TAR modeling with missing data when the white noise process is not Gaussian

dc.contributorNieto, Fabio Humbertospa
dc.contributor.authorZhang, Hanwenspa
dc.date.accessioned2019-07-03T18:59:24Zspa
dc.date.available2019-07-03T18:59:24Zspa
dc.date.issued2014spa
dc.description.abstractEn esta investigación, proponemos tres familias de modelos TAR: (1) Modelos TAR con ruidos t, (2) Modelos TAR para el logaritmo de series positivas, y (3) Modelos TAR donde el proceso del ruido tiene distribución Gamma estandarizada. Para cada uno de estos modelos, proponemos un procedimiento de tres etapas que consiste en: (1) La identificación del número de regímenes y los correspondientes umbrales, (2) La identificación de los órdenes autoregresivos en los regímenes, y (3) La estimación de los parámetros no estructurales, estos son, los coeficientes autoregresivos, las varianzas condicionales tipo II y demás parámetros que cada modelo particular pueda tener.spa
dc.description.abstractAbstract. In this work, we proposed three families of TAR models: (1) TAR models with t-distributed noise process, (2) TAR models for logarithm of positive series, and (3) TAR models with standardized Gamma distributed noise process. For each one of these models, we proposed a three-stage procedure which consists of: (1) identifying the number of regimes and the corresponding thresholds, (2) identifying the autoregressive order in each regime, and (3) estimating the non-structural parameters, i.e., the autoregressive coefficients and the type II conditional variance in each regime, and other parameters that each particular model may contain.spa
dc.description.degreelevelDoctoradospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/39562/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75057
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadísticaspa
dc.relation.ispartofDepartamento de Estadísticaspa
dc.relation.referencesZhang, Hanwen (2014) TAR modeling with missing data when the white noise process is not Gaussian. Doctorado thesis, Universidad Nacional de Colombia.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalModelos TARspa
dc.subject.proposalMuestreador de Gibbsspa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalTAR modelsspa
dc.subject.proposalGibbs samplerspa
dc.subject.proposalTime seriesspa
dc.titleTAR modeling with missing data when the white noise process is not Gaussianspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
832342.2014.pdf
Tamaño:
853.17 KB
Formato:
Adobe Portable Document Format