Resistencia a la corrosión a altas temperaturas de recubrimientos nanoestructurados de (Ti,Cr,Al,Si)N depositados con la técnica de cosputtering

dc.contributor.advisorOlaya FLorez, John Jairo
dc.contributor.advisorPiamba Tulcan, Oscar Edwin
dc.contributor.authorYomayuza SIerra, Nestor Giovanny
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energíaspa
dc.date.accessioned2023-05-31T20:34:22Z
dc.date.available2023-05-31T20:34:22Z
dc.date.issued2022
dc.description9ilustraciones, fotografías, graficasspa
dc.description.abstractLa presente investigación tiene como objetivo la síntesis y caracterización de recubrimientos cuaternarios y quinarios del tipo (Ti,Cr,Al)N y (Ti,Cr,Al,Si)N variando la concentración de silicio en el sistema mediante el uso de la técnica de sputtering HiPIMS. Los recubrimientos son depositados con espesores aproximados de entre 800 y 1000 nm. Los recubrimientos fueron depositados sobre dos sustratos diferentes de acero 316L y metal duro K20. Una vez depositados los recubrimientos, se midió su composición elemental mediante el uso de fluorescencia de rayos X (XRF), se obtuvo un patrón de difracción mediante difracción de rayos X (XRD) y se realizó un análisis superficial mediante el uso de microscopía electrónica de barrido (SEM) y una medición de rugosidad mediante microscopía de fuerza atómica (AFM). Una vez caracterizados los recubrimientos, se realizaron ensayos de corrosión cíclica a 800°C durante 8 horas y de corrosión isotérmica a 600 °C durante cien ciclos. Cada ciclo consta de una hora de enfriamiento y una hora de calentamiento. Durante estas pruebas se realizó un análisis de ganancia de masa y, posteriormente, se realizó una caracterización superficial mediante microscopía electrónica de barrido (SEM), un análisis microestructural mediante difracción de rayos X (XRD) y un análisis de rugosidad mediante microscopía de fuerza atómica (AFM) para interpretar los resultados obtenidos en la variación de masa. Finalmente, se observó que los recubrimientos depositados presentan comportamiento como barrera térmica protectora a los sustratos, un comportamiento no esperado del metal duro K20, y que el silicio mejora las propiedades de resistencia de corrosión a altas temperaturas respecto al sistema cuaternario. (Texto tomado de la fuente)spa
dc.description.abstractThe following investigation seeks to synthetize an characterize quaternary and quinary coatings such as (Ti,Cr,Al)N and (Ti,Cr,Al,Si)N with varying silicon compositions in the system by using the HiPIMS sputtering technique. These coatings have a thickness between 800 and 1000 nm. They were deposited on two different substrates of 316L stainless steel and K20 Tungsten carbides. Once the coatings were made, their elemental composition was measured using X-ray fluorescence (XRF), diffraction pattern was obtained using X-ray diffraction (XRD), and a surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) to obtain roughness. Once the deposited coatings were characterized, cyclic corrosion tests were performed at 800°C for 8 hours and isothermal corrosion tests at 600°C for one hundred cycles. Each cycle consisted of one hour of cooling and one hour of heating. During these tests a mass gain analysis was performed, then surface characterization was performed by scanning electron microscopy (SEM), microstructural analysis by X-ray diffraction (XRD), and a roughness analysis by atomic force microscopy (AFM) to analyze the results obtained in the mass variation. Finally, it is observed that the deposited coatings behave as a protective thermal barrier to the substrates. This behavior is unexpected from the hard metal K20 Also, it is found that silicon improves the corrosion resistance properties at high temperatures in comparison to the quaternary system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngeniería de superficiesspa
dc.format.extentxxi, 169 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83935
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesS. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: A review,” Surf Coat Technol, vol. 167, no. 2–3, pp. 113–119, Apr. 2003, doi: 10.1016/S0257-8972(02)00903-9.spa
dc.relation.referencesJ. Musil, “Hard and superhard nanocomposite coatings,” 2000. [Online]. Available: www.elsevier.nl/locate/surfcoatspa
dc.relation.referencesW. Aperador, C. Ramírez-Martin, and J. Bautista Ruiz, “Sinergia entre la corrosión erosión del acero 1045 recubierto por multicapas de TiN/TiAlN,” 2011.spa
dc.relation.referencesJ. Delgado, J. Guillermo Castaño, E. Correa, and A. Restrepo, “Clasificación de la agresividad atmosférica en Colombia mediante métodos estadísticos multivariados Classification of atmospheric aggressiveness in Colombia using multivariate statistical methods,” Diciembre, 2009.spa
dc.relation.referencesH. O. Pierson, “HANDBOOK OF REFRACTORY CARBIDES AND NITRIDES Properties, Characteristics, Processing and Applications,” Handbook of Refractory Carbides and Nitrides, pp. 100–117, 1996, doi: 10.1016/b978-081551392-6.50007-6.spa
dc.relation.referencesS. Hofmann, “FORMATION AND DIFFUSION PROPERTIES OF OXIDE FILMS ON METALS AND ON NITRIDE COATINGS STUDIED WITH AUGER ELECTRON SPECTROSCOPY AND X-RAY PHOTOELECTRON SPECTROSCOPY,” 1990spa
dc.relation.referencesH. Ezura, K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, and T. Suzuki, “Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method,” Vacuum, vol. 82, no. 5, pp. 476–481, Jan. 2008, doi: 10.1016/j.vacuum.2007.07.048spa
dc.relation.referencesY. Y. Chang and C. Y. Hsiao, “High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings,” Surf Coat Technol, vol. 204, no. 6–7, pp. 992–996, Dec. 2009, doi: 10.1016/j.surfcoat.2009.04.009.spa
dc.relation.referencesS. N. Basu and V. K. Sarin, “Oxidation behavior of WC-Co,” 1996.spa
dc.relation.referencesX. Huang et al., “Oxidation behavior of 316L austenitic stainless steel in high temperature air with long-term exposure,” Mater Res Express, vol. 7, no. 6, Jun. 2020, doi: 10.1088/2053-1591/ab96fa.spa
dc.relation.referencesK. Ichijo, H. Hasegawa, and T. Suzuki, “Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method,” Surf Coat Technol, vol. 201, no. 9-11 SPEC. ISS., pp. 5477–5480, 2007, doi: 10.1016/j.surfcoat.2006.07.016.spa
dc.relation.referencesJ. C. Lee, P. Yadav, and D. B. Lee, “ High Temperature Corrosion of TiAlCrSiN Films in N 2 /0.1%H 2 S Gas ,” J Nanosci Nanotechnol, vol. 18, no. 3, pp. 1922–1925, Oct. 2017, doi: 10.1166/jnn.2018.14978.spa
dc.relation.referencesB. Gui et al., “Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering,” Ceram Int, vol. 47, no. 6, pp. 8175–8183, 2021, doi: 10.1016/j.ceramint.2020.11.175.spa
dc.relation.referencesS. K. Kim, P. van Vinh, and J. W. Lee, “Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition,” Surf Coat Technol, vol. 202, no. 22–23, pp. 5395–5399, Aug. 2008, doi: 10.1016/j.surfcoat.2008.06.020.spa
dc.relation.referencesT. D. Nguyen, S. K. Kim, and D. B. Lee, “High-temperature oxidation of nano-multilayered TiAlCrSiN thin films in air,” Surf Coat Technol, vol. 204, no. 5, pp. 697–704, Dec. 2009, doi: 10.1016/j.surfcoat.2009.09.008.spa
dc.relation.references“https://nks.com/es/distribuidor-de-acero-inoxidable/aceros inoxidables 316/#:~:text=Los%20aceros%20inoxidables%20Tipos%20316,de%20 papel%2C%20textil%20y%20fotogr%C3%A1fica.”spa
dc.relation.referencesF. Antonio and E. Monguí, “Caracterización Microestructural del Recubrimiento CrTiAlSiN Depositado Sobre Metal Duro K20 Mediante Sistema de Cosputtering.”spa
dc.relation.referencesL. B. Freund and S. Suresh, Thin Film Materials Stress, Defect Formation and Surface Evolution, vol. 19, no. 7. Cambridge University Press, 2004. doi: 10.1016/S0961-1290(06)71818-Xspa
dc.relation.references“Handbook of Physical Vapor Deposition (PVD) Processing Second edition.”spa
dc.relation.referencesK. Wasa, THIN FILM MATERIALS TECHNOLOGY Sputtering of Compound Materials, vol. 95, no. 11. 1997. doi: 10.1016/s0026- 0576(97)81517-6.spa
dc.relation.referencesD. Lundin and K. Sarakinos, “An introduction to thin film processing using high-power impulse magnetron sputtering,” Journal of Materials Research, vol. 27, no. 5. pp. 780–792, Mar. 14, 2012. doi: 10.1557/jmr.2012.8.spa
dc.relation.references“Douglas A. Skoog - Principios de análisis instrumental-Cengage Learning (2019)”spa
dc.relation.references“Douglas A. Skoog - Principios de análisis instrumental-Cengage Learning (2019)”spa
dc.relation.referencesS. el Abed, Scanning Electron Microscopy (Sem) and Environmental Sem Suitable Tools For Study of Adhesion Stage and Biofilm Formation.spa
dc.relation.referencesL. Julieta Cardenas Flechas, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS NANOESTRUCTURADOS DE Ti-Zr-Si-N,” 2018.spa
dc.relation.referencesJ. P. Parra Sua, “EVALUACION DE LA RESISTENCIA A LA CORROSION A ALTAS TEMPERATURAS Y SU COMPORTAMIENTO COMO,” 2014spa
dc.relation.referencesV. L. Mironov, “The textbook for students of the senior courses of higher educational institutions Fundamentals of Scanning Probe Microscopy THE RUSSIAN ACADEMY OF SCIENCES INSTITUTE OF PHYSICS OF MICROSTRUCTURES Nizhniy Novgorod,” 2004.spa
dc.relation.referencesP. Hariharan, “Basics of INTERFEROMETRY.”spa
dc.relation.referencesV. B. Trindade, Corrosao de ligas metálicas em altas temperaturas. 2013spa
dc.relation.references“NORMA JIS Z 2282-1996”spa
dc.relation.references“https://quimica.uc.cl/servicios/unidad-central-de instrumentacion/espectrometro-witec-alpha-300-ra/”spa
dc.relation.referencesG. Milena and P. Novoa, “Estudio de las propiedades ópticas y eléctricas de películas delgadas deTiAlCrN depositadas por co sputtering reactivo.”spa
dc.relation.referencesS. K. Kim, P. van Vinh, and J. W. Lee, “Deposition of superhard nanolayered TiCrAlSiN thin films by cathodic arc plasma deposition,” Surf Coat Technol, vol. 202, no. 22–23, pp. 5395–5399, Aug. 2008, doi: 10.1016/j.surfcoat.2008.06.020.spa
dc.relation.referencesR. Forsén, M. P. Johansson, M. Odén, and N. Ghafoor, “Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance,” Thin Solid Films, vol. 534, pp. 394–402, May 2013, doi: 10.1016/j.tsf.2013.03.003spa
dc.relation.referencesK. Bobzin, T. Brögelmann, N. C. Kruppe, and M. Carlet, “Wear behavior and thermal stability of HPPMS (Al,Ti,Cr,Si)ON, (Al,Ti,Cr,Si)N and (Ti,Al,Cr,Si)N coatings for cutting tools,” Surf Coat Technol, vol. 385, Mar. 2020, doi: 10.1016/j.surfcoat.2020.125370.spa
dc.relation.referencesH. Ezura, K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, and T. Suzuki, “Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method,” Vacuum, vol. 82, no. 5, pp. 476–481, Jan. 2008, doi: 10.1016/j.vacuum.2007.07.048.spa
dc.relation.referencesK. Ichijo, H. Hasegawa, and T. Suzuki, “Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method,” Surf Coat Technol, vol. 201, no. 9-11 SPEC. ISS., pp. 5477–5480, Feb. 2007, doi: 10.1016/j.surfcoat.2006.07.016spa
dc.relation.referencesN. Fukumoto, H. Ezura, K. Yamamoto, A. Hotta, and T. Suzuki, “Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings,” Surf Coat Technol, vol. 203, no. 10–11, pp. 1343–1348, Feb. 2009, doi: 10.1016/j.surfcoat.2008.11.002.spa
dc.relation.referencesF. A. P. Fernandes, L. C. Casteletti, G. E. Totten, and J. Gallego, “Decomposition of expanded austenite in AISI 316L stainless steel nitrided at 723K,” International Heat Treatment and Surface Engineering, vol. 6, no. 3, pp. 103–106, Sep. 2012, doi: 10.1179/1749514812Z.00000000025.spa
dc.relation.referencesC. Eduardo Pinedo, A. Paulo Tschiptschin, and R. Esc, “Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51 Metallurgy and materials INOX 2010 210 Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel,” 2013.spa
dc.relation.referencesP. A. Kumar, S. Pandey, R. Mishra, and R. Yadav, “CHARACTERIZATION OF STAINLESS STEEL 316L COATED BY THERMAL SPRAY COATING.”spa
dc.relation.referencesH. S. Samir Parra, “Recubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de cosputtering magnetrón reactivo,” 2020.spa
dc.relation.referencesH. Samir and V. Parra, “Recubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de cosputtering magnetrón reactivo.”spa
dc.relation.referencesT. D. Nguyen, S. K. Kim, and D. B. Lee, “High-temperature oxidation of nano-multilayered TiAlCrSiN thin films in air,” Surf Coat Technol, vol. 204, no. 5, pp. 697–704, Dec. 2009, doi: 10.1016/j.surfcoat.2009.09.008spa
dc.relation.referencesJ. H. Quintero, J. A. Peñafiel, and H. Leyton, “Analisis del ensanchamiento de las lineas de difraccion de Bragg de la fase cubica fcc del oro.”spa
dc.relation.referencesS. Khanchaiyaphum, C. Saikaew, A. Wisitsoraat, and S. Surinphong, “Wear behaviours of filtered cathodic arc deposited TiN, TiAlSiN and TiCrAlSiN coatings on AISI 316 stainless steel fishing net-weaving machine components under dry soft-sliding against nylon fibres,” Wear, vol. 390–391, pp. 146–154, 2017, doi: 10.1016/j.wear.2017.07.018.spa
dc.relation.referencesM. Aristizabal, L. C. Ardila, F. Veiga, M. Arizmendi, J. Fernandez, and J. M. Sánchez, “Comparison of the friction and wear behaviour of WC Ni-Co-Cr and WC-Co hardmetals in contact with steel at high temperatures,” Wear, vol. 280–281, pp. 15–21, Mar. 2012, doi: 10.1016/j.wear.2012.01.015.spa
dc.relation.referencesT. D. Nguyen, S. K. Kim, and D. B. Lee, “High-temperature oxidation of nano-multilayered TiAlCrSiN thin films in air,” Surf Coat Technol, vol. 204, no. 5, pp. 697–704, Dec. 2009, doi: 10.1016/j.surfcoat.2009.09.008.spa
dc.relation.references“Diagramas de Ellingham: su uso y mal uso.” https://www.areametalurgia.com/post/diagramas-de-ellingham-su uso-y-mal-uso (accessed Nov. 02, 2022spa
dc.relation.referencesmarco Baccalaro, A. Mattern, I. Hauer, M. Pohl, G. Schnider, and A. Flaig, “How to resist the stress of temperature,” Metal-Poder.net, 2006.spa
dc.relation.referencesM. Wittmer, J. Noser, and H. Melchior, “Oxidation kinetics of TiN thin films,” J Appl Phys, vol. 52, no. 11, pp. 6659–6664, 1981, doi: 10.1063/1.328659.spa
dc.relation.referencesO. Banakh, P. E. Schmid, R. Sanjines, and F. Levy, “High temperature oxidation resistance of Cr Al N thin films deposited 1yx x by reactive magnetron sputtering,” 2003.spa
dc.relation.referencesH. Zhang and J. F. Banfield, “Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2,” Chemical Reviews, vol. 114, no. 19. American Chemical Society, pp. 9613–9644, Oct. 08, 2014. doi: 10.1021/cr500072j.spa
dc.relation.referencesGrant, “REVIEWS OF MODERN PHYSICSe i. . itaniuII1. 3ioxic e) *.”spa
dc.relation.referencesF. C. Zhang, H. H. Luo, and S. G. Roberts, “Mechanical properties and microstructure of Al2O 3/mullite composite,” J Mater Sci, vol. 42, no. 16, pp. 6798–6802, Aug. 2007, doi: 10.1007/s10853-006-1402-z.spa
dc.relation.references“The Gibbs energy for the decomposition of Al2O3 at 500 ^oC is as follows: 2/3Al2O3→ 4/3Al + O2; ΔrG = + 966 kJ/mol.The potential difference needed for electrolytic reduction of Al2O3 at 500^o C is at least:” https://www.toppr.com/ask/en-pk/question/the-gibbs-energy- for-the-decomposition-of-al2o3-at500-c-is-as-follows2-al2o3/ (accessed Nov. 20, 2022)spa
dc.relation.referencesH. Abbas, K. Nadeem, S. Munir, U. Ahmed, M. Usman, and M. Kostylev, “Fe–Co co-doping effects on antiferromagnetic core of NiO nanoparticles,” Ceram Int, vol. 48, no. 3, pp. 3435–3447, Feb. 2022, doi: 10.1016/j.ceramint.2021.10.120.spa
dc.relation.referencesM. Risti~, S. Popovi~, and S. Musi~, “Structural properties of the system AI203-Cr203,” 1993.spa
dc.relation.referencesP. Zhao, H. Zhao, J. Yu, H. Zhang, H. Gao, and Q. Chen, “Crystal structure and properties of Al2O3-Cr2O3 solid solutions with different Cr2O3 contents,” Ceram Int, vol. 44, no. 2, pp. 1356–1361, Feb. 2018, doi: 10.1016/j.ceramint.2017.08.195spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalTemperaturaspa
dc.subject.proposalMicroestructuraspa
dc.subject.proposalTi-Cr-Al-Si-N
dc.subject.proposalBarrera térmicaspa
dc.subject.proposalCorrosioneng
dc.subject.proposalTemperatureeng
dc.subject.proposalMicrostructureeng
dc.subject.proposalThermal barriereng
dc.subject.wikidatacoatingeng
dc.subject.wikidatarecubrimientospa
dc.subject.wikidataThermal insulationeng
dc.subject.wikidataaislamiento térmicospa
dc.titleResistencia a la corrosión a altas temperaturas de recubrimientos nanoestructurados de (Ti,Cr,Al,Si)N depositados con la técnica de cosputteringspa
dc.title.translatedCorrosion resistance at high temperatures of nanostructured (Ti,Cr,Al,Si)N deposited with the technique of cosputtering techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024491944.2023.pdf
Tamaño:
6.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en materiales y procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: