Efecto de la inoculación de bacterias promotoras del crecimiento en avena forrajera Altoandina (Avena sativa) bajo condiciones de estrés por déficit hídrico
dc.contributor.advisor | Estrada Bonilla, Germán Andrés | |
dc.contributor.advisor | Álvarez Flórez, Fagua Virginia | |
dc.contributor.author | Pachón Venegas, Carolina | |
dc.contributor.cvlac | Pachón Venegas, Carolina [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001760577] | spa |
dc.contributor.orcid | Pachón Venegas, Carolina [0000-0002-1560-1410] | spa |
dc.contributor.researchgroup | Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos | spa |
dc.date.accessioned | 2024-01-18T15:08:24Z | |
dc.date.available | 2024-01-18T15:08:24Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El genotipo de avena Altoandina (Avena sativa AV25T) fue seleccionado y estudiado para su cultivo en las regiones del Altiplano Cundiboyacense y de Nariño, demostrando resistencia a la roya, rápido desarrollo y alto nivel nutricional. Sin embargo, se ha reportado una baja en la producción bajo condiciones de déficit hídrico, las cuales se deben estudiar a mayor profundidad. Se ha propuesto la utilización de bioestimulantes a base de las bacterias promotoras del crecimiento vegetal (PGPB) como una estrategia de mitigación del estrés en diferentes sistemas agrícolas, como una alternativa de respuesta rápida frente a eventos de cambio climático como la sequía. Por lo tanto, el objetivo de este trabajo fue evaluar a nivel fisiológico, bioquímico y de expresión el efecto de la inoculación de PGPB en avena Altoandina (Avena sativa) bajo condiciones controladas de estrés por déficit hídrico. Se realizaron dos experimentos bajo condiciones controladas: el primero con el objetivo de seleccionar entre 21 inoculaciones y co-inoculaciones las que presentaran mejor desempeño a nivel de crecimiento, estado hídrico y estado del fotosistema II (PSII) bajo condiciones de estrés severo (HRs < 20%; gs ≤ 80 mmol de H2O/m2s). Como resultado, se seleccionaron los tratamientos inoculados con Pseudomonas fluorescens N7, Bacillus amyloliquefaciens XT17 y las co-inoculaciones P. fluorescens N7 + B. amyloliquefaciens XT17 y Azospirillum brasilense D7 + Herbaspirillum sp. AP21. Para el segundo, se evaluó a nivel fisiológico, bioquímico y de expresión diferencial el efecto del estrés leve, severo y rehidratación en las plantas inoculadas y no inoculadas. Las plantas de avena Altoandina presentaron un buen desempeño durante el estrés hídrico, con una recuperación del RWC una vez se reestableció el riego, crecimiento radicular similar al control irrigado, producción de osmolitos protectores y no hubo fotoinhibición del PSII. Aunque los tratamientos presentaron valores similares al control estresado, se presentaron diferencias durante la rehidratación (P<0,05), donde hay mayor presencia de osmolitos, enzimas antioxidantes y eficiencia del fotosistema en plantas inoculadas; se destacan los tratamientos P. fluorescens N7 y su co-inoculación P. fluorescens N7 + B. amyloliquefaciens XT17. Adicionalmente, la inoculación de bacterias presenta un alivio de las condiciones de estrés leve relacionada con la expresión de genes de la ruta de producción de prolina (P5Cs1 y PDH1). Finalmente, avena Altoandina presenta un comportamiento de tipo tolerante al estrés por déficit hídrico, sin embargo, la inoculación de PGPB presenta un efecto de alivio al estrés durante la rehidratación, siendo potencial para la recuperación total de las plantas en estados más avanzados de su fenología. (Texto tomado de la fuente) | spa |
dc.description.abstract | The genotype "Altoandina" oat (Avena sativa AV25T) was previously selected and studied for cultivation in the High Tropic region of Colombia. This oat genotype has shown resistance to rust, rapid development, and high nutritional value, making it suitable for use as forage. However, a decrease in production has been observed under drought conditions, which requires further in-depth research. The use of bio-stimulants based on plant growth-promoting bacteria (PGPB) has been proposed as a potential tool to mitigate stress in various agricultural systems, offering a rapid response alternative to climate change events, such as intense drought. Hence, the main objective of this study was to assess the physiological, biochemical, and gene expression-level impacts of PGPB inoculation on "Altoandina" oat plants subjected to controlled water deficit stress conditions. Two separate assays were carried out under controlled conditions: the first aimed to identify the most effective inoculations and co-inoculations based on growth, water status, and photosystem II (PSII) performance under severe stress conditions (HRs < 20%; gs ≤ 80 mmol H2O/m2s). The selected treatments included those inoculated with Pseudomonas fluorescens N7, Bacillus amyloliquefaciens XT17, and the co-inoculations P. fluorescens N7 + B. amyloliquefaciens XT17 and Azospirillum brasilense D7 + Herbaspirillum sp. AP21. Subsequently, the second experiment involved assessing the physiological, biochemical, and differential expression effects of mild and severe stress, as well as rehydration, in both inoculated and non-inoculated plants. This comprehensive approach allowed us to gain valuable insights into the potential benefits of PGPB inoculation in mitigating water deficit stress in "Altoandina" oat plants. Under water stress conditions, the plants demonstrated performance, exhibiting a notable recovery of relative water content (RWC) once irrigation was restored, along with comparable root growth to the irrigated control. Although the treatments showed similar values to the stressed control, differences were observed during rehydration (P<0.05), with higher concentration of osmolytes, antioxidant enzymes, and photosystem efficiency in inoculated plants. Notably, the treatments involving P. fluorescens N7, particularly its co-inoculation with B. amyloliquefaciens XT17, displayed outstanding performance during the rehydration phase. Additionally, bacterial inoculation alleviated mild stress conditions, as indicated by the upregulation of genes involved in proline production (P5Cs1 and PDH1). Finally, this variety exhibited a stress-tolerant behavior under water deficit conditions; however, PGPB inoculation showed a stress relief effect during rehydration, with potential for complete recovery of plants in more advanced stages of their phenology. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias Biología | spa |
dc.description.researcharea | Fisología y bioquímica vegetal | spa |
dc.description.researcharea | Fisiología del estrés | spa |
dc.format.extent | xiii, 60 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85357 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
dc.relation.references | Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520. https://doi.org/10.3390/biology10060520 | spa |
dc.relation.references | AGROSAVIA. (2020). Altoandina: nueva variedad de avena forrajera para el trópico alto colombiano. https://www.youtube.com/watch?v=Jn4SGdoqs60 | spa |
dc.relation.references | Admassie, M., Woldehawariat, Y., Alemu, T., Gonzalez, E., Jimenez, J. F. (2022). The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants. Agricultural Water Management, 272, 107831. https://doi.org/10.1016/j.agwat.2022.107831 | spa |
dc.relation.references | Akhtar, M. N., Balodi, R., y Ghatak, A. (2020). Microbe-Mediated Mitigation of Plant Stress. In Microbial Services in Restoration Ecology. Elsevier Inc. https://doi.org/10.1016/b978-0-12-819978-7.00018-x | spa |
dc.relation.references | Ali, S., Khan, N. (2021). Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research, 249, 126771. https://doi.org/10.1016/j.micres.2021.126771 | spa |
dc.relation.references | Almeida, A. M. R., Piñeyro-Nelson, A., Yockteng, R. B., Specht, C. D. (2018). Comparative analysis of whole flower transcriptomes in the Zingiberales. PeerJ, 2018(8), e5490. https://doi.org/10.7717/PEERJ.5490/SUPP-6 | spa |
dc.relation.references | Alvarez, M. E., Savouré, A., Szabados, L. (2022). Proline metabolism as regulatory hub. Trends in Plant Science, 27(1), 39–55. https://doi.org/10.1016/j.tplants.2021.07.009 | spa |
dc.relation.references | Alyammahi, O., Gururani, M. A. (2020). Chlorophyll-a fluorescence analysis reveals differential response of photosynthetic machinery in melatonin-treated oat plants exposed to osmotic stress. Agronomy, 10(10), 1520. doi:10.3390/agronomy10101520 | spa |
dc.relation.references | Anderson, R., Bayer, P. E., y Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006 | spa |
dc.relation.references | Arshad, M., Shaharoona, B., Mahmood, T. (2008). Inoculation with Pseudomonas spp. Containing ACC-Deaminase Partially Eliminates the Effects of Drought Stress on Growth, Yield, and Ripening of Pea (Pisum sativum L.). Pedosphere, 18(5), 611–620. https://doi.org/10.1016/S1002-0160(08)60055-7 | spa |
dc.relation.references | Barnes, J., Balaguer, L., Manrique, E., Elvira, S., y Davison, A. (1992). A reappraisal of the use of DMSO for the extraction and determination of clorophyll a and b in lichens and higher plants. Enviromental and Experimental Botany, 32, 85–100. | spa |
dc.relation.references | Bates, L., Waldren, R., y Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. | spa |
dc.relation.references | Beal, J., Farny, N. G., Haddock-Angelli, T., Selvarajah, V., Baldwin, G. S., Buckley-Taylor, R., ... & Paris_Bettencourt Ameziane Annissa 149 Bhatt Darshak 149 Casas Alexis 149 Levrier Antoine 149 Santos Ana 149 Sia Nympha Elisa M. 149 Wintermute Edwin 149. (2020). Robust estimation of bacterial cell count from optical density. Communications biology, 3(1), 512. https://doi.org/10.1038/s42003-020-01127-5 | spa |
dc.relation.references | Bogati, K., Walczak, M. (2022). The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy, 12(1), 1–26. https://doi.org/10.3390/agronomy12010189 | spa |
dc.relation.references | Bolouri-Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. FEBS Journal, 277(9), 2022–2037. https://doi.org/10.1111/j.1742-4658.2010.07633.x | spa |
dc.relation.references | Campuzano-Duque, L. F., Castro-Rincón, E., Castillo-Sierra, J., Torres-Cuesta, D., Nieto-Sierra, D., y Portillo-Lopez, P. A. (2020). Altoandina: nueva variedad de avena forrajera para la zona Andina en Colombia. Agronomía Mesoamericana, 581–595. https://doi.org/10.15517/am.v31i3.38999 | spa |
dc.relation.references | Canales, F. J., Rispail, N., García-Tejera, O., Arbona, V., Pérez-de-Luque, A., y Prats, E. (2021). Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity. Environmental and Experimental Botany, 182 (November 2020). https://doi.org/10.1016/j.envexpbot.2020.104333 | spa |
dc.relation.references | Chai, Y. N., y Schachtman, D. P. (2021). Root exudates impact plant performance under abiotic stress. Trends in Plant Science, xx(xx), 1–12. https://doi.org/10.1016/j.tplants.2021.08.003 | spa |
dc.relation.references | Chandra, D., Srivastava, R., Glick, B. R., Sharma, A. K. (2018). Drought-Tolerant Pseudomonas spp. Improve the Growth Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Under Non-Stressed and Drought-Stressed Conditions. Pedosphere, 28(2), 227–240. https://doi.org/10.1016/S1002-0160(18)60013-X | spa |
dc.relation.references | Compant, S., Samad, A., Faist, H., y Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004 | spa |
dc.relation.references | Cortés-Patiño, S. (2020). Efecto de la inoculación de bacterias promotoras de crecimiento vegetal en pasto Ryegrass perenne sometido a déficit hídrico. | spa |
dc.relation.references | Cortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., y Estrada-Bonilla, G. (2021). Potential of Herbaspirillum and Azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms, 9(1), 91. | spa |
dc.relation.references | Cortés-Patiño, S., Vargas, C. D., Álvarez-Flórez, F., y Estrada-Bonilla, G. (2022). Co-Inoculation of Plant-Growth-Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. Plants, 11(19), 2543. | spa |
dc.relation.references | Del Buono, D. (2021). Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Science of the Total Environment, 751, 141763. https://doi.org/10.1016/j.scitotenv.2020.141763 | spa |
dc.relation.references | Eke, P., Kumar, A., Sahu, K. P., Wakam, L. N., Sheoran, N., Ashajyothi, M., y Fekam, F. B. (2019). Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological research, 228, 126302. https://doi.org/10.1016/j.micres.2019.126302 | spa |
dc.relation.references | Fang, Y., y Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0 | spa |
dc.relation.references | Fernández, M. E. (2013). Efectos del cambio climático en la producción y rendimiento de cultivos por sectores. Fondo financiero de proyectos de desarrollo – FONADE e instituto de hidrología, meteorología y estudios ambientales – IDEAM. http://www.ideam.gov.co/documents/21021/21138/Efectos+del+Cambio+Climatico+en+la+agricultura.pdf/3b209fae-f078-4823-afa0-1679224a5e85#:~:text=Como%20resultados%20los%20expertos%20concluyen,aumento%20de%20la%20malnutrici%C3%B3n%20infantil13. | spa |
dc.relation.references | Gamez, R., Cardinale, M., Montes, M., Ramirez, S., Schnell, S., Rodriguez, F. (2019). Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiological Research, 220, 12–20. https://doi.org/10.1016/j.micres.2018.11.006 | spa |
dc.relation.references | Gorantla, M., Babu, P. R., Reddy Lachagari, V. B., Reddy, A. M. M., Wusirika, R., Bennetzen, J. L., y Reddy, A. R. (2007). Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. Journal of Experimental Botany, 58(2), 253–265. https://doi.org/10.1093/jxb/erl213 | spa |
dc.relation.references | Goswami, M., Deka, S. (2020). Plant growth-promoting rhizobacteria alleviators of abiotic stresses in soil: A review. Pedosphere, 30(1), 40–61. https://doi.org/10.1016/S1002-0160(19)60839-8 | spa |
dc.relation.references | Guha, A., Sengupta, D., Kumar Rasineni, G., y Ramachandra Reddy, A. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora - Morphology, Distribution, Functional Ecology of Plants, 205(2), 144–151. https://doi.org/10.1016/J.FLORA.2009.01.004 | spa |
dc.relation.references | He, A., Niu, S., Yang, D., Ren, W., Zhao, L., Sun, Y., Meng, L., Zhao, Q., Paré, P. W., Zhang, J. (2021). Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry, 161, 74–85. https://doi.org/10.1016/j.plaphy.2021.02.003 | spa |
dc.relation.references | Heinz Walz GmbH. (2018). MINI-PAM-II, Manual for Standalone Use. (Edition May 2018) https://www.manualslib.com/manual/1439504/Walz-Mini-Pam-Ii.html | spa |
dc.relation.references | Khan, N., Bano, A., Shahid, M. A., Nasim, W., Ali Babar, M. (2018). Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biologia, 73(11), 1083–1098. https://doi.org/10.2478/s11756-018-0127-1 | spa |
dc.relation.references | Koza, N., Adedayo, A., Babalola, O., Kappo, A. (2022). Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms, 10(8), 1528. https://doi.org/10.3390/microorganisms10081528 | spa |
dc.relation.references | Kumar, P., Pandey, P., Dubey, R. C., Maheshwari, D. K. (2016). Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere, 2, 13–23. https://doi.org/10.1016/j.rhisph.2016.09.002 | spa |
dc.relation.references | Labeyrie, V., Renard, D., Aumeeruddy-Thomas, Y., Benyei, P., Caillon, S., Calvet-Mir, L., M. Carrière, S., Demongeot, M., Descamps, E., Braga Junqueira, A., Li, X., Locqueville, J., Mattalia, G., Miñarro, S., Morel, A., Porcuna-Ferrer, A., Schlingmann, A., Vieira da Cunha Avila, J., y Reyes-García, V. (2021). The role of crop diversity in climate change adaptation: insights from local observations to inform decision making in agriculture. Current Opinion in Environmental Sustainability, 51, 15–23. https://doi.org/10.1016/j.cosust.2021.01.006 | spa |
dc.relation.references | Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., y Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199(January), 104577. https://doi.org/10.1016/j.still.2020.104577 | spa |
dc.relation.references | Li, Y., Song, H., Zhou, L., Xu, Z., Zhou, G. (2019). Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. Agricultural Water Management, 211, 190–201. https://doi.org/10.1016/j.agwat.2018.09.050 | spa |
dc.relation.references | Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., y Melgarejo, L. M. (2021). Physiological, biochemical, and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275(March). https://doi.org/10.1016/j.scienta.2020.109655 | spa |
dc.relation.references | Lyng, M., Kovács, Á. T. (2023). Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends in Microbiology. https://doi.org/10.1016/j.tim.2023.02.003 | spa |
dc.relation.references | Maldonado, C. A., Zuñiga, G. E., Corcuera, L. J., y Alberdi, M. (1997). Effect of water stress on frost resistance of oat leaves. Environmental and Experimental Botany, 38(2), 99–107. https://doi.org/10.1016/S0098-8472(96)01045-3 | spa |
dc.relation.references | Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation, and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952. https://doi.org/10.1016/j.heliyon.2019.e02952 | spa |
dc.relation.references | Mekureyaw, M. F., Pandey, C., Hennessy, R. C., Nicolaisen, M. H., Liu, F., Nybroe, O., Roitsch, T. (2022). The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology, 270, 153629. https://doi.org/10.1016/j.jplph.2022.153629 | spa |
dc.relation.references | Melgarejo, L. M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., Pérez, L. V., Rojas, Y. A., Cruz Aguilar, M., Moreno Álvarez, L. G., Crespo, S., y Pérez, W. (2010). Experimentos en fisiología vegetal. https://repositorio.unal.edu.co/handle/unal/11144 | spa |
dc.relation.references | Mishra, A., Singh, S. P., Mahfooz, S., Bhattacharya, A., Mishra, N., Shirke, P. A., y Nautiyal, C. S. (2018). Bacterial endophytes modulate the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiological Research, 212, 17-28. https://doi.org/10.1016/j.micres.2018.04.006 | spa |
dc.relation.references | Molina-Romero, D., Baez, A., Quintero-Hernández, V., Castañeda-Lucio, M., Fuentes-Ramírez, L. E., Bustillos-Cristales, M. D. R., ... & Muñoz-Rojas, J. (2017). Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PloS one, 12(11). https://doi.org/10.1371/journal.pone.0187913. | spa |
dc.relation.references | Moreno-Galván, A. E., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., y Bonilla, R. R. (2020). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147, 103367. | spa |
dc.relation.references | Murali, M., Singh, S. B., Gowtham, H. G., Shilpa, N., Prasad, M., Aiyaz, M., Amruthesh, K. N. (2021). Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR- Bacillus amyloliquefaciens through Antioxidant defense system. Microbiological Research, 253, 126891. https://doi.org/10.1016/j.micres.2021.126891 | spa |
dc.relation.references | Murshed, R., Lopez-Lauri, F., y Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Analytical Biochemistry, 383(2), 320-322. | spa |
dc.relation.references | Naik, K., Mishra, S., Srichandan, H., Singh, P. K., y Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 21(August), 101326. https://doi.org/10.1016/j.bcab.2019.101326 | spa |
dc.relation.references | Narayanasamy, S., Thangappan, S., Uthandi, S. (2020). Plant Growth-Promoting Bacillus sp. Cahoots Moisture Stress Alleviation in Rice Genotypes by Triggering Antioxidant Defense System. Microbiological Research, 239, 126518. https://doi.org/10.1016/j.micres.2020.126518 | spa |
dc.relation.references | Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., Sopory, S. K. (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 66, 1–9. https://doi.org/10.1016/j.plaphy.2013.01.020 | spa |
dc.relation.references | Notununu, I., Moleleki, L., Roopnarain, A., Adeleke, R. (2022). Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere, 32(1), 90–106. https://doi.org/10.1016/S1002-0160(21)60051-6 | spa |
dc.relation.references | Oats harvested area Latin America by country 2020 | Statista. (2020). https://www.statista.com/statistics/1006684/latin-america-oats-harvested-area/ | spa |
dc.relation.references | Ocampo, O. (2011). El cambio climático y su impacto en el agro. Revista de Ingeniería, 33, 115–123. | spa |
dc.relation.references | Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., y Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743. https://doi.org/10.1016/j.scitotenv.2020.140682 | spa |
dc.relation.references | Ortiz, A. M. D., Outhwaite, C. L., Dalin, C., y Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 4(1), 88–101. https://doi.org/10.1016/j.oneear.2020.12.008 | spa |
dc.relation.references | Pezo, D., y FONTAGRO. (2019). Intensificación sostenible de los sistemas ganaderos frente al cambio climático en América Latina y el Caribe: Estado del arte. https://publications.iadb.org/publications/spanish/document/Intensificación_sostenible_de_los_sistemas_ganaderos_frente_al_cambio_climático_en_América_Latina_y_el_Caribe_Estado_del_arte.pdf | spa |
dc.relation.references | Poveda, J., Eugui, D. (2022). Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biological Control, 176, 105100. https://doi.org/10.1016/j.biocontrol.2022.105100 | spa |
dc.relation.references | Ricci, E., Schwinghamer, T., Fan, D., Smith, D. L., Gravel, V. (2019). Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Applied Soil Ecology, 138, 61–68. https://doi.org/10.1016/j.apsoil.2019.02.009 | spa |
dc.relation.references | Rojas-Tapias, D., Moreno-Galvan, A., Pardo-Díaz, S., Obando, M., Rivera, D., y Bonilla, R. (2012). Effect of inoculation with Plant Growth Promoting Bacteria (PGPB) on Amelioration of Saline Stress in Maize (Zea mays). Applied Soil Ecology, 61, 264–272. | spa |
dc.relation.references | Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., ... & Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root‐associated microbiome as a water stress‐dependent trait. Environmental microbiology, 17(2), 316-331. https://doi.org/10.1111/1462-2920.12439. | spa |
dc.relation.references | Rostamian, A., Moaveni, P., Mehdi Sadeghi-Shoae, Mozafari, H., Rajabzadeh, F. (2023). Effective drought mitigation by rhizobacteria consortium in wheat field trials. Rhizosphere, 25, 100653. https://doi.org/10.1016/j.rhisph.2022.100653 | spa |
dc.relation.references | Sabaté, D. C., Brandán, C. P. (2022). Bacillus amyloliquefaciens strain enhances rhizospheric microbial growth and reduces root and stem rot in a degraded agricultural system. Rhizosphere, 22, 100544. https://doi.org/10.1016/j.rhisph.2022.100544 | spa |
dc.relation.references | Sadras, V. O., y Calderini, D. F. (2021). Crop physiology Case histories for major crops (V. O. Sadras y D. F. Calderini (Eds.)). Academic Press. | spa |
dc.relation.references | Sadras, V. O., Mahadevan, M., y Zwer, P. K. (2017). Oat phenotypes for drought adaptation and yield potential. Field Crops Research, 212(May), 135–144. https://doi.org/10.1016/j.fcr.2017.07.014 | spa |
dc.relation.references | Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-w | spa |
dc.relation.references | Sánchez-Martín, J., Heald, J., Kingston-Smith, A., Winters, A., Rubiales, D., Sanz, M., Mur, L. A. J., Prats, E. (2015). A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant, and photo-oxidative metabolism. Plant Cell and Environment, 38(7), 1434–1452. https://doi.org/10.1111/pce.12501 | spa |
dc.relation.references | Santana, S. R. A., Voltolini, T. V., Antunes, G. dos R., da Silva, V. M., Simões, W. L., Morgante, C. V., de Freitas, A. D. S., Chaves, A. R. de M., Aidar, S. de T., Fernandes-Júnior, P. I. (2020). Inoculation of plant growth-promoting bacteria attenuates the negative effects of drought on sorghum. Archives of Microbiology, 202(5), 1015–1024. https://doi.org/10.1007/s00203-020-01810-5 | spa |
dc.relation.references | Seki, M., Umezawa, T., Urano, K., y Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10(3), 296–302. https://doi.org/10.1016/j.pbi.2007.04.014 | spa |
dc.relation.references | Shinozaki, K., Yamaguchi-Shinozaki, K., y Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410–417. https://doi.org/10.1016/S1369-5266(03)00092-X | spa |
dc.relation.references | Soares, R. A., Roesch, L. F. W., Zanatta, G., de Oliveira Camargo, F. A., y Passaglia, L. M. P. (2006). Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology, 33(3), 221–234. https://doi.org/10.1016/j.apsoil.2006.01.001 | spa |
dc.relation.references | Song, H., Li, Y., Zhou, L., Xu, Z., Zhou, G. (2018). Maize leaf functional responses to drought episode and rewatering. Agricultural and Forest Meteorology, 249, 57–70. https://doi.org/10.1016/j.agrformet.2017.11.023 | spa |
dc.relation.references | Souza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., y Girardi, E. A. (2018). Biometric, physiological, and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229(August 2017), 77–90. https://doi.org/10.1016/j.scienta.2017.10.019 | spa |
dc.relation.references | Sun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M. L., Dragoš, A., Shen, Q., Zhang, R., Kovács, Á. T. (2022). Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 16(3), 774–787. https://doi.org/10.1038/s41396-021-01125-3 | spa |
dc.relation.references | Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1–14. https://doi.org/10.1080/17429145.2010.535178 | spa |
dc.relation.references | Wellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. | spa |
dc.relation.references | Widnyana, I. K., Javandira, C. (2016). Activities Pseudomonas spp. and Bacillus sp. to Stimulate Germination and Seedling Growth of Tomato Plants. Agriculture and Agricultural Science Procedia, 9, 419–423. https://doi.org/10.1016/j.aaspro.2016.02.158 | spa |
dc.relation.references | World Oat Production by Country - AtlasBig.com. (2020). https://www.atlasbig.com/en-ca/countries-by-oat-production | spa |
dc.relation.references | Yadav, B., Jogawat, A., Rahman, M. S., y Narayan, O. P. (2021). Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Reports, 23(December 2020), 101040. https://doi.org/10.1016/j.genrep.2021.101040 | spa |
dc.relation.references | Yaghoubi-Khanghahi, M., Strafella, S., Crecchio, C. (2020). Changes in photo-protective energy dissipation of photosystem II in response to beneficial bacteria consortium in durum wheat under drought and salinity stresses. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155031 | spa |
dc.relation.references | Zaidi, A., Khan, M. S. (2017). Microbial strategies for vegetable production. En Microbial Strategies for Vegetable Production. Springer International Publishing. https://doi.org/10.1007/978-3-319-54401-4 | spa |
dc.relation.references | Zamora Martínez, M. C. (2015). Cambio Climático. Revista Mexicana de Ciencias Forestales, 6(31), 4–7. | spa |
dc.relation.references | Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., y Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242(October 2020), 126626. https://doi.org/10.1016/j.micres.2020.126626 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
dc.subject.decs | Bacterias | |
dc.subject.decs | Bacteria | |
dc.subject.proposal | Enzimas antioxidantes | spa |
dc.subject.proposal | Fisiología | spa |
dc.subject.proposal | Fotosistema II | spa |
dc.subject.proposal | Prolina | spa |
dc.subject.proposal | Sequía | spa |
dc.subject.proposal | Antioxidant enzymes | eng |
dc.subject.proposal | Physiology | eng |
dc.subject.proposal | Photosystem II | eng |
dc.subject.proposal | Proline | eng |
dc.subject.proposal | Drought | eng |
dc.title | Efecto de la inoculación de bacterias promotoras del crecimiento en avena forrajera Altoandina (Avena sativa) bajo condiciones de estrés por déficit hídrico | spa |
dc.title.translated | Effect of inoculation of plant growth-promoting bacteria on “Altoandina” oat (Avena sativa) under water deficit stress | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032491650.2023.pdf
- Tamaño:
- 2.37 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: