A microworld for learning about the diffusion of non-conventional renewable electricity generation technologies in Colombia.

dc.contributor.advisorArias-Gaviria, Jessica
dc.contributor.advisorArango Aramburo, Santiago
dc.contributor.authorMarrero Trujillo, Verónica
dc.contributor.researchgroupCiencias de la decisiónspa
dc.date.accessioned2021-08-25T16:17:22Z
dc.date.available2021-08-25T16:17:22Z
dc.date.issued2020
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThe speed of changes in the policies and agents of the energy system in Colombia is a conflict when it comes to understanding such a complex system, considering the energy transition towards renewable matrix. This study aims to develop a microworld to learn and understand the dynamics of diffusion of renewable energy technologies in Colombia, and the effect of different incentive policies in such diffusion. We used a system dynamics model to understand the behavior of the available potential and the installed capacity of different electricity generation technologies in Colombia, considering the effect of the regulator’s performance over the diffusion. Thereafter, the model was used to develop an online microworld in which the users can play and test different incentives to renewable energy and learn about the systems underlying structure and operation while learning about the process. The main results of the pilot testing suggest that the microworld contributes to improving the knowledge of the users and allowing them to better understand the energy system.eng
dc.description.abstractLa velocidad de los cambios en las políticas y los agentes del sistema energético en Colombia es una barrera para entender un sistema tan complejo, considerando la transición energética hacia una matriz renovable. Esta tesis, tiene como objetivo desarrollar un micromundo para entender y aprender sobre la dinámica de la difusión de las tecnologías de generación renovable en Colombia, y sobre el efecto de diferentes políticas e incentivos sobre dicha difusión. Utilizamos un modelo de dinámica de sistemas para comprender el comportamiento del potencial disponible y la capacidad instalada de diferentes tecnologías de generación en Colombia, considerando el efecto del desempeño del regulador sobre la difusión. A partir de este modelo desarrollamos un micromundo en línea en el que los usuarios pueden jugar, probar diferentes incentivos para las energías renovables y aprender sobre la estructura y la operación subyacente de los sistemas mientras aprenden sobre el proceso. Los resultados principales de las pruebas piloto sugieren que el micromundo aporta al conocimiento de los usuarios y les permite entender mejor el sistema. (Tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en ingeniería - Sistemas Energéticosspa
dc.description.sponsorshipEnergética 2030: Estrategia de transformación del sector energético Colombiano en el horizonte de 2030. Financiación: Convocatoria 778 de Minciencias Ecosistema Científico. Contrato: FP44842-210-2018. P06: Política, Regulación y Mercados y P07: Análisis de escenarios y definición de estrategias futuras.spa
dc.format.extentxv, 225 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80010
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesAckermann, E. (2001). Piaget’s Constructivism, Papert’s Constructionism: What’s the difference? Future of Learning Group, 5(3), 438.spa
dc.relation.referencesArias-Gaviria, J., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy, 139, 1111–1119. https://doi.org/10.1016/j.renene.2019.02.138spa
dc.relation.referencesArias Gaviria, J. (2014). Modelamiento y simulación de curvas de aprendizaje para tecnologías de energía renovable en Colombia. (Doctoral Dissertation, Universidad Nacional de Colombia-Sede Medellín), 123. http://www.bdigital.unal.edu.co/43657/spa
dc.relation.referencesBabiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Araos, M., Bakker, S., Bazaz, A., Belfer, E., Benton, T., Coninck, D., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W., Ford, J., Fuss, S., Hourcade, J., … Waterfield, T. (2018). Chapter 4: Strengthening and Implementing the Global Response. In Intergovernmental Panel on Climate Change, Global Warming of 1.5°C an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (pp. 313–443). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter4_Low_Res.pdfspa
dc.relation.referencesBarrera, X., Gómez, R., Suárez, R., & García, C. (2015). El ABC de los compromisos de Colombia para la COP21 (WWF-Colombia); 2nd ed., p. 31).spa
dc.relation.referencesBass, F. (1969). A New Product Growth for Model Consumer Durables. Management Science, 15(5), 215–227. https://doi.org/10.1287/mnsc.15.5.215spa
dc.relation.referencesBernardo Calderón. (2008). Capítulo 1: Simulación. Conceptos Básicos y Aplicabilidad. In U. de Antioquia, Introducción a la Simulación.spa
dc.relation.referencesBoring, R., Kelly, D., Smidys, C., Mosleh, A., & Dyre, B. (2012). Microworlds, Simulators and Simulation : Framework for a Benchmark of Human Reliability Data Sources (Idaho National Laboratory (INL). Issue No.INL/CON-12-25625).spa
dc.relation.referencesCampbell Allison , Jenden James, D. J. (2019). Energy Education - Energy vs power. https://energyeducation.ca/encyclopedia/Energy_vs_powerspa
dc.relation.referencesCárdenas Ardila, L. M. (2015). Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico. (Doctoral Dissertation, Universidad Nacional de Colombia-Sede Medellín), 245. http://www.bdigital.unal.edu.co/50866/spa
dc.relation.referencesCastaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179spa
dc.relation.referencesCastillo Ramírez, A., Mejía Giraldo, D., & Molina Castro, J. D. (2017). Fiscal incentives impact for RETs investments in Colombia. Energy Sources, Part B: Economics, Planning and Policy, 12(9), 759–764. https://doi.org/10.1080/15567249.2016.1276648spa
dc.relation.referencesCastillo Ramírez, Alejandro, Mejía Giraldo, D., & Giraldo Ocampo, J. D. (2016). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171spa
dc.relation.referencesClimate Interactive, Ventana Systems, Todd Fincannon, UML Climate Change Initiative, & Sterman, J. (2019). En-ROADS. Climate Interactive Tools for a Thriving Future. https://www.climateinteractive.org/tools/en-roads/spa
dc.relation.referencesCongreso de la República de Colombia. (2014). Ley 1715 de 2014. http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.htmlspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística - DANE. (2020). Índice de precios del productor. https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-del-productor-ippspa
dc.relation.referencesDirección de Impuestos y Aduanas Nacionales - DIAN. (2020). Resolución número 000009 de 2020. https://www.dian.gov.co/normatividad/Normatividad/Resolución 000009 de 31-01-2020.pdfspa
dc.relation.referencesDyner, I., Larsen, E., & Franco, C. J. (2009). Games for electricity traders: Understanding risk in a deregulated industry. Energy Policy, 37(2), 465–471. https://doi.org/10.1016/j.enpol.2008.09.075spa
dc.relation.referencesElectronic Arts Inc. (2019). EA. SIMCITY. https://www.ea.com/games/simcity/simcityspa
dc.relation.referencesForrester, J. W. (2019). MA System. Play the Beer Game. https://beergame.masystem.se/spa
dc.relation.referencesFranco, C. J., Velásquez, J. D., & Cardona, D. (2012). Microworld For Simulating A Spot Electricity Market | Micromundo para simular un mercado eléctrico de corto plazo. Cuadernos de Economia, 31(58), 229–256. http://www.scopus.com/inward/record.url?eid=2-s2.0-84879827442&partnerID=MN8TOARSspa
dc.relation.referencesGalvis, Á. (1997). Micromundos Lúdicos Interactivos: aspectos críticos en su diseño y desarrollo. (Ediciones Uniandes–Lidie). http://hdl.handle.net/1992/6327spa
dc.relation.referencesHaas, R., Panzer, C., Resch, G., Ragwitz, M., Reece, G., & Held, A. (2011). A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renewable and Sustainable Energy Reviews, 15(2), 1003–1034. https://doi.org/10.1016/j.rser.2010.11.015spa
dc.relation.referencesHamodi, C., Pastor, V. M. L., & Pastor, A. T. L. (2015). Medios, técnicas e instrumentos de evaluación formativa y compartida del aprendizaje en educación superior. Perfiles Educativos, 37(147), 146–161. https://doi.org/10.1016/j.pe.2015.10.004spa
dc.relation.referencesHardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248. https://doi.org/10.1126/science.162.3859.1243spa
dc.relation.referencesHenao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158(2020), 612–627. https://doi.org/10.1016/j.renene.2020.05.055spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, & Cancillería. (2016). Inventario Nacional y Departamental de Gases de Efecto Invernadero - Colombia (IDEAM, PNUD, MADS, DNP, CANCILLERÍA, & FMAM (eds.)).spa
dc.relation.referencesInda Caro, M., Álvarez González, S., & Álvarez Rubio, M. (2008). Métodos de evaluación en la Enseñanza Superior. Revista de Investigación Educativa, RIE, 26(2), 539–552.spa
dc.relation.referencesIRENA. (2000). Experience Curves for Energy Technology Policy. Experience Curves for Energy Technology Policy, January 2000, 133. https://doi.org/10.1787/9789264182165-enspa
dc.relation.referencesIRENA. (2018a). Hydropower. https://www.irena.org/hydropowerspa
dc.relation.referencesIRENA. (2018b). Renewable Power Generation Costs in 2018. International Renewable Energy Agency, 160. https://doi.org/10.1007/SpringerReference_7300spa
dc.relation.referencesIRENA. (2019). Renewable capacity highlights (Issue March). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf?la=en&hash=BA9D38354390B001DC0CC9BE03EEE559C280013Fspa
dc.relation.referencesIRENA. (2020). Renewable Capacity Statistics 2020. International Renewable Energy Agency, 66. https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdfspa
dc.relation.referencesIRENA, NEA, & Organization for Economic Co-Operation and Development. (2015). Projected Costs of Generating Electricity. https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdfspa
dc.relation.referencesIsee Systems. (2020). Stella Architect (2.0). https://www.iseesystems.com/spa
dc.relation.referencesJacobs, D., Marzolf, N., Paredes, J. R., Rickerson, W., Flunn, H., Becekr-Birck, C., & Solano-Peralta, M. (2013). Analysis of renewable energy incentives in the Latin America and Caribbean region: The feed-in tariff case. Energy Policy, 60, 601–610.spa
dc.relation.referencesJamasb, T., & Köhler, J. (2007). Learning Curves for Energy Technology and Policy Analysis: A Critical Assessment. Delivering a Low Carbon Electricity System: Technologies, Economics and Policy, 314–332. https://www.repository.cam.ac.uk/bitstream/handle/1810/194736/0752&EPRG0723.pd?sequence=1spa
dc.relation.referencesKatsaliaki, K., & Mustafee, N. (2015). Edutainment for Sustainable Development: A Survey of Games in the Field. Simulation and Gaming, 46(6), 647–672. https://doi.org/10.1177/1046878114552166spa
dc.relation.referencesKeith, D. R., Naumov, S., & Sterman, J. (2017). Driving the Future: A Management Flight Simulator of the US Automobile Market. Simulation and Gaming, 48(6), 735–769. https://doi.org/10.1177/1046878117737807spa
dc.relation.referencesKing, A. (1993). From Sage on the Stage to Guide on the Side. College Teaching, 41(1), 30–35. https://doi.org/10.5771/2196-7261-2016-4-288spa
dc.relation.referencesKrejcie, R. V, & Morgan, D. (1970). Determining sample size for research activities. The NEA Research Bulletin, 30, 607–610.spa
dc.relation.referencesMinMinas. (2018a). Resolución 40791 de 2018. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_0023bd4e97114cc79a428f9b705ed19cspa
dc.relation.referencesMinMinas. (2018b). Resolución 40795 de 2018. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_2b577796e5b84942904ccda6f5676722spa
dc.relation.referencesMinMinas. (2018c). Sector minero energético, activo frente al cambio climático: reducirá 11 millones de toneladas de CO2 en el año 2030. https://www.minenergia.gov.co/en/historico-de-noticias?idNoticia=24056534#:~:text=MinMinas.&text=avances y desafíos.-,La meta del sector es reducir en 11%2C2 millones,del Amazonas en 15 años.&text=Significa que el sector minero,meta nacional%2C al año 203spa
dc.relation.referencesMinMinas, & UPME. (2019). Anexo 2 - Pliego de términos y condiciones específicas de la subasta de contratación de enerpía eléctrica a largo plazo (Issue 69). https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Documents/Subasta-CLPE-02-2019/Pliegos_Subasta_CLPE_No02_2019.pdfspa
dc.relation.referencesMinMinas, & UPME. (2020). Informe de registro de proyectos de generación de eléctricidad. https://app.powerbi.com/view?r=eyJrIjoiNzBhN2Q4YmMtN2IxMy00Mjg2LWJhZTctMjRkNWE2NDdlMzI0IiwidCI6IjgxNTAwZjZkLWJjZTktNDgzNC1iNDQ2LTc0YjVmYjljZjEwZSIsImMiOjh9spa
dc.relation.referencesMIT. (2020a). Forio Simulate TM. https://forio.com/simulate/showcase/#orderbyperiodruncount=desc&staffPick=truespa
dc.relation.referencesMIT. (2020b). MIT Management Sloan School LearningEdge. Fishbanks: Teaching Instructions and Videos. https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks/Pages/Faculty-Only.aspxspa
dc.relation.referencesMIT, Meadows, D., Sterman, J., & King, A. (2020). Fishbanks: una simulación de gestión de recursos renovables. LearningEdge A Free Learning Resourse for Management Educators and Students. https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks-spanish/Pages/default.aspxspa
dc.relation.referencesMIT, Ventana systems, UML Climate, Change Initiative, & Todd Fincannon. (2019). C-ROADS. Climate Interactive. https://www.climateinteractive.org/tools/c-roads/spa
dc.relation.referencesMohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. http://instatmy.org.my/downloads/e-jurnal 2/3.pdf%0Ahttps://www.nrc.gov/docs/ML1714/ML17143A100.pdfspa
dc.relation.referencesMorecroft, J. (2007). Strategic Modelling and Business Dynamics: A Feedback Systems Approach (John Wiley & Sons Ltd; p. 429).spa
dc.relation.referencesPapert, S. (1980). Mindstorms Children, computers, and Powerful Ideas (P. Basic Books, Inc.; 1st ed.). Library of Congress Cataloging .spa
dc.relation.referencesPapert, S. (1986). Constructionism: A new opportunity for elementary science education (Massachusetts Institute of Technology Media Laboratory Epistemology and Learning Group).spa
dc.relation.referencesPapert, S., & Harel, I. (1991). Situating Constructionism. Constructionism, 36(2), 1–11.spa
dc.relation.referencesPowersim Software AS. (2020). Powersim Studio 10 Academic.spa
dc.relation.referencesRao, K. U., & Kishore, V. V. N. (2010). A review of technology diffusion models with special reference to renewable energy technologies. Renewable and Sustainable Energy Reviews, 14(3), 1070–1078. https://doi.org/10.1016/j.rser.2009.11.007spa
dc.relation.referencesRieber, L. (2012). Multimedia Learning in Games, Simulations, and Microworlds. In R. Mayer, The Cambridge Handbook of Multimedia Learning (pp. 549–568). https://doi.org/10.1017/cbo9780511816819.034spa
dc.relation.referencesRieber, L. P. (2002). Microworlds. 583–604.spa
dc.relation.referencesRstudio Inc. (2018). RStudio (1.1.456).spa
dc.relation.referencesSáiz, M. C., & Román, J. M. (2011). Cuatro formas de evaluación en educación superior gestionadas desde la tutoría. Revista de Psicodidactica, 16(1), 145–161.spa
dc.relation.referencesSchoots, K., Ferioli, F., Kramer, G. J., & van der Zwaan, B. C. C. (2008). Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 33(11), 2630–2645. https://doi.org/10.1016/j.ijhydene.2008.03.011spa
dc.relation.referencesSterman, J. (1992). Teaching Takes Off Flight Simulators for Management Education “The Beer Game.” OR/MS Today, 40–44. papers3://publication/uuid/CBBF86A3-8229-422C-8AAD-B47F45F4CE88spa
dc.relation.referencesSterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World (The McGraw-Hill Companies-Inc.).spa
dc.relation.referencesSterman, J. (2014). Interactive web‐based simulations for strategy and sustainability: The MIT Sloan LearningEdge management flight simulators, Part I. System Dynamics Review, 30(1–2), 89–121. https://doi.org/10.1002/sdrspa
dc.relation.referencesSterman, J. (2019). Eclipsing the Competition: The Solar PV Industry Simulation. MIT Management Sloan School Learning Edge A Free Learning Resource for Management Educartors and Students. https://mitsloan.mit.edu/LearningEdge/simulations/solar/Pages/default.aspxspa
dc.relation.referencesSterman, J. and A. K. (2011). Simulation Instructors’ Guide: Setup and Player Briefing. 11–131, 44.spa
dc.relation.referencesSterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System Dynamics Review, 18(4), 501–531. https://doi.org/10.1002/sdr.261spa
dc.relation.referencesSterman, J., Fiddaman, T., Franck, T., Johnston, E., Jones, A., McCauley, S., Rice, P., Rooney-Varga, J. N., Sawin, E., & Siegel, L. (2019). World Energy: A Climate and Energy Policy Negotiation Game. MIT Management Sloan School Learning Edge A Free Learning Resource for Management Educartors and Students. https://mitsloan.mit.edu/LearningEdge/simulations/world energy-spanish/Pages/default.aspxspa
dc.relation.referencesSterman, J., Miller, D., & Hsueh, J. (2019). CleanStart: Simulating a Clean Energy Startup. MIT Management Sloan School Learning Edge A Free Learning Resource for Management Educartors and Students. https://mitsloan.mit.edu/LearningEdge/simulations/cleanstart/Pages/default.aspxspa
dc.relation.referencesStrategy dynamics LTD. (2019a). Beefeater restaurants. https://strategydynamics.com/microworlds/beefeater/spa
dc.relation.referencesStrategy dynamics LTD. (2019b). Brand management. https://strategydynamics.com/microworlds/brands/spa
dc.relation.referencesStrategy dynamics LTD. (2019c). Mobile phone subscribers. https://strategydynamics.com/microworlds/mobile/spa
dc.relation.referencesStrategy dynamics LTD. (2019d). People express. https://strategydynamics.com/microworlds/people-express/spa
dc.relation.referencesUNAL. (2019). UNAL en un vistazo. Estadisticas UNAL. http://estadisticas.unal.edu.co/home/spa
dc.relation.referencesUnited Nations Framework Convention on Climate Change. (2008). Kyoto Protocol Reference Manual. United Nations Framework Convention on Climate Change, 130. https://doi.org/10.5213/jkcs.1998.2.2.62spa
dc.relation.referencesUPME. (2019). Informe sobre la realización de la subasta CLPE No. 02-2019. 69, 1–45. https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Documents/Subasta-CLPE-02-2019/Informe_al_minenergia_subasta_CLPE-02-2019.pdf%0Awww.upme.gov.cospa
dc.relation.referencesUPME, & Ministerio de Minas y Energía. (2015). Integración de las energías renovables no convencionales en Colombia (La Imprenta Editores S.A.). https://doi.org/10.1021/ja304618vspa
dc.relation.referencesValencia O, R. F., Víctor Riascos M, E. A., & Niño Z, M. A. (2011). Método para la creación de micromundos inmersivos. Revista Avances En Sistemas e Informática, 8(2), 41–50. http://www.bdigital.unal.edu.co/28837/1/26724-93650-1-PB.pdfspa
dc.relation.referencesVarun, Bhat, I. K., & Prakash, R. (2009). LCA of renewable energy for electricity generation systems-A review. Renewable and Sustainable Energy Reviews, 13(5), 1067–1073. https://doi.org/10.1016/j.rser.2008.08.004spa
dc.relation.referencesVentana Systems Inc. (2019). Vensim.spa
dc.relation.referencesVlahos, K. (1998). The Electricity Markets Microworld. 0008-A, Available from Professor Kiriakos Vlahos, The System Dynamics Group. London Bussiness School, 25.spa
dc.relation.referencesWashburn, C., & Pablo-Romero, M. (2019). Measures to promote renewable energies for electricity generation in Latin American countries. Energy Policy, 128, 212–222. https://doi.org/10.1016/j.enpol.2018.12.059spa
dc.relation.referencesXM. (2020a). Capacidad efectiva por tipo de generación. PARATEC - Parámetros Técnicos Del SIN. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidadspa
dc.relation.referencesXM. (2020b). Indicadores. Precio y Volúmen de Transacciones. https://www.xm.com.co/Paginas/Indicadores/Transacciones/Indicador-precio-volumen-transacciones.aspxspa
dc.relation.referencesXM. (2020c). Pronóstico de demanda. https://www.xm.com.co/Paginas/Consumo/pronostico-de-demanda.aspxspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembRecursos energéticos
dc.subject.proposalMicromundospa
dc.subject.proposalDinámica de sistemasspa
dc.subject.proposalAprendizajespa
dc.subject.proposalEnergías renovablesspa
dc.subject.proposalMicroworldeng
dc.subject.proposalSystem dynamicseng
dc.subject.proposalLearningeng
dc.subject.proposalRenewable energyeng
dc.titleA microworld for learning about the diffusion of non-conventional renewable electricity generation technologies in Colombia.eng
dc.title.translatedUn micromundo para el aprendizaje sobre la difusión de tecnologías renovables no convencionales de generación de electricidad en Colombia.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePolítica, Regulación y Mercadosspa
oaire.fundernameEnergética 2030spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037646922.2021.pdf
Tamaño:
9.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en ingeniería - Sistemas energéticos, presentada por Verónica Marrero Trujillo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: