M. S. (2024). Removal of cadmium through biomineralization using halophilic and ureolytic bacteria under saline conditions. International Biodeterioration and Biodegradation, 191, 105805. https://doi.org/10.1016/j.ibiod.2024.105805 | spa |
dc.relation.references | Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment, 601–602, 1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030 | spa |
dc.relation.references | Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environmental Geochemistry and Health, 37(6), 1041–1061. https://doi.org/10.1007/s10653-015-9695-y | spa |
dc.relation.references | Kitamura, M. (2001). Crystallization and Transformation Mechanism of Calcium Carbonate Polymorphs and the Effect of Magnesium Ion. Journal of Colloid and Interface Science, 236(2), 318–327. https://doi.org/10.1006/JCIS.2000.7398 | spa |
dc.relation.references | Kongor, J. E., Hinneh, M., de Walle, D. Van, Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Research International, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012 | spa |
dc.relation.references | Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388 | spa |
dc.relation.references | Kucheryavskiy, S. (2020). mdatools – R package for chemometrics. Chemometrics and Intelligent Laboratory Systems, 198, 103937. https://doi.org/10.1016/j.chemolab.2020.103937 | spa |
dc.relation.references | Kumar, A., Song, H.-W., Mishra, S., Zhang, W., Zhang, Y.-L., Zhang, Q.-R., & Yu, Z.-G. (2023). Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere, 137894. https://doi.org/10.1016/j.chemosphere.2023.137894 | spa |
dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | spa |
dc.relation.references | Kumari, D., Pan, X., Lee, D. J., & Achal, V. (2014). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102. https://doi.org/10.1016/j.ibiod.2014.07.007 | spa |
dc.relation.references | Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9 | spa |
dc.relation.references | Kuzyakov, Y., & Razavi, B. S. (2019). Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 135, 343–360. https://doi.org/10.1016/j.soilbio.2019.05.011 | spa |
dc.relation.references | Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365 | spa |
dc.relation.references | Lewis, C., Lennon, A. M., Eudoxie, G., Sivapatham, P., & Umaharan, P. (2021). Plant metal concentrations in Theobroma cacao as affected by soil metal availability in different soil types. Chemosphere, 262, 127749. https://doi.org/10.1016/j.chemosphere.2020.127749 | spa |
dc.relation.references | Li, A., Kong, L., Peng, C., Feng, W., Zhang, Y., & Guo, Z. (2024). Predicting Cd accumulation in rice and identifying nonlinear effects of soil nutrient elements based on machine learning methods. Science of The Total Environment, 912, 168721. https://doi.org/10.1016/J.SCITOTENV.2023.168721 | spa |
dc.relation.references | Li, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81–85. https://doi.org/10.1016/J.IBIOD.2012.06.016 | spa |
dc.relation.references | Li, W., Yang, Y., & Achal, V. (2022). Biochemical composite material using corncob powder as a carrier material for ureolytic bacteria in soil cadmium immobilization. Science of The Total Environment, 802, 149802. https://doi.org/10.1016/J.SCITOTENV.2021.149802 | spa |
dc.relation.references | Li, Y., Wang, L., Yang, L., & Li, H. (2014). Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress. Ecotoxicology and Environmental Safety, 102(1), 55–61. https://doi.org/10.1016/j.ecoenv.2014.01.004 | spa |
dc.relation.references | Li, Y., Zhang, M., Wang, X., Ai, S., Meng, X., Liu, Z., Yang, F., & Cheng, K. (2024). Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation. Journal of Hazardous Materials, 476, 135140. https://doi.org/10.1016/J.JHAZMAT.2024.135140 | spa |
dc.relation.references | Liao, Z., Wu, S., Xie, H., Chen, F., Yang, Y., & Zhu, R. (2023). Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization? Journal of Hazardous Materials, 443, 130242. https://doi.org/10.1016/j.jhazmat.2022.130242 | spa |
dc.relation.references | Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x | spa |
dc.relation.references | Liu, J., & Hue, N. V. (2001). Amending subsoil acidity by surface applications of gypsum, lime, and composts. Communications in Soil Science and Plant Analysis, 32(13–14), 2117–2132. https://doi.org/10.1081/CSS-120000273 | spa |
dc.relation.references | Liu, P., Zhang, Y., Tang, Q., & Shi, S. (2021). Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochemical Engineering Journal, 166, 107856. https://doi.org/10.1016/j.bej.2020.107856 | spa |
dc.relation.references | Liu, Y., Ali, A., Su, J. F., Li, K., Hu, R. Z., & Wang, Z. (2023). Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. Science of The Total Environment, 860, 160439. https://doi.org/10.1016/J.SCITOTENV.2022.160439 | spa |
dc.relation.references | Liu, Y., Xiao, T., Perkins, R. B., Zhu, J., Zhu, Z., Xiong, Y., & Ning, Z. (2017). Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176, 42–49. https://doi.org/10.1016/J.GEXPLO.2016.04.004 | spa |
dc.relation.references | Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium sorption and desorption in soils: A review. Critical Reviews in Environmental Science and Technology, 42(5), 489–533. https://doi.org/10.1080/10643389.2010.520234 | spa |
dc.relation.references | López, J. E., Arroyave, C., Aristizábal, A., Almeida, B., Builes, S., & Chavez, E. (2022). Reducing cadmium bioaccumulation in Theobroma cacao using biochar: basis for scaling-up to field. Heliyon, 8(6), e09790. https://doi.org/10.1016/j.heliyon.2022.e09790 | spa |
dc.relation.references | Lu, M., Huang, L., Wang, Q., Cao, X., Lin, Q., He, Z., Feng, Y., & Yang, X. (2023). Soil properties drive the bacterial community to cadmium contamination in the rhizosphere of two contrasting wheat (Triticum aestivum L.) genotypes. Journal of Environmental Sciences, 128, 117–128. https://doi.org/10.1016/J.JES.2022.07.028 | spa |
dc.relation.references | Luster, J., Göttlein, A., Nowack, B., & Sarret, G. (2009). Sampling, defining, characterising and modeling the rhizosphere-the soil science tool box. Plant and Soil, 321(1–2), 457–482. https://doi.org/10.1007/s11104-008-9781-3 | spa |
dc.relation.references | Lv, X., Zhong, Y., Fu, G., Wu, Y., & Xu, X. (2023). Revealing Heavy Metal-Resistant Mechanisms and Bioremediation Potential in a Novel Croceicoccus Species Using Microbial-Induced Carbonate Precipitation. Journal of Marine Science and Engineering, 11(11). https://doi.org/10.3390/jmse11112195 | spa |
dc.relation.references | Ma, B., Song, W., Zhang, X., Chen, M., Li, J., Yang, X., & Zhang, L. (2023). Potential application of novel cadmium-tolerant bacteria in bioremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety, 255, 114766. https://doi.org/10.1016/j.ecoenv.2023.114766 | spa |
dc.relation.references | Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of The Total Environment, 720, 137645. https://doi.org/10.1016/J.SCITOTENV.2020.137645 | spa |
dc.relation.references | Mann, S. (2001). Biomineralization: principles and concepts in bioinorganic materials. Oxford University Press. | spa |
dc.relation.references | Martínez, C. M., Rivera-Hernández, M., Álvarez, L. H., Acosta-Rodríguez, I., Ruíz, F., & Compeán-García, V. D. (2020). Biosynthesis and characterization of cadmium carbonate crystals by anaerobic granular sludge capable of precipitate cadmium. Materials Chemistry and Physics, 246, 122797. https://doi.org/10.1016/j.matchemphys.2020.122797 | spa |
dc.relation.references | Mcnear, D. H. Jr. (2013). The rhizosphere-roots, soil and everything in between. Nature Education Knowledge, 4(3), 1. https://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617/. Fecha de acceso: 15/11/2023 | spa |
dc.relation.references | Mendoza, O. H., Portilla, K. A., Pérez, A., Castellanos, F., & Orejuela, C. J. (2020). Cadmio-(Cd): Atlas Geoquímico de Colombia, versión 2020. Servicio Geológico Colombiano. https://srvags.sgc.gov.co/Archivos_Geoportal/Amenaza_Sismica/Atlas_Geoquimico_2020/pdf/9.Cd.pdf. Fecha de acceso: 23/06/2024 | spa |
dc.relation.references | Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in cacao from Latin America and the Caribbean. A review of research and potential mitigation solutions. Bioversity International. https://hdl.handle.net/10568/102353 Fecha de acceso:21/01/2024 | spa |
dc.relation.references | Montaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0 | spa |
dc.relation.references | Montoya, C., Márquez, M. A., María López, J., Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnologia, 7(2), 19-25. https://repositorio.unal.edu.co/handle/unal/22100 | spa |
dc.relation.references | Niether, W., Schneidewind, U., Fuchs, M., Schneider, M., & Armengot, L. (2019). Below- and aboveground production in cocoa monocultures and agroforestry systems. Science of The Total Environment, 657, 558–567. https://doi.org/10.1016/J.SCITOTENV.2018.12.050 | spa |
dc.relation.references | Okyay, T. O., Nguyen, H. N., Castro, S. L., & Rodrigues, D. F. (2016). CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Science of The Total Environment, 572, 671–680. https://doi.org/10.1016/J.SCITOTENV.2016.06.199 | spa |
dc.relation.references | Oliva, M., Rubio, K., Epquin, M., Marlo, G., & Leiva, S. (2020). Cadmium uptake in native cacao trees in agricultural lands of Bagua, Peru. Agronomy, 10(10). https://doi.org/10.3390/agronomy10101551 | spa |
dc.relation.references | Palencia, C. G. E., Gómez, S. R., & Mejia, F. L. A. (2007). Patrones para cacao. Corporación colombiana de investigación agropecuaria - Corpoica. https://repository.agrosavia.co/handle/20.500.12324/2222 | spa |
dc.relation.references | Pan, J., & Yu, L. (2011). Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering, 37(11), 1889–1894. https://doi.org/10.1016/J.ECOLENG.2011.07.002 | spa |
dc.relation.references | Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., Wu, B., & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. Journal of Hazardous Materials, 400, 123116. https://doi.org/10.1016/j.jhazmat.2020.123116 | spa |
dc.relation.references | Perea, V. J. A. (2019). El cacao desde la ciencia: de la semilla al chocolate (1.a ed.). EDICIONES UIS. https://ediciones.uis.edu.co/index.php/publicacionesuis/catalog/book/377 | spa |
dc.relation.references | Pham, V. H., & Kim, J. (2012). Cultivation of unculturable soil bacteria. Trends in biotechnology, 30(9), 475-484. https://doi.org/10.1016/j.tibtech.2012.05.007 | spa |
dc.relation.references | Pinzón, U. J. O., Rojas, A. J., & Rojas, F. (2008). Guía técnica para el Cultivo de Cacao. Federación Nacional de Cacaoteros. | spa |
dc.relation.references | Poppe, L. J., Paskevich, V. F., Hathaway, J. C., & Blackwood, D. S. (2001). A Laboratory Manual for X-Ray Powder Diffraction. http://pubs.usgs.gov/openfile/of01-041/index.htm | spa |
dc.relation.references | Pregitzer, K. S. (2008). Tree Root Architecture: Form and Function. The New Phytologist, 180(3), 562–564. https://www.jstor.org/stable/25150605?seq=1&cid=pdf- | spa |
dc.relation.references | Priyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/J.JECE.2020.104686 | spa |
dc.relation.references | Qiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274, 129661. https://doi.org/10.1016/j.chemosphere.2021.129661 | spa |
dc.relation.references | Quiroga-Mateus, R., López-Zuleta, S., Chávez, E., & Bravo, D. (2022). Cadmium-Tolerant Bacteria in Cacao Farms from Antioquia, Colombia: Isolation, Characterization and Potential Use to Mitigate Cadmium Contamination. Processes, 10(8), 1457. https://doi.org/10.3390/pr10081457 | spa |
dc.relation.references | Ramtahal, G., Chang Yen, I., Ahmad, N., Bekele, I., Bekele, F., Maharaj, K., Wilson, L., & Harrynanan, L. (2015). Prediction of Soil Cadmium Bioavailability to Cacao (Theobroma cacao L.) using Single-Step Extraction Procedures. Communications in Soil Science and Plant Analysis, 46(20), 2585–2594. https://doi.org/10.1080/00103624.2015.1089262 | spa |
dc.relation.references | Ramtahal, G., Umaharan, P., Davis, C., Roberts, C., Hanuman, A., & Ali, L. (2022). Mitigation of cadmium uptake in Theobroma cacao L: efficacy of soil application methods of hydrated lime and biochar. Plant and Soil, 477, 281-296. https://doi.org/10.1007/s11104-022-05422-4 | spa |
dc.relation.references | Ramtahal, G., Umaharan, P., Hanuman, A., Davis, C., & Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of the Total Environment, 693, 133563. https://doi.org/10.1016/j.scitotenv.2019.07.369 | spa |
dc.relation.references | Ramtahal, G., Yen, I. C., Bekele, I., Bekele, F., Wilson, L., Maharaj, K., & Harrynanan, L. (2016). Relationships between Cadmium in Tissues of Cacao Trees and Soils in Plantations of Trinidad and Tobago. Food and Nutrition Sciences, 07(01), 37–43. https://doi.org/10.4236/fns.2016.71005 | spa |
dc.relation.references | Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 397-409. http://dx.doi.org/10.4067/S0718-95162015005000036 | spa |
dc.relation.references | Richter, D. D. B., Oh, N. H., Fimmen, R., & Jackson, J. (2007). The rhizosphere and soil formation. In Z. G. Gardon & J. L. Whitbeck (Eds.), The rhizosphere An Ecological Perspective (pp. 179–201). Academic Press. | spa |
dc.relation.references | Rodríguez Albarracín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214 | spa |
dc.relation.references | Rodriguez-Navarro, C., Jroundi, F., Schiro, M., Ruiz-Agudo, E., & González-Muñoz, M. T. (2012). Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications for stone conservation. Applied and Environmental Microbiology, 78(11), 4017–4029. https://doi.org/10.1128/AEM.07044-11 | spa |
dc.relation.references | Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029 | spa |
dc.relation.references | Rosas-Patiño, G., Puentes-Páramo, Y. J., & Menjivar-Flores, J. C. (2017). Relación entre el pH y la disponibilidad de nutrientes para cacao en un entisol de la Amazonia colombiana. Ciencia & Tecnología Agropecuaria, 18(3), 529–541. https://doi.org/10.21930/rcta.vol18_num3_art:742 | spa |
dc.relation.references | Sanders, E., & Miller, K. (2010). I, Microbiologist: A discovery-based course in microbial ecology and molecular evolution. ASM Press. | spa |
dc.relation.references | Saracho, A., Haigh, S. K., Hata, T., Soga, K., Farsang, S., Redfern, S. A. T., & Marek, E. (2020). Characterisation of CaCO3 phases during strain-specific ureolytic precipitation. Scientific Reports, 10(1), 10168. https://doi.org/10.1038/s41598-020-66831-y | spa |
dc.relation.references | Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925–937. https://doi.org/10.1002/jsfa.3916 | spa |
dc.relation.references | Sauer, D., Kuzyakov, Y., & Stahr, K. (2006). Spatial distribution of root exudates of five plant species as assessed by 14C labeling. Journal of Plant Nutrition and Soil Science, 169(3), 360–362. https://doi.org/10.1002/jpln.200621974 | spa |
dc.relation.references | Scaccabarozzi, D., Castillo, L., Aromatisi, A., Milne, L., Castillo, A. B., & Muñoz-Rojas, M. (2020). Soil, site, and management factors affecting cadmium concentrations in cacao-growing soils. Agronomy, 10(6), 806. https://doi.org/10.3390/agronomy10060806 | spa |
dc.relation.references | Schwieger, F., & Tebbe, C. C. (1998). A New Approach To Utilize PCR-Single-Strand-Conformation Polymorphism for 16S rRNA Gene-Based Microbial Community Analysis. Applied And Environmental Microbiology, 64(12), 4870 - 4876. https://doi.org/10.1128/AEM.64.12.4870-4876.1998 | spa |
dc.relation.references | Seifan, M., Samani, A. K., & Berenjian, A. (2016). Induced calcium carbonate precipitation using Bacillus species. Applied Microbiology and Biotechnology, 100(23), 9895–9906. https://doi.org/10.1007/s00253-016-7701-7 | spa |
dc.relation.references | Seshadri, B., Bolan, N. S., & Naidu, R. (2015). Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. Journal of Soil Science and Plant Nutrition, 15(2), 524-548. http://dx.doi.org/10.4067/S0718-95162015005000043 | spa |
dc.relation.references | Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. In Voogt, P. (Ed.) Reviews of Environmental Contamination and Toxicology (pp. 73–137). Springer. https://doi.org/10.1007/398_2016_8 | spa |
dc.relation.references | Sharma, V., Vashishtha, A., Jos, A. L. M., Khosla, A., Basu, N., Yadav, R., Bhatt, A., Gulani, A., Singh, P., Lakhera, S., & Verma, M. (2022). Phylogenomics of the phylum Proteobacteria: resolving the complex relationships. Current Microbiology, 79(8), 224. https://doi.org/10.1007/s00284-022-02910-9 | spa |
dc.relation.references | Shen, L., Chen, R., Wang, J., Fan, L., Cui, L., Zhang, Y., Cheng, J., Wu, X., Li, J., & Zeng, W. (2021). Biosorption behavior and mechanism of cadmium from aqueous solutions by: Synechocystis sp. PCC6803. RSC Advances, 11(30), 18637–18650. https://doi.org/10.1039/d1ra02366g | spa |
dc.relation.references | Sheng, M., Peng, D., Luo, S., Ni, T., Luo, H., Zhang, R., Wen, Y., & Xu, H. (2022). Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation. Environmental Pollution, 308, 119585. https://doi.org/10.1016/j.envpol.2022.119585 | spa |
dc.relation.references | Shi, T., Hu, Z., Shi, Z., Guo, L., Chen, Y., Li, Q., & Wu, G. (2018). Geo-detection of factors controlling spatial patterns of heavy metals in urban topsoil using multi-source data. Science of The Total Environment, 643, 451–459. https://doi.org/10.1016/J.SCITOTENV.2018.06.224 | spa |
dc.relation.references | Smolders, E., & Mertens, J. (2013). Cadmium. In B. J. Alloway (Ed.), Heavy Metals in Soils:Trace Metals and Metalloids in Soils and their Bioavailability (3.a ed., pp. 283–311). Springer. | spa |
dc.relation.references | Souza, P. A., Moreira, L. F., Sarmento, D. H. A., & da Costa, F. B. (2018). Cacao—Theobroma cacao. In Rodrigues, S., Silva, E. O. & Brito, E. S. (Eds) Exotic Fruits Reference Guide, 69–76. Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00010-1 | spa |
dc.relation.references | Sterckeman, T., & Thomine, S. (2020). Mechanisms of Cadmium Accumulation in Plants. Critical Reviews in Plant Sciences, 39(4), 322–359. https://doi.org/10.1080/07352689.2020.1792179 | spa |
dc.relation.references | Sun, X., Li, Z., Wu, L., Christie, P., Luo, Y., & Fornara, D. A. (2019). Root-induced soil acidification and cadmium mobilization in the rhizosphere of Sedum plumbizincicola: evidence from a high-resolution imaging study. Plant and Soil, 436(1–2), 267–282. https://doi.org/10.1007/s11104-018-03930-w | spa |
dc.relation.references | Swati, A., & Hait, S. (2017). Fate and bioavailability of heavy metals during vermicomposting of various organic wastes—A review. Process Safety and Environmental Protection, 109, 30–45. https://doi.org/10.1016/J.PSEP.2017.03.031 | spa |
dc.relation.references | Taharia, M., Dey, D., Das, K., Sukul, U., Chen, J. S., Banerjee, P., Dey, G., Sharma, R. K., Lin, P. Y., & Chen, C. Y. (2024). Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. Ecotoxicology and Environmental Safety, 271, 115990. https://doi.org/10.1016/j.ecoenv.2024.115990 | spa |
dc.relation.references | Tamayo-Figueroa, D. P., Castillo, E., & Brandão, P. F. B. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(58). https://doi.org/10.1007/s11274-019-2626-9 | spa |
dc.relation.references | Tao, J., Fan, L., Zhou, J., Banfield, C. C., Kuzyakov, Y., & Zamanian, K. (2024). Nitrification-induced acidity controls CO2 emission from soil carbonates. Soil Biology and Biochemistry, 192, 109398. https://doi.org/10.1016/j.soilbio.2024.109398 | spa |
dc.relation.references | Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7), 844-851. https://doi.org/10.1021/ac50043a017 | spa |
dc.relation.references | Thomas, E., Atkinson, R., Zavaleta, D., Rodriguez, C., Lastra, S., Yovera, F., Arango, K., Pezo, A., Aguilar, J., Tames, M., Ramos, A., Cruz, W., Cosme, R., Espinoza, E., Chavez, C. R., & Ladd, B. (2023). The distribution of cadmium in soil and cacao beans in Peru. Science of The Total Environment, 881, 163372. https://doi.org/10.1016/J.SCITOTENV.2023.163372 | spa |
dc.relation.references | Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309. https://doi.org/10.1016/J.ENVINT.2015.12.017 | spa |
dc.relation.references | Toxopeus, H. (2001). Botany, Types and Populations. In Wood G. A. R., & Lass, R. A. (Eds) Cocoa (4.a ed., pp. 11–37). Wiley. https://doi.org/10.1002/9780470698983.ch2 | spa |
dc.relation.references | Tsesarsky, M., Gat, D., & Ronen, Z. (2016). Biological aspects of microbial-induced calcite precipitation. Environmental Geotechnics, 5(2), 69–78. https://doi.org/10.1680/jenge.15.00070 | spa |
dc.relation.references | Uslu, G. S., & Hanay, O. (2017). Metal–Microbe Interactions and Microbial Bioremediation of Toxic Metals. In Das, S., & Dash, H. R. (Eds) Handbook of Metal-Microbe Interactions and Bioremediation (1.a ed., pp. 99–109). CRC Press. https://doi.org/10.1201/9781315153353 | spa |
dc.relation.references | van Reeuwijk. L. P. (2002). Procedures for Soil Analysis (6.a ed.). International Soil Reference and Information Center. https://www.isric.org/documents/document-type/technical-paper-09-procedures-soil-analysis-6th-edition | spa |
dc.relation.references | van Vliet, J., Slingerland, M., & Giller, K. E. (2015). Mineral nutrition of cocoa : a review. Wageningen University and Research Centre. https://edepot.wur.nl/356090 | spa |
dc.relation.references | Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chavez, E., Sarret, G., & Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of the Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779 | spa |
dc.relation.references | Vanderschueren, R., Wantiez, L., Blommaert, H., Flores, J., Chavez, E., & Smolders, E. (2023). Revealing the pathways of cadmium uptake and translocation in cacao trees (Theobroma cacao L.): A 108Cd pulse-chase experiment. Science of the Total Environment, 869, 161816. https://doi.org/10.1016/j.scitotenv.2023.161816 | spa |
dc.relation.references | Vázquez‐deCastro, J. L., Chávez, E., Espinel, R., Hendrix, S., Smolders, E., & Maertens, M. (2024). The economic costs of cadmium non‐tariff measures for smallholder cocoa farmers in Ecuador. The World Economy, 47(3), 1147–1166. https://doi.org/10.1111/twec.13488 | spa |
dc.relation.references | Verdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 12(6), 399–402. https://doi.org/10.1016/0043-1354(78)90107-0 | spa |
dc.relation.references | Villacorta, C. D. A., Flores, M. A. M., García, A. R., Bardales-Lozano, R. M., & Montejo, D. A. (2021). Growing of cacao seedlings (Theobroma cacao) in the nursery, using different volumes of substrate. Manglar, 18(3), 261–266. https://doi.org/10.17268/manglar.2021.034 | spa |
dc.relation.references | Villar, G., Yovera, F., Pezo, A., Thomas, E., Roscioli, F., Sandy da Cruz, R., Jimenez, E., Lopez, A., Aguilar, F., Espinoza, E., Davila, C., Chavez Hurtado, C., Lastra, S., Zavaleta, D., Charry, A., & Atkinson, R. (2022). Caracterización socioeconómica de las cadenas de valor de cacao con énfasis en la problemática de cadmio en Piura y Huánuco, Perú. Alianza Bioversity & CIAT. https://cgspace.cgiar.org/items/0f72c11b-ef9a-45e7-ad45-0ac656e7db5d | spa |
dc.relation.references | Vishan, I., Saha, B., Sivaprakasam, S., & Kalamdhad, A. (2019). Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: Biosorption kinetics, thermodynamics and mechanism. Environmental Technology and Innovation, 14, 100323. https://doi.org/10.1016/j.eti.2019.100323 | spa |
dc.relation.references | Wade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLoS ONE, 17, 1–18. https://doi.org/10.1371/journal.pone.0261989 | spa |
dc.relation.references | Wang, C., Li, W., Yang, Z., Chen, Y., Shao, W., & Ji, J. (2015). An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability. Scientific Reports, 5, 12735. https://doi.org/10.1038/srep12735 | spa |
dc.relation.references | Wang, C., Liu, Z., Huang, Y., Zhang, Y., Wang, X., & Hu, Z. (2019). Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environmental Toxicology and Pharmacology, 72, 103265. https://doi.org/10.1016/J.ETAP.2019.103265 | spa |
dc.relation.references | Wang, L., Zhang, X., Lu, J., & Huang, L. (2025). Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiological Research, 293, 128054. https://doi.org/10.1016/j.micres.2025.128054 | spa |
dc.relation.references | Wang, X., Hu, K., Xu, Q., Lu, L., Liao, S., & Wang, G. (2020). Immobilization of Cd Using Mixed Enterobacter and Comamonas Bacterial Reagents in Pot Experiments with Brassica rapa L. Environmental Science and Technology, 54(24), 15731–15741. https://doi.org/10.1021/acs.est.0c03114 | spa |
dc.relation.references | Wang, Y., Wang, Z., Ali, A., Su, J., Huang, T., Hou, C., & Li, X. (2024a). Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. Chemosphere, 362, 142762. https://doi.org/10.1016/J.CHEMOSPHERE.2024.142762 | spa |
dc.relation.references | Wang, Y., Xu, J., Dong, S., Li, L., & Wang, S. (2024). Effects of biochar and magnesium oxide on cadmium immobilized by microbially induced carbonate: Mobilization or immobilization in alkaline agricultural soils? Environmental Pollution, 358, 124537. https://doi.org/10.1016/j.envpol.2024.124537 | spa |
dc.relation.references | Wei, T., Li, H., Yashir, N., Li, X., Jia, H., Ren, X., Yang, J., & Hua, L. (2022a). Effects of urease-producing bacteria and eggshell on physiological characteristics and Cd accumulation of pakchoi (Brassica chinensis L.) plants. Environmental Science and Pollution Research, 29, 63886-63897. https://doi.org/10.1007/s11356-022-20344-5 | spa |
dc.relation.references | Wei, T., Yashir, N., An, F., Asad Imtiaz, S., Li, X., & Li, H. (2022b). Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil. Environmental Science and Pollution Research, 29, 2924-2935 https://doi.org/10.1007/s11356-021-15138-0 | spa |
dc.relation.references | Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal Of Bacteriology, 173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991 | spa |
dc.relation.references | Welikala, D., Robinson, B. H., Moltchanova, E., Hartland, A., & Lehto, N. J. (2021). Soil cadmium mobilisation by dissolved organic matter from soil amendments. Chemosphere, 271, 129536. https://doi.org/10.1016/j.chemosphere.2021.129536 | spa |
dc.relation.references | Wen, K., Li, Y., Amini, F., & Li, L. (2020). Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotechnica, 15(1), 17–27. https://doi.org/10.1007/s11440-019-00899-3 | spa |
dc.relation.references | Xiao, G., Hu, Y., Li, N., & Yang, D. (2018). Spatial autocorrelation analysis of monitoring data of heavy metals in rice in China. Food Control, 89, 32–37. https://doi.org/10.1016/j.foodcont.2018.01.032 | spa |
dc.relation.references | Yan, F., Schubert, S., & Mengel, K. (1996). Soil pH increase due to biological decarboxylation of organic anions. Soil Biology and Biochemistry, 28(4–5), 617–624. https://doi.org/10.1016/0038-0717(95)00180-8 | spa |
dc.relation.references | Yan, Z. xuan, Li, Y., Peng, S. ying, Wei, L., Zhang, B., Deng, X. yao, Zhong, M., & Cheng, X. (2024). Cadmium biosorption and mechanism investigation using two cadmium-tolerant microorganisms isolated from rhizosphere soil of rice. Journal of Hazardous Materials, 470, 134134. https://doi.org/10.1016/j.jhazmat.2024.134134 | spa |
dc.relation.references | Yang, G., Li, F., Wang, Y., Ji, C., Huang, L., Su, Z., Li, X., & Zhang, C. (2022). The effect of Bacillus cereus LV-1 on the crystallization and polymorphs of calcium carbonate. RSC Advances, 12(41), 26908–26921. https://doi.org/10.1039/d2ra04254a | spa |
dc.relation.references | Yang, J., Jiang, L., Guo, Z., Sarkodie, E. K., Li, K., Shi, J., Peng, Y., Liu, H., & Liu, X. (2024). The Cd immobilization mechanisms in paddy soil through ureolysis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis. Journal of Hazardous Materials, 465, 133174. https://doi.org/10.1016/j.jhazmat.2023.133174 | spa |
dc.relation.references | Zeng, G., Qiao, S., Wang, X., Sheng, M., Wei, M., Chen, Q., Xu, H., & Xu, F. (2021). Immobilization of cadmium by Burkholderia sp. QY14 through modified microbially induced phosphate precipitation. Journal of Hazardous Materials, 412, 125156. https://doi.org/10.1016/j.jhazmat.2021.125156 | spa |
dc.relation.references | Zeng, Y., Chen, Z., Lyu, Q., Wang, X., Du, Y., Huan, C., Liu, Y., & Yan, Z. (2022). Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. Science of the Total Environment, 852, 158465. https://doi.org/10.1016/j.scitotenv.2022.158465 | spa |
dc.relation.references | Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the Total Environment, 398(1–3), 212–221. https://doi.org/10.1016/j.scitotenv.2008.03.011 | spa |
dc.relation.references | Zhang, L., Wang, W., Yue, C., & Si, Y. (2024). Biogenic calcium improved Cd2+ and Pb2+ immobilization in soil using the ureolytic bacteria Bacillus pasteurii. Science of the Total Environment, 921,171060. https://doi.org/10.1016/j.scitotenv.2024.171060 | spa |
dc.relation.references | Zhang, W., Ju, Y., Zong, Y., Qi, H., & Zhao, K. (2018). In Situ Real-Time Study on Dynamics of Microbially Induced Calcium Carbonate Precipitation at a Single-Cell Level. Environmental Science and Technology, 52(16), 9266–9276. https://doi.org/10.1021/acs.est.8b02660 | spa |
dc.relation.references | Zhang, W., Zhang, H., Xu, R., Qin, H., Liu, H., & Zhao, K. (2023). Heavy metal bioremediation using microbially induced carbonate precipitation: Key factors and enhancement strategies. Frontiers in Microbiology, 14, 1116970. https://doi.org/10.3389/fmicb.2023.1116970 | spa |
dc.relation.references | Zhao, Q., Zhang, H., Zhang, Z., Chen, Z., & Han, H. (2024). Exogenous inoculation with heavy metal-immobilizing bacteria roused the key rhizosphere bacterial community and metabolites of wheat to inhibit cadmium absorption. Journal of Environmental Chemical Engineering, 12(5), 113631. https://doi.org/10.1016/j.jece.2024.113631 | spa |
dc.relation.references | Zhao, X. L., Jiang, T., & Du, B. (2014). Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption–desorption on/from purple paddy soils. Chemosphere, 99, 41–48. https://doi.org/10.1016/J.CHEMOSPHERE.2013.09.030 | spa |
dc.relation.references | Zhao, X., Wang, M., Wang, H., Tang, D., Huang, J., & Sun, Y. (2019). Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. International Journal of Environmental Research and Public Health, 16(2), 268. https://doi.org/10.3390/ijerph16020268 | spa |
dc.relation.references | Zhao, Y., Yao, J., Yuan, Z., Wang, T., Zhang, Y., & Wang, F. (2017). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24(1), 372–380. https://doi.org/10.1007/s11356-016-7810-y | spa |
dc.relation.references | Zheng, Y., Xiao, C., & Chi, R. (2021). Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World Journal of Microbiology and Biotechnology, 37, 208. https://doi.org/10.1007/s11274-021-03176-2 | spa |
dc.relation.references | Zhou, X., Yang, Y., Yin, Q., Zhang, X., & Li, M. (2021). Application potential of Comamonas testosteroni ZG2 for vegetable cultivation in nickel and cadmium polluted soil. Environmental Technology and Innovation, 23, 101626. https://doi.org/10.1016/j.eti.2021.101626 | spa |
dc.relation.references | Zhu, X., Li, W., Zhan, L., Huang, M., Zhang, Q., & Achal, V. (2016). The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149–155. https://doi.org/10.1016/j.envpol.2016.10.047 | spa |
dc.relation.references | Zug, K. L. M., Huamaní Yupanqui, H. A., Meyberg, F., Cierjacks, J. S., & Cierjacks, A. (2019). Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water, Air, and Soil Pollution, 230, 72. https://doi.org/10.1007/s11270-019-4109-x | spa |
dc.relation.references | Peláez, J. J. Z., Prato Sarmiento, A. I., Zapata López, L. P., & Zaraté Caicedo, D. A. (2018). Fenologia de Cariniana pyriformis na região do Magdalena Médio de Santander, nordeste da Colômbia. Pesquisa Florestal Brasileira, 38. https://doi.org/10.4336/2018.pfb.e201701414 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Rizosfera | spa |
dc.subject.agrovoc | rhizosphere | eng |
dc.subject.agrovoc | Cadmio | spa |
dc.subject.agrovoc | cadmium | eng |
dc.subject.agrovoc | Theobroma cacao | spa |
dc.subject.agrovoc | Theobroma cacao | eng |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
dc.subject.proposal | Cadmio | spa |
dc.subject.proposal | Cacao | spa |
dc.subject.proposal | Suelo rizosférico | spa |
dc.subject.proposal | Bacterias ureolíticas | spa |
dc.subject.proposal | MICP | spa |
dc.subject.proposal | Cadmium | eng |
dc.subject.proposal | Cacao | eng |
dc.subject.proposal | Rhizosphere soil | eng |
dc.subject.proposal | Ureolytic bacteria | eng |
dc.subject.proposal | MICP | eng |
dc.title | Mitigación de cadmio en suelos cacaoteros mediante bacterias ureolíticas | spa |
dc.title.translated | Cadmium mitigation in cacao-growing soils by ureolytic bacteria | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación de Colombia (MinCiencias) | spa |
oaire.fundername | Dirección de Investigación y Extensión sede Bogotá (DIEB), Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1098694827.2025.pdf
- Tamaño:
- 6.96 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: