On generalized multiscale methods for flow in complex porous media and their applications

dc.contributor.advisorGalvis Arrieta, Juan Carlos
dc.contributor.authorContreras Hernandez, Luis Fernando
dc.contributor.authorFernando, Luis
dc.date.accessioned2023-08-04T14:36:18Z
dc.date.available2023-08-04T14:36:18Z
dc.date.issued2023-06-27
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIn this document, the Generalized Multiscale Finite Element Method (GMsFEM) is studied, which deals with constructing multiscale spectral basis functions designed for high-contrast multiscale problems. The multiscale basis functions are built from the product of the eigenvectors, computed from a local spectral problem and a partition of unity over the study domain. The eigenvalues detect essential features of the solutions that are not captured by the initial multiscale basis functions. This document reviews the general convergence study where the error estimates are written in terms of the eigenvalues associated with the eigenvectors not used in the construction. Error analysis involves local and global norms that measure the convergence speed of the expansion of the solution in terms of local eigenvectors; this is achieved with a careful choice of the initial multiscale basis functions and the configuration of the eigenvalue problems. Two novel important numerical applications are presented: the first is the free-boundary dam problem posed on a heterogeneous high-contrast medium, where we introduce a fictitious time variable that motivates an adequate time discretization that can be understood as a fixed-point iteration. For the steady-state solution, we use the duality method to deal with the multivalued nonlinear terms involved; then, efficient approximations of pressure and saturation are calculated using the GMsFEM method. The second application is the solution of a parabolic equation. Here implementing time discretizations, such as finite differences or exponential integrators in the presence of a high contrast coefficient, it may not be practical in because each time iteration one needs the computation of matrix operators involving very large and extremely ill-conditioned sparse matrices. The GMsFEM is essential since it allows obtaining the solution of the problem more simply, allowing to combine the GMsFEM with the method of exponential integrators in time to get a good approximation of the final temporary solution. (Texto tomado de la fuente)eng
dc.description.abstractEn este documento se estudia el M´etodo de Elementos Finitos Multiescala Generalizados (GMsFEM), el cual trata de la construcci´on de funciones base espectrales multiescala que est´an dise˜nadas para problemas de alto contraste. Las funciones base multiescala se construyen a partir del producto entre los vectores propios, construidos a partir de un problema espectral local y una partici´on de la unidad sobre el dominio de estudio. Los valores propios detectan caracter´ısticas importantes de las soluciones que no son capturadas por las funciones base multiescala iniciales. En este trabajo, se presenta un estudio de convergencia donde las estimaciones de error son generales, y est´an escritas en t´erminos de los valores propios asociados a los vectores propios no utilizados en la construcci´on. El an´alisis de errores implica normas locales y globales que miden la descomposici´on de la expansi´on de la soluci´on en t´erminos de vectores propios locales, esto se logra con una elecci´on cuidadosa de las funciones de base multiescala iniciales y la configuraci´on de los problemas de valores propios. Se presentan dos aplicaciones num´ericas importantes: la primera, es el problema de represa con frontera libre planteado sobre un medio heterog´eneo de alto contraste, donde introducimos una variable de tiempo ficticia que motiva una discretizaci´on de tiempo adecuada que puede entenderse como una iteraci´on de punto fijo a la soluci´on de estado estacionario, y usamos el m´etodo de dualidad para tratar con los t´erminos no lineales multivaluados involucrados; luego, se calculan aproximaciones eficientes de la presi´on y la saturaci´on usando el m´etodo GMsFEM. La segunda aplicaci´on es la soluci´on de una ecuaci´on parab´olica donde al implementar discretizaciones de tiempo como diferencias finitas o integradores exponenciales sobre un coeficiente de alto contraste, puede no ser pr´actico porque cada iteraci´on de tiempo necesita el c´alculo de operadores matriciales que involucran matrices dispersas, muy grandes y mal condicionadas; es por esto que el GMsFEM es importante ya que permite la obtenci´on de la soluci´on del problema de una forma m´as sencilla, permitiendo combinar GMsFEM con el m´etodo de integradores exponenciales en el tiempo para obtener una buena aproximaci´on de la soluci´on temporal finalspa
dc.description.degreelevelDoctoradospa
dc.description.researchareaNumerical analysis, Partial differential equations.spa
dc.format.extentxiii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84452
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesE.Abreu, C.Diaz, and J.Galvis. A convergence analysis of generalized multiscale finite element methods. Journal of Computational Physics, 396:303--324, 2019.spa
dc.relation.referencesE. Abreu, C. Diaz, J. Galvis, and J. Perez. On the conservation properties in multiple scale coupling and simulation for darcy flow with hyperbolic-transport in complex flows. Multiscale Modeling \& Simulation , 18(4):1375--1408, 2020.spa
dc.relation.referencesAwad H. Al-Mohy and Nicholas J. Higham. Computing the action of the matrix exponential, with an application to exponential integrators. SIAM Journal on Scientific Computing , 33(2):488--511, 2011.spa
dc.relation.referencesTodd Arbogast and Mary F. Wheeler. A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM Journal on Numerical Analysis , 33(4):1669--1687, 1996.spa
dc.relation.referencesI. Arregui, J.J. Cend\'an, C. Par\'es, and C. V{\'a zquez. Numerical solution of a 1-d elastohydrodynamic problem in magnetic storage devices. ESAIM: Math. Model. Num. Anali. , 42:645--665, 2008.spa
dc.relation.referencesG. Bayada, S. Martin, and C. V{\'a zquez. Homogenization of a nonlocal elastohydrodynamic lubrication problem: a new free boundary model. Math. Mod. Meth. Appl. Sci. , 15(12):1923--1956, 2005.spa
dc.relation.referencesG. Bayada, S. Martin, and C. V{\'a zquez. Homogéneisation du modéle d'{E lrod-{A dams hydrodynamique. J. Asymp. Anali. , 44(1-2):75--110, 2005.spa
dc.relation.referencesHavard Berland, Bard Skaflestad, and Will M. Wright. Expint---a matlab package for exponential integrators. ACM Trans. Math. Softw. , 33(1):4–es, mar 2007.spa
dc.relation.referencesA. Bermúdez and J Durany. Numerical solution of steady-state flow through a porous dam. Comput. Methods Appl. Mech. Engrg. , 68(1):55--65, 1988.spa
dc.relation.referencesA. Bermúdez and C. Moreno. Duality methods for solving variational inequalities. Comput. Math. Appl. , 7(1):43--58, 1981.spa
dc.relation.referencesD. Braess. FINITE ELEMENTS Theory, Fast Solvers, and Applications in Elasticity Theory . Cambridge University press, Cambridge, 2007.spa
dc.relation.referencesH. Brezis. Functional analysis, Sovolev Space and Partial Differential Equations . Springer, Rutgers University, 2011.spa
dc.relation.referencesF. Contreras C. Vazquez, J. Galvis. Numerical upscaling of the free boundary dam problem in multiscale high-contrast media. Journal of Computational and Applied Mathematics , 367, 2020.spa
dc.relation.referencesV. M. Calo, Y. Efendiev, and J. Galvis. Asymptotic expansions for high-contrast elliptic equations. Math. Models Methods Appl. Sci. , 24(3):465--494, 2014.spa
dc.relation.referencesV. M. Calo, Y. Efendiev, J. Galvis, and G. Li. Randomized oversampling for generalized multiscale finite element methods. Multiscale Model. Simul. , 14(1):482--501, 2016.spa
dc.relation.referencesVictor M Calo, Yalchin Efendiev, Juan Galvis, and Guanglian Li. Randomized oversampling for generalized multiscale finite element methods. Multiscale Modeling \& Simulation , 14(1):482--501, 2016.spa
dc.relation.referencesM. A. Christie and M. J. Blunt. {Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques . SPE Reservoir Evaluation & Engineering , 4(04):308--317, 08 2001.spa
dc.relation.referencesEric Chung, Yalchin Efendiev, and Thomas Y. Hou. Adaptive multiscale model reduction with generalized multiscale finite element methods. Journal of Computational Physics , 320:69--95, 2016.spa
dc.relation.referencesEric Chung, Yalchin Efendiev, Sai-Mang Pun, and Zecheng Zhang. Computational multiscale method for parabolic wave approximations in heterogeneous media. Applied Mathematics and Computation , 425:127044, 2022.spa
dc.relation.referencesEric T. Chung, Yalchin Efendiev, Wing Tat Leung, and Petr N. Vabishchevich. Contrast-independent partially explicit time discretizations for multiscale flow problems. Journal of Computational Physics , 445:110578, 2021.spa
dc.relation.referencesZeidler E. Nonlinear functional analysis and its applications I Variational methods and optimization . Springer science+business media, Springer verlag New York, 1985.spa
dc.relation.referencesZeidler E. Nonlinear functional analysis and its applications II Variational methods and optimization . Springer science+business media, Springer verlag New York, 1985.spa
dc.relation.referencesZeidler E. Nonlinear functional analysis and its applications III Variational methods and optimization . Springer science+business media, Springer verlag New York, 1985.spa
dc.relation.referencesL. Macul E. Abreu1, P. Ferraz. A multiscale recursive numerical method for semilinear parabolic problems. CILAMCE, PANACM , 2021.spa
dc.relation.referencesY. Efendiev and J. Galvis. Domain decomposition preconditioner for multiscale high-contrast problems. In Proceedings of DD19 , 2009.spa
dc.relation.referencesY. Efendiev and J. Galvis. A domain decomposition preconditioner for multiscale high-contrast problems. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XIX , volume 78 of Lect. Notes in Comput. Science and Eng. , pages 189--196. Springer-Verlag, 2011.spa
dc.relation.referencesY. Efendiev and J. Galvis. Domain decomposition preconditioner for multiscale high-contrast problems. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, {\em Domain Decomposition Methods in Science and Engineering XIX , volume 78 of {\em Lecture Notes in Computational Science and Engineering , pages 189--196, Berlin, 2011. Springer-Verlag.spa
dc.relation.referencesY. Efendiev, J. Galvis, and T. Hou. Generalized multiscale finite element methods. Journal of Computational Physics , 251:116--135, 2013.spa
dc.relation.referencesY. Efendiev, J. Galvis, S. Ki Kang, and R.D. Lazarov. Robust multiscale iterative solvers for nonlinear flows in highly heterogeneous media. Numer. Math. Theory Methods Appl. , 5(3):359--383, 2012.spa
dc.relation.referencesY. Efendiev, J. Galvis, R. Lazarov, and J. Willems. Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anali. , 46(5):1175--1199, 2012.spa
dc.relation.referencesY. Efendiev, J. Galvis, G. Li, and M. Presho. Generalized multiscale finite element methods: Oversampling strategies. International Journal for Multiscale Computational Engineering , 12(6), 2014.spa
dc.relation.referencesY. Efendiev, J. Galvis, and P.S. Vassilevski. Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-contrast coefficients. In Domain decomposition methods in science and engineering {XIX , volume 78 of Lect. Notes Comput. Sci. Eng. , pages 407--414. Springer, Heidelberg, 2011.spa
dc.relation.referencesY. Efendiev and T. Hou. {Multiscale Finite Element Methods: Theory and Applications , volume 4 of {\em Surveys and Tutorials in the Applied Mathematical Sciences . Springer, New York, 2009.spa
dc.relation.referencesYalchin Efendiev, Sai-Mang Pun, and Petr N. Vabishchevich. Temporal splitting algorithms for non-stationary multiscale problems. Journal of Computational Physics , 439:110375, 2021.spa
dc.relation.referencesL.C. Evans. Partial Differential Equations . Graduate studies in mathematics. American Mathematical Society, 2010.spa
dc.relation.referencesJ. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM J. Multiscale Modeling and Simulation , 8:1461--1483, 2010.spa
dc.relation.referencesJ. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast media. reduced dimension coarse spaces. SIAM J. Multiscale Modeling and Simulation , 8:1621--1644, 2010.spa
dc.relation.referencesR. Glowinski. Numerical Methods for Nonlinear Variational Problems . Computational Physics Series. Springer-Verlag, 1984.spa
dc.relation.referencesN. Higham. Functions of matrix theory and computation . SIAM, University of Manchester, United Kingdom, 2008.spa
dc.relation.referencesMarlis Hochbruck, Christian Lubich, and Hubert Selhofer. Exponential integrators for large systems of differential equations. SIAM Journal on Scientific Computing , 19(5):1552--1574, 1998.spa
dc.relation.referencesMarlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica , 19:209--286, 2010.spa
dc.relation.referencesT. Hou and X.H. Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. , 134:169--189, 1997.spa
dc.relation.referencesB. Wu J. Huang, L. Ju. A fast compact exponential time differencing method for semilinear parabolic equations with neumann boundary conditions. Applied Mathematics Letters , (94):257--265, 2019.spa
dc.relation.referencesD. Pardo J. Muñoz and L. Demkowicz. Equivalence between the dpg method and the exponential integrator for linear parabolic problems. Journal of Computational Physics , 2020.spa
dc.relation.referencesJ. Galvis J. Olmos and F. Martinez. A geometric mean algorithm of symmetric positive definite matrices. unpublished .spa
dc.relation.referencesLijian Jiang, Yalchin Efendiev, and Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete and Continuous Dynamical Systems - B , 8(4):833--859, 2007.spa
dc.relation.referencesClaes Johnson. Numerical solution of partial differential equations by the finite element method. Acta Applicandae Mathematica , 18:184--186, 1988.spa
dc.relation.referencesE. Abreu C. Diaz J. Muñoz-Matute J. Galvis L. F. Contreras, D. Pardo. An exponential integration generalized multiscale finite element method for parabolic problems. Submitted .spa
dc.relation.referencesS. Martin and C. V\'azquez. Homogenization of the layer-structured dam problem with isotropic permeability. Nonlinear Anali. Real World Appl. , 14(6):2133--2151, 2013.spa
dc.relation.referencesAxel Målqvist and Anna Persson. Multiscale techniques for parabolic equations. Numerische Mathematik , 138, 01 2018.spa
dc.relation.referencesM Park and Michael V Tretyakov. Stochastic resin transfer molding process. SIAM/ASA Journal on Uncertainty Quantification , 5(1):1110--1135, 2017.spa
dc.relation.referencesMichael Presho and Juan Galvis. A mass conservative generalized multiscale finite element method applied to two-phase flow in heterogeneous porous media. Journal of Computational and Applied Mathematics , 296:376--388, 2016.spa
dc.relation.referencesR. Tyrrell Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific Journal of Mathematics , 33:209--216, 1970.spa
dc.relation.referencesZheng Sun, José A. Carrillo, and Chi-Wang Shu. A discontinuous galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials. Journal of Computational Physics , 352:76--104, 2018.spa
dc.relation.referencesR. Toja. Contributions of the numerical simulation of coupled models in glaciology. PhD thesis, Universidade da Coruña, 2010.spa
dc.relation.referencesH. Thomas Y. Efendiev, J. Galvis. Generalized multiscale finite element methods (gmsfem). Journal of Computational Physics , 251:116--135, 2013.spa
dc.relation.referencesJ. Galvis Y. Efendiev and X. Wu. Multiscale finite element methods for high-contrast problems using local spectral basis functions. Journal of Computational Physics , 230:937--955, 2011.spa
dc.relation.referencesMiguel Zambrano, Sintya Serrano, Boyan S Lazarov, and Juan Galvis. Fast multiscale contrast independent preconditioners for linear elastic topology optimization problems. Journal of Computational and Applied Mathematics , 389:113366, 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::518 - Análisis numéricospa
dc.subject.lembMétodo de elementos finitosspa
dc.subject.lembFinite element methodeng
dc.subject.lembAnálisis numéricosspa
dc.subject.lembNumerical analysiseng
dc.subject.lembAnálisis espectralspa
dc.subject.lembSpectrum analysiseng
dc.subject.proposalMultiescaspa
dc.subject.proposalAlto contrastespa
dc.subject.proposalFEMspa
dc.subject.proposalMétodos numéricosspa
dc.titleOn generalized multiscale methods for flow in complex porous media and their applicationseng
dc.title.translatedSobre métodos multiescala generalizados para flujo en medios porosos complejos y sus aplicacionesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030535037_2023.pdf
Tamaño:
2.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: