Adición de biochar a la digestión anaerobia para una adecuada valorización de biomasa residual

dc.contributor.advisorChejne Janna, Farid
dc.contributor.advisorTamayo Londoño, Andrea
dc.contributor.authorOrtiz Cardona, Michell
dc.contributor.orcid0000-0003-0251-8068spa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2024-01-26T18:30:20Z
dc.date.available2024-01-26T18:30:20Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractAnaerobic digestion is a natural process by which microorganisms degrade organic matter. This occurs in the absence of oxygen and its products are biogas (CH4, CO2 and traces of other gases) and an aqueous phase of suspended solids. The functioning of these systems is strongly linked to the stability of the medium in which the microorganisms coexist, for which the addition of carbonaceous materials such as biochar has been investigated. Biochar is the product of the thermochemical conversion of biomass in the absence of oxygen. Its addition to anaerobic digestion allows increasing the buffering capacity of the medium, as well as decreasing the concentration of inhibitors and working as a support for biofilm formation. In the development of this work, it is intended to evaluate the possible improvements in the yield, quality and stability of biogas obtained using biochar in anaerobic digestion. The biochar was obtained by slow pyrolysis from palm kernel shell and pruning residues, then it was used in laboratory-scale PBM assays and in pilot-scale digestion tests in a UASB system. CH4 quantification was performed using the manometric and volumetric methods, in addition to adjusting the PMB results according to certain kinetic models. A 30% yield of palm kernel shell biochar was obtained at 550°C, in addition its microporous structure and its CIC of 2.37 meq/100g were determined, ideal qualities for its addition in anaerobic digestion tests. In the PBM tests, an increase of between 44% - 53% of the volume of CH4 per gram of SV was obtained in cellulose digestion (positive control) and 12.6% for food waste. In the kinetic study, adjustments with R2 higher than 0.99 were obtained. In the UASB tests, an 80% increase in volatile solids (VS) removal per day was obtained, while the daily production of CH4 (l CH4/d) increased by 67.4%. The percentage of CH4 in biogas increased by 14% after the implementation of biochar, reaching a maximum peak of 95% of the fuel. Finally, the positive effects of the addition of palm kernel shell biochar on the anaerobic digestion of cellulose and food waste are identified, both in laboratory scale PBM assays and in pilot scale UASB systems.eng
dc.description.abstractLa digestión anaerobia es un proceso natural mediante el cual los microrganismos degradan la materia orgánica, esto ocurre en ausencia de oxígeno y sus productos son el biogás (CH4, CO2 y trazas de otros gases) y una fase acuosa de sólidos suspendido. El funcionamiento de estos sistemas se encuentra fuertemente ligado a la estabilidad del medio en que coexisten los microrganismos, para esto se ha investigado la adición de materiales carbonosos tales como el biochar. El biochar es el producto de la conversión termoquímica de la biomasa en ausencia de oxígeno, su adición a la digestión anaerobia permite incrementar la capacidad buffer del medio, además de que disminuye la concentración de inhibidores y funciona como soporte para la formación de biopelículas. En el desarrollo de este trabajo se evaluaron las posibles mejoras en el rendimiento, la calidad y la estabilidad del biogás obtenidas por el uso del biochar en la digestión anaerobia. El biochar fue obtenido mediante pirólisis lenta a partir de cuesco de palma y residuos de poda, luego fue usado en ensayos de PBM a escala de laboratorio y en pruebas de digestión a escala piloto en un sistema UASB. La cuantificación del CH4 se realizó con los métodos manométrico y volumétrico, además del ajuste de los resultados de PMB según modelos cinéticos determinados. Se obtuvo un rendimiento del 30% de biochar de cuesco de palma a 550°C, además se determinó su estructura microporosa y su CIC de 2,37 meq/100g, cualidades idóneas para su adición en las pruebas de digestión anaerobia. En las pruebas PBM se obtuvo un aumento de entre 44% - 53% del volumen de CH4 por gramo de sólidos volátiles (SV) en la digestión de celulosa (control positivo) y de 12,6% para residuos de restaurante. En el estudio cinético se obtuvieron ajustes con R2 superiores a 0,99. En las pruebas UASB se observó un aumento de la remoción de SV por día del 80%, mientras que la producción diaria de CH4 (l CH4/d) incrementó en 67,4%. El porcentaje de CH4 en el biogás aumentó un 14% tras la implementación del biochar, teniendo un pico máximo de 95% del combustible. Finalmente se identifican los efectos positivos de la adición de biochar de cuesco de palma en la digestión anaerobia de celulosa y residuos de restaurante, tanto en ensayos PBM a escala de laboratorio como en sistemas UASB a escala piloto. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaAprovechamiento de biomasa residualspa
dc.description.sponsorshipProyecto financiado por el ministerio de ciencia, tecnología e innovación en la convocatoria 890 de 2020, contrato 2022-0666spa
dc.format.extent66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85467
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesJ. Rodríguez, J. Maldonado, A. Cajiao, and J. Ortiz, “Tratamiento De Lixiviados En Filtros Anaerobios De Flujo Asendente De Dos Fases,” Revista Ambiental Agua, Aire Y Suelo, vol. 7, no. 1, 2016, doi: 10.24054/19009178.v1.n1.2016.3262.spa
dc.relation.referencesH. I. Abdel-Shafy and M. S. M. Mansour, “Solid waste issue: Sources, composition, disposal, recycling, and valorization,” Egyptian Journal of Petroleum, vol. 27, no. 4, pp. 1275–1290, 2018, doi: 10.1016/j.ejpe.2018.07.003.spa
dc.relation.referencesAlcaldía de Medellín, “Plan de Gestión Integral de Residuos Sólidos,” no. 57, p. 20, 2019.spa
dc.relation.referencesCorporación Ruta N, “OBSERVATORIO CT + i: Informe 1. Área de oportunidad Waste-to-Energy – Residuos Sólidos Urbanos,” 2016.spa
dc.relation.referencesCIDET, “Disponibilidad de biomasa residual y su potencial en colombia • CIDET.” Accessed: Oct. 10, 2020. [Online]. Available: https://cidet.org.co/disponibilidad-de-biomasa-residual-y-su-potencial-en-colombia/spa
dc.relation.referencesDFM (Directorio Forestal Maderero), “¿Qué es el carbono biogénico? - Forestal Maderero.” Accessed: Nov. 12, 2020. [Online]. Available: https://www.forestalmaderero.com/articulos/item/que-es-el-carbono-biogenico.htmlspa
dc.relation.referencesS. O. Masebinu, E. T. Akinlabi, E. Muzenda, and A. O. Aboyade, “A review of biochar properties and their roles in mitigating challenges with anaerobic digestion,” Renewable and Sustainable Energy Reviews, vol. 103, no. January, pp. 291–307, 2019, doi: 10.1016/j.rser.2018.12.048.spa
dc.relation.referencesN. Hagemann, K. Spokas, H. P. Schmidt, R. Kägi, M. A. Böhler, and T. D. Bucheli, “Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs,” Water (Switzerland), vol. 10, no. 2, pp. 1–19, 2018, doi: 10.3390/w10020182.spa
dc.relation.referencesJ. Lehmann, “Terra preta nova - Where to from here?,” Amazonian Dark Earths: Wim Sombroek’s Vision, pp. 473–486, 2009, doi: 10.1007/978-1-4020-9031-8_28.spa
dc.relation.referencesH. Groot, K. Fernholz, M. Frank, J. Howe, J. Bowyer, and S. Bratkovich, “Biochar 101: An Introduction to an Ancient Product Offering Modern Opportunities,” Dovetail Partners INC, vol. 9, no. 1, pp. 1–6, 2016.spa
dc.relation.referencesD. Mckey and S. Rostain, “Farming Technology in Amazonia,” Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, no. March 2016, 2015, doi: 10.1007/978-94-007-3934-5.spa
dc.relation.referencesJ. Lehmann and S. Joseph, Biochar for Environmental Management. 2009.spa
dc.relation.referencesB. Glaser, J. Lehmann, and W. Zech, “Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review,” Biology and Fertility of Soils, vol. 35, no. 4, pp. 219–230, 2002, doi: 10.1007/s00374-002-0466-4.spa
dc.relation.referencesM. Ogawa and Y. Okimori, “Pioneering works in biochar research, Japan,” Australian Journal of Soil Research, vol. 48, no. 6–7, pp. 489–500, 2010, doi: 10.1071/SR10006.spa
dc.relation.referencesIBI, “FAQs - International BIochar Initiative.” Accessed: Nov. 01, 2021. [Online]. Available: https://biochar-international.org/faqs/#1521824701674-1093ca88-fd85spa
dc.relation.referencesEBC, “Guidelines for a Sustainable Production of Biochar,” European Biochar Foundation, no. September, pp. 1–22, 2012, doi: 10.13140/RG.2.1.4658.7043.spa
dc.relation.referencesF. Verheijen, S. Jeffery, A. C. Bastos, M. Van Der Velde, and I. Diafas, Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions, vol. 8, no. 4. 2010. doi: 10.2788/472.spa
dc.relation.referencesM. Keiluweit, P. S. Nico, M. G. Johnson, and M. KLEBER, “Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -,” Environ. Sci. Technol., vol. 44, no. 4, pp. 1247–1253, 2010.spa
dc.relation.referencesS. Shackley, S. Sohi, P. Brownsort, and S. Carter, “An assessment of the benefits and issues associated with the application of biochar to soil—a report commissioned by the United Kingdom Department for,” UK Biochar Research Center, pp. 1–132, 2010.spa
dc.relation.referencesS. P. Sohi, E. Krull, E. Lopez-Capel, and R. Bol, “A review of biochar and its use and function in soil,” Advances in Agronomy, vol. 105, no. 1, pp. 47–82, 2010, doi: 10.1016/S0065-2113(10)05002-9.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO), “Industrial charcoal making,” FAO FORESTRY PAPER, vol. 63, 1985.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO), “Simple technologies for charcoal making,” FAO FORESTRY PAPER, vol. 41, 1987.spa
dc.relation.referencesJ. J. Schanz and R. H. Parry, “THE ACTIVATED CARBON INDUSTRY,” Industrial & Engineering Chemistry, vol. 54, no. 12, pp. 24–28, Dec. 1962, doi: 10.1021/ie50636a005.spa
dc.relation.referencesH. Marsh and F. Rodríguez-Reinoso, Activated Carbon. Elsevier Ltd, 2006. doi: 10.1016/B978-0-08-044463-5.X5013-4.spa
dc.relation.referencesJ. Lehmann and S. Joseph, Biochar for environmental management: science, technology and implementation. Taylor & Francis, 2015.spa
dc.relation.referencesEUROCARB, “¿Qué es el carbón activado?,” https://www.eurocarb.com/es/productos/que-es-el-carbon-activado/. [Online]. Available: https://www.eurocarb.com/es/productos/que-es-el-carbon-activado/spa
dc.relation.referencesFSC, “Riesgos para la integridad en las cadenas de suministro de carbón vegetal.” [Online]. Available: https://fsc.org/es/newscentre/integrity-and-disputes/riesgos-para-la-integridad-en-las-cadenas-de-suministro-de-carbonspa
dc.relation.referencesBiogreen, “Biochar – turn waste into value,” https://www.biogreen-energy.com/biochar-carbon-negative. [Online]. Available: https://www.biogreen-energy.com/biochar-carbon-negativespa
dc.relation.referencesE. Goldberg, Black carbon in the environment: properties and distribution. John Wiley & Sons Ltd, 1985.spa
dc.relation.referencesM. A. Díez, R. Alvarez, and C. Barriocanal, “Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking,” International Journal of Coal Geology, vol. 50, no. 1–4, pp. 389–412, 2002, doi: 10.1016/S0166-5162(02)00123-4.spa
dc.relation.referencesS. Meyer, B. Glaser, and P. Quicker, “Technical, economical, and climate-related aspects of biochar production technologies: A literature review,” Environmental Science and Technology, vol. 45, no. 22, pp. 9473–9483, 2011, doi: 10.1021/es201792c.spa
dc.relation.referencesK. Weber and P. Quicker, “Properties of biochar,” Fuel, vol. 217, no. September 2017, pp. 240–261, 2018, doi: 10.1016/j.fuel.2017.12.054.spa
dc.relation.referencesA. V. Bridgwater, “The production of biofuels and renewable chemicals by fast pyrolysis of biomass,” International Journal of Global Energy Issues, vol. 27, no. 2, pp. 160–203, 2007, doi: 10.1504/IJGEI.2007.013654.spa
dc.relation.referencesIEA_Bioenergy, “IEA Bioenergy Task 34 Pyrolysis,” IEA Bioenergy Agreement Task 34 Newsletter — PyNe, vol. 27, no. June 2010, pp. 1–32, 2010.spa
dc.relation.referencesP. Basu, Biomass Gasification, Pyrolysis, and Torrefaction Practical Design and Theory, Second Edi. Dalhousee University and Greenfield Research Incorporated, 2013.spa
dc.relation.referencesJ. Lehmann and S. Joseph, Biochar for Environmental Management. Routledge, 2015. doi: 10.4324/9780203762264.spa
dc.relation.referencesJ. A. Garcia-Nunez et al., “Historical Developments of Pyrolysis Reactors: A Review,” Energy and Fuels, vol. 31, no. 6, pp. 5751–5775, 2017, doi: 10.1021/acs.energyfuels.7b00641.spa
dc.relation.referencesH. Nsamba, S. Hale, G. Cornelissen, and R. Bachmann, “Sustainable technologies for smallscale biochar production-a review,” J Sustain Bioenergy Syst, no. 5, pp. 10–31, 2015.spa
dc.relation.referencesS. Rincón, A. Gómez, and W. Klose, Gasificación de biomasa residual de procesamiento industrial. Kassel: Kassel University Press, 2011.spa
dc.relation.referencesL. Zhao and X. Cao, “Heterogeneity of biochar properties as a function of feedstock sources and production temperatures,” Journal of hazardous Materials, vol. 257, pp. 1–9, 2013, doi: 10.1016/j.jhazmat.2013.04.015.spa
dc.relation.referencesL. Leng and H. Huang, “An overview of the effect of pyrolysis process parameters on biochar stability,” Bioresource Technology, no. September, 2018, doi: 10.1016/j.biortech.2018.09.030.spa
dc.relation.referencesM. Ahmad et al., “Biochar as a sorbent for contaminant management in soil and water: A review,” Chemosphere, vol. 99, pp. 19–33, 2014, doi: 10.1016/j.chemosphere.2013.10.071.spa
dc.relation.referencesJ. Wang and S. Wang, “Preparation, modification and environmental application of biochar: A review,” Journal of Cleaner Production, vol. 227, pp. 1002–1022, 2019, doi: 10.1016/j.jclepro.2019.04.282.spa
dc.relation.referencesO. Rivas Solano, M. Faith Vargas, and R. Guillén Watson, “Biodigestores: factores químicos, físicos y biológicos relacionados con su productividad,” Tecnología en Marcha, vol. 23, no. 1, pp. 39–46, 2010.spa
dc.relation.referencesS. R. Suárez, “Tecnologías de biodigestión aplicadas al turismo,” 2015, doi: 10.1017/CBO9781107415324.004.spa
dc.relation.referencesC. Sosa, “Parámetros de control y monitoreo del proceso en digestores anaerobios de pequeña escala y diferentes tecnologías,” 2015.spa
dc.relation.referencesK. D. D. A. Frigo, A. Feiden, N. B. Galant, F. Santos, A. G. Mari, and E. P. Frigo, “Biodigestores: Seus Modelos E Aplicações,” Acta Iguazu, vol. 4, no. 1, pp. 57–65, 2015.spa
dc.relation.referencesE. R. Brusi and M. Navaz, “Informe técnico para la construcción de sistemas de tratamiento y aprovechamiento de residuos del café,” Ingeniería Sin Fronteras, p. 60, 2017.spa
dc.relation.referencesJ. Liu and N. D’ozouville, “Contaminación Del Agua En Puerto Ayora: Investigación Interdisciplinaria Aplicada Utilizando Escherichia Coli Como Una Bacteria Indicador,” Informe Galapagos 2011-2012, no. June, pp. 76–83, 2013.spa
dc.relation.referencesM. Pecchi and M. Baratieri, “Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review,” Renewable and Sustainable Energy Reviews, vol. 105, no. July 2018, pp. 462–475, 2019, doi: 10.1016/j.rser.2019.02.003.spa
dc.relation.referencesA. Grimalt-Alemany, I. V. Skiadas, and H. N. Gavala, “Syngas biomethanation: state-of-the-art review and perspectives,” Biofuels, Bioproducts and Biorefining, vol. 12, no. 1, pp. 139–158, 2018, doi: 10.1002/bbb.1826.spa
dc.relation.referencesS. Yang, Z. Chen, and Q. Wen, “Impacts of biochar on anaerobic digestion of swine manure: Methanogenesis and antibiotic resistance genes dissemination,” Bioresource Technology, vol. 324, no. November 2020, p. 124679, 2021, doi: 10.1016/j.biortech.2021.124679.spa
dc.relation.referencesK. Giovanni, M. Tirado, N. A. Restrepo Vélez, V. M. Toro, and V. S. Restrepo, “Determinación a Escala Laboratorio De La Relación Sustrato/Inóculo En La Biodigestión De Residuos Orgánicos De La Universidad Eafit”.spa
dc.relation.referencesY. Cui, F. Mao, J. Zhang, Y. He, Y. W. Tong, and Y. Peng, “Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways,” Chemosphere, vol. 272, p. 129863, 2021, doi: 10.1016/j.chemosphere.2021.129863.spa
dc.relation.referencesJ. T. E. Lee et al., “Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment,” Bioresource Technology, vol. 333, no. April, p. 125190, 2021, doi: 10.1016/j.biortech.2021.125190.spa
dc.relation.referencesH. Escalante Hernández, J. Orduz Prada, H. Zapata Lesmes, M. Cardona Ruiz, and M. Duarte Ortega, “Atlas del potencial energético de la biomasa residual en Colombia,” Bucaramanga, 2011.spa
dc.relation.referencesP. Kazimierski et al., “Pyrolysis of pruning residues from various types of orchards and pretreatment for energetic use of biochar,” Materials, vol. 14, no. 11, 2021, doi: 10.3390/ma14112969.spa
dc.relation.referencesQ. Jia and A. C. Lua, “Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption,” Journal of Analytical and Applied Pyrolysis, vol. 83, no. 2, pp. 175–179, 2008, doi: 10.1016/j.jaap.2008.08.001.spa
dc.relation.referencesA. G. Ocampo, “Methods for the cation exchange capacity of saline-sodic soils,” Acta Agronómica, vol. 47, no. 1, pp. 16–22, 1997.spa
dc.relation.referencesO. Y. C. Martínez, N. F. G. Caballero, and J. M. Acevedo, “Validación Demanda Química De Oxígeno (Dqo),” pp. 1–4, 2007.spa
dc.relation.referencesI. Angelidaki et al., “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays,” Water Science and Technology, vol. 59, no. 5, pp. 927–934, 2009, doi: 10.2166/wst.2009.040.spa
dc.relation.referencesJ. Cai, P. He, Y. Wang, L. Shao, and F. Lü, “Effects and optimization of the use of biochar in anaerobic digestion of food wastes,” Waste Management and Research, vol. 34, no. 5, pp. 409–416, 2016, doi: 10.1177/0734242X16634196.spa
dc.relation.referencesS. D. Hafner and S. Astals, “Systematic error in manometric measurement of biochemical methane potential: Sources and solutions,” Waste Management, vol. 91, pp. 147–155, 2019, doi: 10.1016/j.wasman.2019.05.001.spa
dc.relation.referencesF. Raposo, M. A. De La Rubia, V. Fernández-Cegrí, and R. Borja, “Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 861–877, 2012, doi: 10.1016/j.rser.2011.09.008.spa
dc.relation.referencesL. M. Cárdenas Cleves, B. A. Parra Orobio, P. Torres Lozada, and C. H. Vásquez Franco, “Perspectivas del ensayo de Potencial Bioquímico de Metano - PBM para el control del proceso de digestión anaerobia de residuos,” Revista ION, vol. 29, no. 1, pp. 95–108, 2016, doi: 10.18273/revion.v29n1-2016008.spa
dc.relation.referencesV. Ortiz, “Puesta a punto de una metodología para la determinación de la actividad metanogénica específica de un fango anaerobio mediante el sistema OxiTop®. Influencia de las principales variables experimentales,” Universidad Politécnica de Valencia, 2011. doi: 10.1026/0942-5403/a000126.spa
dc.relation.referencesC. Holliger et al., “Towards a standardization of biomethane potential tests,” Water Science and Technology, vol. 74, no. 11, pp. 2515–2522, 2016, doi: 10.2166/wst.2016.336.spa
dc.relation.referencesC. Amodeo et al., “How Different are manometric, gravimetric, and automated volumetric BMP results?,” Water (Switzerland), vol. 12, no. 6, 2020, doi: 10.3390/w12061839.spa
dc.relation.referencesM. Bolaños and L. Sandoval, “Evaluación De La Influencia De Métodos Volumétricos Y Manométricos Sobre La Escuela De Ingeniería De Recursos Naturales Y Del Ambiente-Eidenar Ingeniería Sanitaria Y Ambiental,” Universidad del Valle, 2022.spa
dc.relation.referencesV. Rivera-Salvador, J. S. Aranda-Barradas, T. Espinosa-Solares, F. Robles-Martínez, and J. U. Toledo, “the Anaerobic Digestion Model Iwa-Adm1: a Review of Its Evolution,” Ingeniería Agrícola y Biosistemas, vol. 1, no. 2, pp. 109–117, 2015, doi: 10.5154/r.inagbi.2010.01.001.spa
dc.relation.referencesP. Morales, “Evaluación experimental del potencial de producción de biogás a partir de aguas residuales procedentes del Camal Metropolitano de Quito,” Escuela Politécnica Nacional, 2018.spa
dc.relation.referencesR. Borja, M. M. Durán, and A. Martin, “Influence of the support on the kinetics of anaerobic purification of slaughterhouse wastewater,” Bioresource Technology, vol. 44, no. 1, pp. 57–60, 1993, doi: 10.1016/0960-8524(93)90208-S.spa
dc.relation.referencesL. del P. Castro-Molano, H. Escalante-Hernández, O. J. Gómez-Serrato, and D. P. Jiménez-Piñeros, “Análisis del potencial metanogénico y energético de las aguas residuales de una planta de sacrificio bovino mediante digestión anaeróbica,” DYNA (Colombia), vol. 83, no. 199, pp. 41–49, 2016, doi: 10.15446/dyna.v83n199.56796.spa
dc.relation.referencesB. Deepanraj, V. Sivasubramanian, and S. Jayaraj, “Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor,” Ecotoxicology and Environmental Safety, vol. 121, pp. 100–104, 2015, doi: 10.1016/j.ecoenv.2015.04.051.spa
dc.relation.referencesJ. Fiestas, A. Martin, and R. Borjas, “Influence of Immobilization Supports on the Kinetic Constants of Anaerobic Purification of Olive Mill Wastewater,” Bioloical Wastes, no. 133, pp. 131–142, Jan. 1990, doi: 10.1016/0961-9534(93)90023-W.spa
dc.relation.referencesX. Pan et al., “Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization,” Bioresource Technology, vol. 218, pp. 796–806, 2016, doi: 10.1016/j.biortech.2016.07.032.spa
dc.relation.referencesF. Zegers, “ARRANQUE Y OPERACIÓN DE SISTEMAS DE FLUJO ASCEN- DENTE CON MANTO DE L.ODO -U ASB- Manuol del Curso.” Universidad del valle, , CORPORACIÓN AUTÓNOMA REGIONAL DEL CAUCA y UNIVERSIDAD AGRÍCOLA DE WAGENINGEN, Santiago de Cali, p. 269, 1987.spa
dc.relation.referencesC. Lohri, “TI TR ATION METHODOLOGY ACCORDI NG TO K APP FOR MONITO RING OF AN AERO BIC DI GESTION : VF A , alkalinit y and A / TI C-ratio,” Analysis, pp. 7–10, 2008.spa
dc.relation.referencesM. F. Cordoba-Ramirez, “Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica,” Universidad Nacional de Colombia, 2023.spa
dc.relation.referencesW. Suliman, J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Perez, “Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties,” Biomass and Bioenergy, vol. 84, pp. 37–48, 2016, doi: 10.1016/j.biombioe.2015.11.010.spa
dc.relation.referencesN. A. Qambrani, M. M. Rahman, S. Won, S. Shim, and C. Ra, “Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review,” Renewable and Sustainable Energy Reviews, vol. 79, no. May, pp. 255–273, 2017, doi: 10.1016/j.rser.2017.05.057.spa
dc.relation.referencesY. Shen, S. Forrester, J. Koval, and M. Urgun-Demirtas, “Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production,” Journal of Cleaner Production, vol. 167, pp. 863–874, 2017, doi: 10.1016/j.jclepro.2017.05.135.spa
dc.relation.referencesB. Rittmann and P. McCarty, Environmental Biotechnology: Principles and Applications, McGraw-Hil. NewYork: McGraw-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, 2001.spa
dc.relation.referencesJ. D. Browne and J. D. Murphy, “The impact of increasing organic loading in two phase digestion of food waste,” Renewable Energy, vol. 71, pp. 69–76, 2014, doi: 10.1016/j.renene.2014.05.026.spa
dc.relation.referencesH. C. Moon and I. S. Song, “Enzymatic hydrolysis of foodwaste and methane production using UASB bioreactor,” International Journal of Green Energy, vol. 8, no. 3, pp. 361–371, 2011, doi: 10.1080/15435075.2011.557845.spa
dc.relation.referencesH. S. Shin, S. K. Han, Y. C. Song, and C. Y. Lee, “Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste,” Water Research, vol. 35, no. 14, pp. 3441–3447, 2001, doi: 10.1016/S0043-1354(01)00041-0.spa
dc.relation.referencesY. Shen, S. Forrester, J. Koval, and M. Urgun-Demirtas, “Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production,” Journal of Cleaner Production, vol. 167, pp. 863–874, 2017, doi: 10.1016/j.jclepro.2017.05.135.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalPBMspa
dc.subject.proposalUASBspa
dc.subject.proposalSlow pyrolysiseng
dc.subject.proposalbiochareng
dc.subject.proposalpalm kernel shelleng
dc.subject.proposalpruning residueseng
dc.subject.proposalBMPeng
dc.subject.proposalUASBeng
dc.subject.proposalPirólisis lentaspa
dc.subject.proposalDigestión anaerobiaspa
dc.subject.proposalBiocharspa
dc.subject.proposalCuesco de palmaspa
dc.subject.proposalResiduos de podaspa
dc.subject.proposalAnaerobic digestioneng
dc.subject.wikidataBiochar
dc.subject.wikidataDigestión anaeróbica
dc.titleAdición de biochar a la digestión anaerobia para una adecuada valorización de biomasa residualspa
dc.title.translatedAddition of biochar to anaerobic digestion for an adequate valorization of residual biomasseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEsquema híbrido de poligeneración (Termoquímico - Biológico) para la sustitución de fósiles a partir de residuos orgánicosspa
oaire.fundernameMinisterio de ciencia, tecnología e innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020467966.2023.pdf
Tamaño:
1.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: