Passive dynamic system for energy returning on transtibial prosthesis

dc.contributor.advisorCortés-Rodríguez, Carlos Julio
dc.contributor.advisorTovar, Andres
dc.contributor.authorPrieto Parrado, Edwin Nikolay
dc.contributor.researchgroupGrupo de Investigación en Biomecánica (GIBM)spa
dc.date.accessioned2022-11-08T16:32:49Z
dc.date.available2022-11-08T16:32:49Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, graficasspa
dc.description.abstractNowadays, Lower Limb Prostheses (LLP) are changing at a very fast pace, due to technological developments implemented in such devices. In addition, users have new demands about their prostheses and they require absolute comfort and good performance. Unfortunately, the demand of LLP has risen mostly in third world countries because of the increment of vascular diseases (e.g., Diabetes Mellitus) and trauma (vehicle accidents, landmines, etc.). However, people do not have enough funds to acquire advanced prostheses that return the capabilities of walking or jogging in a proper way. Despite the fact that active prostheses help people to reduce metabolic cost, those are heavier and more expensive than Energy Storage and Return(ESR) prosthesis devices, produce uncomfortable noises and require more maintenance than passive ones. Moreover, components of the bionic prosthesis (i.e., actuators, battery, gearbox, among others) make the system highly inefficient. As a consequence, a higher quantity of external energy is required to allow the user to have enough autonomy for daily use. The current work pretends to obtain a novel customizable configuration of the transtibial prosthesis. However, the lack of qualitative and quantitative information on the ankle joint dynamics of LLP users cannot establish a reference target to optimize. In consequence, we processed recent gait data of trans-femoral amputees and compared them with sound groups at different gait speeds. From here, it is reported a formal comparative analysis between those groups. After dynamical data from the gait patterns are obtained, we proposed an explicit dynamic model to emulate the dynamic gait based on the ISO 22675 standard. We proposed a series of design variables in terms of shape, size and laminate thickness for the ankle-foot design. A global sensitivity analysis was performed in order to identify the most influential variables in terms of the outputs established to enhance and, contribute to the validation of the model. Then, a surrogate-model-based optimization algorithm is evaluated to adjust the best design variables for the given input. By means of Bayesian optimization, we found the prosthesis designs with the highest mechanical network for different gait speeds and groups. In the near future, this work will allow customizing, through additive manufacturing, a low-cost ankle-foot prosthesis with the best energetic return at the final stance phase.eng
dc.description.abstractEl avance en el desarrollo de prótesis de miembro inferior se ha acelerado durante la última decada debido a la implementación de dispositivos y materiales óptimos para la función perdida. Así mismo, el estilo de vida de los usuarios de prótesis ha cambiado, por lo que se demanda un mayor confort y rendimiento para una calidad de vida aceptable. Infortunadamente, los sectores más demandados son las poblaciones más vulnerables de los países, que en su mayoría, están en vía de desarrollo. Éstas poblaciones afectadas no cuentan con los recursos necesarios para adquirir una prótesis adecuada al grado de movilidad requerido, lo que produce una reducción en la velocidad preferida para caminar o correr sin alteraciones biomecánicas. Las principales causas de una amputación de miembro inferior se dan por la diabetes mellitus, los traumas (accidentes de tránsito, minas anti-persona, munición sin explotar, etc) y por último, el cáncer. A pesar que las prótesis biónicas ayudan a los usuarios a reducir el costo metabólico extra, estas son más pesadas y costosas en comparación a las prótesis pasivas. Más aún, los componentes de las propulsivas contienen elementos tales como actuadores, baterías, cajas de transmisión, entre otros, que dificultan el mantenimiento a mediano y largo plazo, a parte de generar ruido y hacer el sistema altamente inificiente. Como consecuencia, se afecta la autonomía del usuario en comparación a las de retorno energético. El presente trabajo pretende obtener una metodología de configuración de pie transtibial personalizada. La estrategia para su consecución se basa en la reciclaje de la energía mecánica externa que se pierde en el contacto inicial de la marcha. Sin embargo, la caracterización cualitativa y cuantitativa en la marcha de amputados de miembro inferior es limitada, y por tanto, no existe un parámetro de referencia a optimizar. En consecuencia, se procedió a realizar un análisis de datos con información disponible en estudios revisados por pares de la articulación de tobillo en pacientes con amputación unilateral trans-femoral, y se estableció el valor diferencial de la quasi-rigidéz en comparación con sujetos sin patologías. Posteriormente, se propuso un modelo dinámico explícito de un pie transtibial emulando la dinámica de marcha propuesta en el estándar ISO 22675. En dicho modelo, se establecieron variables de diseño tanto de forma, tamaño y ancho del laminado. Con el fin de determinar el comportamiento de las variables en el entorno y su modelo, un Análisis de Sensibilidad Global se estableció para contribuir a la validación del mismo. El GSA nos permitió implementar un algoritmo de optimización basado en un modelo surrogado cuyo propósito es establecer las variables óptimas de diseño con base en los parámetros de entrada (dinámica de la marcha). Este algoritmo de optimización presenta una cantidad de variables de diseño que no le permiten converger (≥ 20) a una solución óptima. Para solventar este inconveniente,se propone una optimización Bayesiana para determinar las variables de diseño que obtengan la dinámica de tobillo más aproximada a la no patológica. A la cual se obtuvieron resultados muy favorables a lo dispuesto en el mercado de las prótesis pasivas. Con esta propuesta, se pueden configurar prótesis personalizables que, a travéz de la manufactura aditiva, se pueden tangibilizar y adaptar a los pacientes amputados, independientemente de su grado de movilidad y su antropometría. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaBiomecánica Aplicadaspa
dc.description.researchareaSimulación por Elementos Finitosspa
dc.description.researchareaOptimización en Diseñospa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovaciónspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extentxxii, 107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82662
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesK. Ziegler-graham et al., “Estimating the Prevalence of Limb Loss in the United States : 2005 to 2050,” vol. 89, no. March, pp. 422–429, 2008, doi: 10.1016/j.apmr.2007.11.005.spa
dc.relation.referencesIDF, “Annual Report 2017,” tech. rep., International Diabetes Federation, 2017.spa
dc.relation.referencesKroger Knut, “Major and minor amputation rates: What do they tell us?,” vol. 15, no. 1, pp. 2014–2016, 2015.spa
dc.relation.referencesR. LeMoyne, Advances for Prosthetic Technology. Tokyo: Springer Japan, 2016.spa
dc.relation.referencesP. Cherelle, G. Mathijssen, Q. Wang, B. Vanderborght, and D. Lefeber, “Advances in Propulsive Bionic Feet and Their Actuation Principles,” Advances in Mechanical Engineering, vol. 2014, pp. 1–21, 2014.spa
dc.relation.referencesR. Versluys, P. Beyl, M. Van Damme, A. Desomer, R. Van Ham, and D. Lefeber, “Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics.,” Disability and rehabilitation. Assistive technology, vol. 4, no. 2, pp. 65–75, 2009.spa
dc.relation.referencesBostonNews, “A Brand-New Kick: The New BiOM Ankle Prosthetic by MIT’s Hugh Herr,” March 2015.spa
dc.relation.referencesR. Jena, “Ossur: Design that walks the line,” July 2007.spa
dc.relation.references“Low-cost prosthetic foot mimics natural walking | MIT News | Massachusetts Institute of Technology.”spa
dc.relation.references“High Quality Sach Foot For Disable People - Buy Polyurethane Prosthetic Foot, Sach Foot Prosthet,Sach Foot Price Product on Alibaba.com.”spa
dc.relation.referencesK. E. Zelik, T.-W. P. Huang, P. G. Adamczyk, and A. D. Kuo, “The role of series ankle elasticity in bipedal walking.,” Journal of theoretical biology, vol. 346, pp. 75–85, Apr. 2014.spa
dc.relation.referencesH. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recognition of a powered lower limb prosthesis,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 3, pp. 542–551, 2010.spa
dc.relation.referencesS. K. Au, J. Weber, and H. Herr, “Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy,” IEEE Transactions on Robotics, vol. 25, no. 1, pp. 51–66, 2009.spa
dc.relation.referencesH. M. Herr, J. A. Weber, K. W. S. Au, B. W. Deffenbaugh, L. H. Magnusson, A. G. Hofmann, and B. B. Aisen, “Powered Ankle-Foot Prosthesis,” 2014.spa
dc.relation.referencesE. C. Martinez-Villalpando and H. Herr, “Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.,” Journal of rehabilitation research and development, vol. 46, no. 3, pp. 361–373, 2009.spa
dc.relation.referencesE. R. Esposito, J. M. a. Whitehead, and J. M. Wilken, “Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses,” Prosthetics and Orthotics International, 2015.spa
dc.relation.referencesS. Au, M. Berniker, and H. Herr, “Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits,” Neural Networks, vol. 21, pp. 654–666, May 2008.spa
dc.relation.referencesA. R. De Asha, R. Munjal, J. Kulkarni, and J. G. Buckley, “Impact on the biomechanics of overground gait of using an ’Echelon’ hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.,” Clinical biomechanics (Bristol, Avon), vol. 29, pp. 728–34, Aug 2014.spa
dc.relation.referencesT. Schmalz, S. Blumentritt, and R. Jarasch, “Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components,” Gait and Posture, vol. 16, no. 3, pp. 255–263, 2002.spa
dc.relation.referencesJ. G. Buckley, W. D. Spence, and S. E. Solomonidis, “Energy cost of walking: Comparison of ’intelligent prosthesis’ with conventional mechanism,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 3, pp. 330–333, 1997.spa
dc.relation.referencesH. M. Herr and A. M. Grabowski, “Powered ankle-foot improves metabolic demand of unilateral transtibial amputees during walking,” Meeting of the American Society of Biomechanics, 2010.spa
dc.relation.referencesD. H. Gates, J. M. Aldridge, and J. M. Wilken, “Kinematic comparison of walking on uneven ground using powered and unpowered prostheses.,” Clinical biomechanics (Bristol, Avon), vol. 28, pp. 467–72, Apr. 2013.spa
dc.relation.referencesD. Hill and H. Herr, “Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series,” IEEE International Conference on Rehabilitation Robotics, vol. 10, no. 1, p. 1, 2013.spa
dc.relation.referencesE. C. Martinez-Villalpando, L. Mooney, G. Elliott, and H. Herr, “Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 8519–8522, 2011.spa
dc.relation.referencesD. C. Morgenroth, A. D. Segal, K. E. Zelik, J. M. Czerniecki, G. K. Klute, P. G. Adamczyk, M. S. Orendurff, M. E. Hahn, S. H. Collins, and A. D. Kuo, “The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees,” Gait & Posture, vol. 34, pp. 502–507, Oct 2011.spa
dc.relation.referencesH. Bateni and S. J. Olney, “Kinematic and Kinetic Variations of Below-Knee Amputee Gait,” JPO Journal of Prosthetics and Orthotics, vol. 14, no. 1, pp. 2–10, 2002.spa
dc.relation.referencesS. J. Mattes, P. E. Martin, and T. D. Royer, “Walking symmetry and energy cost in persons with unilateral transtibial amputations: Matching prosthetic and intact limb inertial properties,” Archives of Physical Medicine and Rehabilitation, vol. 81, pp. 561–568, May 2000.spa
dc.relation.referencesA. M. Grabowski and S. D. Andrea, “Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking,” Journal of NeuroEngineering and Rehabilitation, 2013.spa
dc.relation.referencesH. Devan, P. Hendrick, D. C. Ribeiro, L. A Hale, and A. Carman, “Asymmetrical movements of the lumbopelvic region: Is this a potential mechanism for low back pain in people with lower limb amputation?,” Medical Hypotheses, vol. 82, no. 1, pp. 77–85, 2014.spa
dc.relation.referencesB. E. Lawson, H. A. Varol, and M. Goldfarb, “Ground adaptive standing controller for a powered transfemoral prosthesis,” IEEE International Conference on Rehabilitation Robotics, 2011.spa
dc.relation.referencesASME, “Making Strides with Bionic Ankle,” March 2015.spa
dc.relation.referencesL. P. Reis and C. P. Santos, “Robot 2015: Second Iberian Robotics Conference,” vol. 418, pp. 209–220, 2016.spa
dc.relation.referencesS. I. Wolf, M. Alimusaj, L. Fradet, J. Siegel, and F. Braatz, “Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.,” Clinical biomechanics (Bristol, Avon), vol. 24, pp. 860–5, Dec. 2009.spa
dc.relation.referencesA. Hansen and E. Nickel, “Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces,” Mar. 27, 2014.spa
dc.relation.referencesA. Eshraghi, N. A. A. Osman, H. Gholizadeh, S. Ali, and B. Shadgan, “100 Top-Cited Scientific Papers in Limb Prosthetics.,” Biomedical engineering online, vol. 12, no. 1, p. 119, 2013.spa
dc.relation.referencesB. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. Visser, and S. Wolf, “Variable impedance actuators: A review,” Robotics and Autonomous Systems, vol. 61, pp. 1601–1614, Dec. 2013.spa
dc.relation.referencesM. Grimmer, M. Eslamy, S. Gliech, and A. Seyfarth, “A comparison of parallel- and series elastic elements in an actuator for mimicking human ankle joint in walking and running,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 2463–2470, 2012.spa
dc.relation.referencesM. Grimmer, M. Eslamy, and A. Seyfarth, “Energetic and Peak Power Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for Walking and Running,” Actuators, vol. 3, no. 1, pp. 1–19, 2014.spa
dc.relation.referencesM. Eslamy, M. Grimmer, S. Rinderknecht, and A. Seyfarth, “Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.,” IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2013, p. 6650362, June 2013.spa
dc.relation.referencesM. Eslamy, M. Grimmer, and A. Seyfarth, “Adding passive biarticular spring to active monoarticular foot prosthesis: Effects on power and energy requirement,” in 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 677–684, Nov 2014.spa
dc.relation.referencesJ. M. Donelan, R. Kram, and A. D. Kuo, “Simultaneous positive and negative external mechanical work in human walking,” Journal of Biomechanics, vol. 35, no. 1, pp. 117–124, 2002.spa
dc.relation.referencesS. H. Collins and A. D. Kuo, “Recycling energy to restore impaired ankle function during human walking,” PLoS ONE, vol. 5, no. 2, 2010.spa
dc.relation.referencesT. McGeer, “Passive dynamic walking,” The international journal of robotics research, vol. 9, no. 2, pp. 62–82, 1990.spa
dc.relation.referencesM. H. Michalski and J. S. Ross, “The Shape of Things to Come,” JAMA, vol. 312, p. 2213, Dec 2014.spa
dc.relation.referencesO. Diegel, Additive Manufacturing: An Overview, vol. 10. Elsevier, 2014.spa
dc.relation.referencesC. Weller, R. Kleer, and F. T. Piller, “Economic Implications of 3D printing: Market structure Models in light of additive manufacturing Revisited,” International Journal of Production Economics, Mar. 2015.spa
dc.relation.referencesB. J. South, N. P. Fey, G. Bosker, and R. R. Neptune, “Manufacture of energy storage and return prosthetic feet using selective laser sintering.,” Journal of biomechanical engineering, vol. 132, no. 1, p. 015001, 2010.spa
dc.relation.referencesJ. Yap and G. Renda, “Low-cost 3D-printable Prosthetic Foot,” in European Conference Design4Health, (Sheffield), pp. 1–10, Design4Health, 2015.spa
dc.relation.referencesS. Tibbits, “4D printing: Multi-material shape change,” Architectural Design, vol. 84, pp. 116–121, 2014.spa
dc.relation.referencesD. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, and S. Tibbits, “Active Printed Materials for Complex Self-Evolving Deformations,” Scientific Reports, vol. 4, p. 7422, 2014.spa
dc.relation.referencesK. Yu, A. Ritchie, Y. Mao, M. L. Dunn, and H. J. Qi, “Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials,” Procedia IUTAM, vol. 12, pp. 193–203, 2015.spa
dc.relation.referencesZ. Tao, H. J. Ahn, C. Lian, K. H. Lee, and C. H. Lee, “Design and optimization of prosthetic foot by using polylactic acid 3D printing,” Journal of Mechanical Science and Technology, vol. 31, no. 5, pp. 2393–2398, 2017.spa
dc.relation.referencesB. Rochlitz and D. Pammer, “Design and analysis of 3D printable foot prosthesis,” Periodica Polytechnica Mechanical Engineering, vol. 61, no. 4, pp. 282–287, 2017.spa
dc.relation.referencesF. M. Rohjoni, M. N. A. A. Patar, J. Mahmud, H. Lee, and A. Hanafusa, “Finite element analysis of a transtibial prosthetic during gait cycle,” International Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 5, pp. 764–770, 2020.spa
dc.relation.referencesH. Kamel, O. Harraz, K. Azab, and T. Attia, “Developing an Optimized Low-Cost Transtibial Energy Storage and Release Prosthetic Foot Using Three-Dimensional Printing,” Journal of Engineering and Science in Medical Diagnostics and Therapy, vol. 3, no. 2, pp. 1–9, 2020.spa
dc.relation.referencesV. Vijayan, S. Arun Kumar, S. Gautham, M. Mohamed Masthan, and N. Piraichudan, “Design and analysis of prosthetic foot using additive manufacturing technique,” Materials To day: Proceedings, no. xxxx, 2020.spa
dc.relation.referencesA. Hansen and F. Starker, “Prosthetic Foot Principles and Their Influence on Gait,” Handbook of Human Motion, pp. 1–15, 2016.spa
dc.relation.referencesT. M. Balaramakrishnan, S. Natarajan, and S. Srinivasan, “Roll-over shape of a prosthetic foot: a finite element evaluation and experimental validation,” Medical and Biological Engineering and Computing, vol. 58, no. 10, pp. 2259–2270, 2020.spa
dc.relation.referencesJ. Hallquist, LS-DYNA® theory manual. No. March, 2006.spa
dc.relation.referencesH. M. Herr and a. M. Grabowski, “Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1728, pp. 457–464, 2012.spa
dc.relation.referencesM. K. Shepherd and E. J. Rouse, “The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis with Continuously Variable Stiffness,” vol. 4320, no. c, 2017.spa
dc.relation.referencesR. B. Davis and P. A. DeLuca, “Gait characterization via dynamic joint stiffness,” Gait and Posture, vol. 4, no. 3, pp. 224–231, 1996.spa
dc.relation.referencesE. J. Rouse, R. D. Gregg, L. J. Hargrove, and J. W. Sensinger, “The difference between stiffness and quasi-stiffness in the context of biomechanical modeling,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 562–568, 2013.spa
dc.relation.referencesA. H. Hansen, D. S. Childress, S. C. Miff, S. a. Gard, and K. P. Mesplay, “The human ankle during walking: Implications for design of biomimetic ankle prostheses,” Journal of Biomechanics, vol. 37, pp. 1467–1474, 2004.spa
dc.relation.referencesP. Crenna and C. Frigo, “Dynamics of the ankle joint analyzed through moment-angle loops during human walking: gender and age effects.,” Human movement science, vol. 30, pp. 1185–98, dec 2011.spa
dc.relation.referencesK. Shamaei, G. S. Sawicki, and A. M. Dollar, “Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking,” PLoS ONE, vol. 8, no. 3, 2013.spa
dc.relation.referencesE. Schaffalitzky, P. Gallagher, M. MacLachlan, and N. Ryall, “Understanding the benefits of prosthetic prescription: Exploring the experiences of practitioners and lower limb prosthetic users,” Disability and Rehabilitation, vol. 33, no. 15-16, pp. 1314–1323, 2011.spa
dc.relation.referencesP. M. Stevens, J. Rheinstein, and S. R. Wurdeman, “Prosthetic foot selection for individuals with lower-limb amputation: A clinical practice guideline,” Journal of Prosthetics and Orthotics, vol. 30, no. 4, pp. 175–180, 2018.spa
dc.relation.referencesH. Van Der Linde, C. J. Hofstad, J. Van Limbeek, K. Postema, and J. H. Geertzen, “Use of the Delphi Technique for developing national clinical guidelines for prescription of lower-limb prostheses,” Journal of Rehabilitation Research and Development, vol. 42, no. 5, pp. 693–704, 2005.spa
dc.relation.referencesJ. D. Collins, E. S. Arch, J. R. Crenshaw, and K. A. Bernhardt, “Net ankle quasi-stiffness is in fluenced by walking speed but not age for older adult women,” Gait & Posture, vol. 62, no. January 2017, pp. 311–316, 2018.spa
dc.relation.referencesA. R. Akl, A. Baca, J. Richards, and F. Conceição, “Leg and lower limb dynamic joint stiffness during different walking speeds in healthy adults,” Gait and Posture, vol. 82, no. October 2019, pp. 294–300, 2020.spa
dc.relation.referencesH. Argunsah Bayram and M. B. Bayram, “Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living,” The Journal of Foot and Ankle Surgery, vol. 57, pp. 668–674, jul 2018.spa
dc.relation.referencesD. W. Powell, D. S. B. Williams, B. Windsor, R. J. Butler, and S. Zhang, “Ankle work and dynamic joint stiffness in high- compared to low-arched athletes during a barefoot running task,” Human Movement Science, vol. 34, no. 1, pp. 147–156, 2014.spa
dc.relation.referencesP. Aleixo, J. Vaz Patto, I. Roupa, H. Moreira, and J. Abrantes, “Dynamic joint stiffness of the ankle in healthy and rheumatoid arthritis postmenopausal women,” Gait & Posture, vol. 60, no. October 2017, pp. 225–234, 2015.spa
dc.relation.referencesR. C. Gabriel, J. Abrantes, K. Granata, J. Bulas-Cruz, P. Melo-Pinto, and V. Filipe, “Dynamic joint stiffness of the ankle during walking: gender-related differences.,” Physical therapy in sport: official journal of the Association of Chartered Physiotherapists in Sports Medicine, vol. 9, pp. 16–24, feb 2008.spa
dc.relation.referencesR. Holgate, T. Sugar, A. Nash, J. Kianpour, C. T. Johnson, and E. Santos, “A Passive Ankle-Foot Prosthesis With Energy Return to Mimic Able-Bodied Gait,” in Volume 5A: 41st Mechanisms and Robotics Conference, p. V05AT08A056, ASME, aug 2017.spa
dc.relation.referencesL. Jin and M. E. Hahn, “Modulation of lower extremity joint stiffness, work and power at different walking and running speeds,” Human Movement Science, vol. 58, no. January, pp. 1–9, 2018.spa
dc.relation.referencesR. Ferber, S. T. Osis, J. L. Hicks, and S. L. Delp, “Gait biomechanics in the era of data science,” Journal of Biomechanics, vol. 49, no. 16, pp. 3759–3761, 2016.spa
dc.relation.referencesWinter DA, The biomechanics and motor control of human gait. 1987.spa
dc.relation.referencesW. McKinney et al., “Data structures for statistical computing in python,” in Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56, Austin, TX, 2010.spa
dc.relation.referencesF. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.spa
dc.relation.referencesP. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.spa
dc.relation.referencesS. Seabold and J. Perktold, “statsmodels: Econometric and statistical modeling with python,” in 9th Python in Science Conference, 2010.spa
dc.relation.referencesS. Gillies et al., “Shapely: manipulation and analysis of geometric objects,” 2007.spa
dc.relation.referencesT. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.spa
dc.relation.referencesJ. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.spa
dc.relation.referencesB. W. Stansfield, S. J. Hillman, M. E. Hazlewood, and J. E. Robb, “Regression analysis of gait parameters with speed in normal children walking at self-selected speeds,” Gait and Posture, vol. 23, no. 3, pp. 288–294, 2006.spa
dc.relation.referencesM. H. Schwartz, A. Rozumalski, and J. P. Trost, “The effect of walking speed on the gait of typically developing children,” Gait and Posture, vol. 41, no. 3, pp. 351–357, 2008.spa
dc.relation.referencesG. Bovi, M. Rabuffetti, P. Mazzoleni, and M. Ferrarin, “A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects,” Gait and Posture, vol. 33, no. 1, pp. 6–13, 2011.spa
dc.relation.referencesC. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals,” PeerJ, vol. 2018, no. 4, pp. 1–17, 2018.spa
dc.relation.referencesJ. K. Moore, S. K. Hnat, and A. J. van den Bogert, “An elaborate data set on human gait and the effect of mechanical perturbations,” PeerJ, vol. 3, no. April, p. e918, 2015.spa
dc.relation.referencesF. Horst, A. Eekhoff, K. M. Newell, and W. I. Schöllhorn, “Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression,” PLoS ONE, vol. 12, no. 6, 2017.spa
dc.relation.referencesF. Horst, M. Mildner, and W. I. Schöllhorn, “One-year persistence of individual gait patterns identified in a follow-up study â C“ A call for individualised diagnose and therapy,” Gait and Posture, vol. 58, no. August, pp. 476–480, 2017.spa
dc.relation.referencesF. Horst, S. Lapuschkin, W. Samek, K. R. Müller, and W. I. Schöllhorn, “Explaining the unique nature of individual gait patterns with deep learning,” Scientific Reports, vol. 9, no. 1, pp. 1–13, 2019.spa
dc.relation.referencesT. Lencioni, I. Carpinella, M. Rabuffetti, A. Marzegan, and M. Ferrarin, “Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks,” Scientific Data, vol. 6, no. 1, 2019.spa
dc.relation.referencesS. Hood, M. K. Ishmael, A. Gunnell, K. B. Foreman, and tommaso Lenzi, “A kinematic and kinetic dataset of 18 above-knee amputees walking at various speeds.,” 2020.spa
dc.relation.referencesA. L. Hof, “Scaling gait data to body size,” Gait & Posture, vol. 4, no. 3, pp. 222 – 223, 1996.spa
dc.relation.referencesA. E. Ferris, J. D. Smith, G. D. Heise, R. N. Hinrichs, and P. E. Martin, “A general model for estimating lower extremity inertial properties of individuals with transtibial amputation,” Journal of Biomechanics, vol. 54, no. January, pp. 44–48, 2017.spa
dc.relation.referencesA. Sawers and M. Hahn, “The potential for error with use of inverse dynamic calculations in gait analysis of individuals with lower limb loss: A review of model selection and assumptions,” JPO: Journal of Prosthetics and Orthotics, vol. 22, pp. 56–61, 01 2010.spa
dc.relation.referencesL. O. Tedeschi, “Assessment of the adequacy of mathematical models,” Agricultural Systems, vol. 89, no. 2-3, pp. 225–247, 2006.spa
dc.relation.referencesJ. R. Jeffers and A. M. Grabowski, “Individual Leg and Joint Work during Sloped Walking for People with a Transtibial Amputation Using Passive and Powered Prostheses,” Frontiers in Robotics and AI, vol. 4, no. December, pp. 1–10, 2017.spa
dc.relation.referencesN. P. Fey, G. K. Klute, and R. R. Neptune, “The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees,” Clinical Biomechanics, vol. 26, pp. 1025–1032, dec 2011.spa
dc.relation.referencesC. E. Shell, A. D. Segal, G. K. Klute, and R. R. Neptune, “The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning,” Clinical Biomechanics, vol. 49, no. November 2016, pp. 56–63, 2017.spa
dc.relation.referencesK. A. Ingraham, H. Choi, E. S. Gardinier, C. D. Remy, and D. H. Gates, “Choosing appropriate prosthetic ankle work to reduce the metabolic cost of individuals with transtibial amputation,” Scientific Reports, vol. 8, no. 1, p. 15303, 2018.spa
dc.relation.referencesK. M. Olesnavage and A. G. Winter, “Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error,” Volume 5A: 41st Mechanisms and Robotics Conference, vol. 140, no. October 2018, p. V05AT08A011, 2017.spa
dc.relation.referencesK. M. Olesnavage and A. G. Winter, “A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 8, pp. 1544–1555, 2018.spa
dc.relation.referencesL. Jin, P. G. Adamczyk, M. Roland, and M. E. Hahn, “The effect of high- and low-damping prosthetic foot structures on knee loading in the uninvolved limb across different walking speeds,” Journal of Applied Biomechanics, vol. 32, no. 3, pp. 233–240, 2016.spa
dc.relation.referencesS. Portnoy, A. Kristal, A. Gefen, and I. Siev-Ner, “Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: Hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet,” Gait and Posture, vol. 35, no. 1, pp. 121–125, 2012.spa
dc.relation.referencesZ. Safaeepour, A. Eshraghi, and M. Geil, “The effect of damping in prosthetic ankle and knee joints on the biomechanical outcomes: A literature review,” Prosthetics and Orthotics International, vol. 41, no. 4, pp. 336–344, 2017.spa
dc.relation.referencesB. I. S. O. Store, “International Standard ISO 22675,” 2007.spa
dc.relation.referencesH. Tryggvason, F. Starker, C. Lecomte, and F. Jonsdottir, “Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot,” Applied Sciences (Switzerland), vol. 10, no. 2, 2020.spa
dc.relation.referencesC. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, pp. 1309 – 1331, 2009.spa
dc.relation.referencesO. R. Bingol and A. Krishnamurthy, “NURBS-Python: An open-source object-oriented NURBS modeling framework in Python,” SoftwareX, vol. 9, pp. 85–94, 2019.spa
dc.relation.referencesF. Orban, “Damping of materials and members in structures,” Journal of Physics: Conference Series, vol. 268, no. 1, 2011.spa
dc.relation.referencesE. Costamilan, A. M. Löw, M. D. F. Awruch, J. Humberto, and S. A. Jr, “Damping ratio in carbon fiber reinforced epoxy filament-wound composites using Hilbert transform,” Preprints, no. January, 2018.spa
dc.relation.referencesLS-DYNA, “Damping âC” Welcome to the LS-DYNA support site.”spa
dc.relation.referencesI. Szabó, Barna; Babuska, “Introduction to Finite Element Analysis: Formulation, Verification and Validation,” in Wiley, vol. 9, pp. 251–267, 2011.spa
dc.relation.referencesB. Iooss and P. Lemaître, “A review on Global Sensitivity Analysis Methods,” Operations Research/ Computer Science Interfaces Series, vol. 59, pp. 101–122, 2015.spa
dc.relation.referencesF. Antonio, C. Viana, V. Steffen, G. Venter, and V. Balabanov, “On how to implement an affordable optimal latin hypercube,” Mechanical Engineering, no. 1979, pp. 1–15, 2007.spa
dc.relation.referencesJ. C. Helton and F. J. Davis, “Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems,” Reliability Engineering and System Safety, vol. 81, no. 1, pp. 23–69, 2003.spa
dc.relation.referencesG. Manache and C. S. Melching, “Sensitivity of Latin Hypercube Sampling to Sample Size and Distributional Assumptions-Uncertainty and Sensitivity Analysis,” no. July 2007, 2015.spa
dc.relation.referencesC. Lecomte, F. Starker, E. Ã. Guðnadóttir, S. Rafnsdóttir, K. Guðmundsson, K. Briem, and S. Brynjolfsson, “Functional joint center of prosthetic feet during level ground and incline walking,” Medical Engineering & Physics, may 2020.spa
dc.relation.referencesM. Waskom and the seaborn development team, “mwaskom/seaborn,” Sept. 2020.spa
dc.relation.referencesM. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. R. A. Martins, “A python surrogate modeling framework with derivatives,” Advances in Engineering Software, p. 102662, 2019.spa
dc.relation.referencesC. Diez, “qd“ Build your own LS-DYNA ® Tools Quickly in Python,” pp. 1–9.spa
dc.relation.referencesJ. Herman and W. Usher, “SALib: An open-source python library for sensitivity analysis,” The Journal of Open Source Software, vol. 2, jan 2017.spa
dc.relation.referencesP. S. Palar and K. Shimoyama, “On efficient global optimization via universal Kriging surrogate models,” Structural and Multidisciplinary Optimization, vol. 57, no. 6, pp. 2377–2397, 2018.spa
dc.relation.referencesG. G. Wang and S. Shan, “Review of Metamodeling Techniques in Support of Engineering Design Optimization,” Journal of Mechanical Design, vol. 129, no. 4, p. 370, 2007.spa
dc.relation.referencesA. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, Global Sensitivity Analysis. The Primer. Chichester, UK: John Wiley & Sons, Ltd, dec 2007.spa
dc.relation.referencesT. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer Series in Statistics, New York, NY: Springer New York, 2009.spa
dc.relation.referencesA. I. J. Forrester, A. Sóbester, and A. J. Keane, Engineering Design via surrogate optimization. 2008.spa
dc.relation.referencesL. Breiman, “Random forests,” Random Forests, pp. 1–122, 2001.spa
dc.relation.referencesB. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability Engineering and System Safety, vol. 93, no. 7, pp. 964–979, 2008.spa
dc.relation.referencesS. Touzani and D. Busby, “Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes,” Reliability Engineering and System Safety, vol. 112, pp. 67–81, 2013.spa
dc.relation.referencesH. Valladares, A. Jones, and A. Tovar, “Surrogate-Based Global Optimization of Composite Material Parts under Dynamic Loading,” SAE Technical Papers, vol. 2018-April, pp. 1–12, 2018.spa
dc.relation.referencesP. Probst, M. N. Wright, and A. L. Boulesteix, “Hyperparameters and tuning strategies for random forest,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 3, pp. 1–19, 2019.spa
dc.relation.referencesM. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, “Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction,” Structural and Multidisciplinary Optimization, vol. 53, no. 5, pp. 935–952, 2016.spa
dc.relation.referencesB. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the Human Out of the Loop: A Review of Bayesian Optimization,”spa
dc.relation.referencesR. Martinez-Cantin, “BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits,” Journal of Machine Learning Research, vol. 15, pp. 3735–3739, 2015.spa
dc.relation.referencesE. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning,” 2010.spa
dc.relation.referencesT. G. authors, “Gpyopt: A bayesian optimization framework in python.” http://github.com/SheffieldML/GPyOpt, 2016.spa
dc.relation.references“BiOM® Changes Name to BionX| Business Wire.”spa
dc.relation.referencesR. K. Fukuchi, C. A. Fukuchi, and M. Duarte, “A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics,” PeerJ, vol. 2017, no. 5, p. 3298, 2017.spa
dc.relation.referencesA. Seth, M. Sherman, J. a. Reinbolt, and S. L. Delp, “OpenSim: A musculoskeletal modeling and simulation framework for in silico investigations and exchange,” Procedia IUTAM, vol. 2, pp. 212–232, 2011.spa
dc.relation.referencesS. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940–1950, 2007.spa
dc.relation.referencesOssur Corp., “PROPRIO FOOT OSSUR,” 2014.spa
dc.relation.referencesD. Paluska and H. Herr, “Series elasticity and actuator power output,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., no. May, pp. 1830–1833, 2006.spa
dc.relation.referencesM. a. Holgate, J. K. Hitt, R. D. Bellman, T. G. Sugar, and K. W. Hollander, “The SPARKy (spring ankle with regenerative kinetics) project: Choosing a DC motor based actuation method,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 163–168, 2008.spa
dc.relation.referencesR. D. Bellman, M. a. Holgate, and T. G. Sugar, “SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 511–516, 2008.spa
dc.relation.referencesF. Sup, H. A. Varol, J. Mitchell, T. Withrow, and M. Goldfarb, “Design and Control of an Active Electrical Knee and Ankle Prosthesis.,” Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2008, pp. 523–528, Oct. 2008.spa
dc.relation.referencesF. Sup, H. A. Varol, J. Mitchell, T. J. Withrow, and M. Goldfarb, “Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 667–676, 2009.spa
dc.relation.referencesK. H. Ha, H. A. Varol, and M. Goldfarb, “Volitional control of a prosthetic knee using surface electromyography.,” IEEE transactions on bio-medical engineering, vol. 58, pp. 144–51, Jan. 2011spa
dc.relation.referencesE. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, and H. M. Herr, “Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption,” IEEE International Conference on Rehabilitation Robotics, no. 1122374, 2013.spa
dc.relation.referencesL. Mooney and H. Herr, “Continuously-variable series-elastic actuator.,” IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2013, p. 6650402, June 2013.spa
dc.relation.referencesZ. Han, C. Barnhart, D. Garlow, A. Bolger, H. Herr, G. Girzon, R. Casler, and J. McCarthy, “Controlling powered human augmentation devices,” Oct. 11 2012.spa
dc.relation.referencesT. Wahl and K. Berns, Modeling, Simulation and Optimization of Bipedal Walking, vol. 18. 2013.spa
dc.relation.referencesP. Cherelle, K. Junius, V. Grosu, H. Cuypers, B. Vanderborght, and D. Lefeber, “The AMP-Foot 2.1 : actuator design, control and experiments with an amputee.,” Robotica, no. September 2014, pp. 1–15, 2014.spa
dc.relation.referencesP. Cherelle, V. Grosu, A. Matthys, B. Vanderborght, and D. Lefeber, “Design and validation of the ankle mimicking prosthetic (AMP) Foot 2.0,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp. 138–148, 2014.spa
dc.relation.referencesJ. Geeroms, L. Flynn, R. Jimenez-Fabian, B. Vanderborght, and D. Lefeber, “Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype,” IEEE International Conference on Rehabilitation Robotics, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalComputational modelingeng
dc.subject.proposalExplicit dynamics optimizationeng
dc.subject.proposalFinite element analysiseng
dc.subject.proposalLower limb prosthesiseng
dc.subject.proposalGait data analysiseng
dc.subject.proposalLower limb biomechanicseng
dc.subject.proposalModelado computacionalspa
dc.subject.proposalOptimización dinámica explícita computacionalspa
dc.subject.proposalPrótesis de miembro inferiorspa
dc.subject.proposalAnálisis de marchaspa
dc.subject.proposalBiomecánica de marchaspa
dc.subject.proposalEnergy storage and returneng
dc.subject.proposalAnkle dynamics joint stiffnesseng
dc.subject.proposalBayesian optimizationeng
dc.subject.proposalSurrogate modelingeng
dc.subject.proposalAnkle-footeng
dc.subject.proposalProsthesiseng
dc.subject.proposalQuasi-stiffnesseng
dc.subject.proposalEnergía acumulada y de retornospa
dc.subject.proposalRigidéz de la dinámica del tobillospa
dc.subject.proposalOptimización bayesianaspa
dc.subject.proposalModelos surrogadosspa
dc.subject.proposalPrótesis de pie y tobillospa
dc.titlePassive dynamic system for energy returning on transtibial prosthesiseng
dc.title.translatedSistema Dinámico Pasivo de Retorno Energético en prótesis transtibialesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCOLFUTUROspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PhDThesis.pdf
Tamaño:
10.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: