Método predictivo para clasificar la aceptación de la vacunación contra la influenza empleando técnicas de aprendizaje de máquinas.
| dc.contributor.advisor | Branch Bedoya, John Willian | |
| dc.contributor.advisor | Iral Palomino, Rene | |
| dc.contributor.author | Falcón Granada, Juan Sebastián | |
| dc.contributor.orcid | Branch Bedoya, John Willian [0000-00020378028X] | |
| dc.contributor.orcid | Iral, Rene [0000000182780079] | |
| dc.coverage.country | Colombia | |
| dc.date.accessioned | 2026-02-03T14:34:29Z | |
| dc.date.available | 2026-02-03T14:34:29Z | |
| dc.date.issued | 2025-09-15 | |
| dc.description.abstract | Este trabajo propone y valida una metodología analítica para predecir la aceptación de la vacunación contra la influenza en población laboral y segmentar a los no vacunados para orientar intervenciones focalizadas y aumentar las coberturas lo máximo posible. Primero, se realizó una revisión sistemática de la literatura que consolidó un marco de variables clave para predecir la vacunación contra influenza, así como los métodos de aprendizaje de máquinas más utilizados y sus métricas. Luego, se aplicó la metodología a un caso de uso real en una prestadora de servicios de salud colombiana, (población de 19520 individuos, 44% vacunados y 56% no vacunados). Se entrenaron y compararon cuatro métodos de aprendizaje de máquinas (Regresión Logística, Random Forest, XGBoost y Multi-Layer Perceptron), priorizando la identificación de no vacunados. Los mejores desempeños se obtuvieron con MLP (especificidad del 70% y recall del 55%) y XGBoost (especificidad del 70% y recall del 53%), con AUC del 67%, evidenciando capacidad predictiva moderada. Sobre la subpoblación predicha como no vacunada (11586 personas), un clustering mediante Partitioning Around Medoids definió seis clústeres; los clústeres 2 y 6 (predominio asistencial, mayor edad y más días de incapacidad) fueron priorizados por mayor exposición y potencial impacto operativo. El estudio entrega una metodología reproducible y un punto de partida transferible a otros contextos (comunidades, empresas no sanitarias) y patologías con dinámica similar (neumococo, refuerzos de COVID-19, VPH). (Texto tomado de la fuente) mejores desempeños se obtuvieron con MLP (especificidad del 70% y recall del 55%) y XGBoost (especificidad del 70% y recall del 53%), con AUC del 67%, evidenciando capacidad predictiva moderada. Sobre la subpoblación predicha como no vacunada (11586 personas), un clustering mediante Partitioning Around Medoids definió seis clústeres; los clústeres 2 y 6 (predominio asistencial, mayor edad y más días de incapacidad) fueron priorizados por mayor exposición y potencial impacto operativo. El estudio entrega una metodología reproducible y un punto de partida transferible a otros contextos (comunidades, empresas no sanitarias) y patologías con dinámica similar (neumococo, refuerzos de COVID-19, VPH). | spa |
| dc.description.abstract | This study proposes and validates an analytical methodology to predict influenza vaccination acceptance in working population and to segment the unvaccinated in order to guide targeted interventions and maximize coverage. First, a systematic literature review consolidated a framework of key variables to predict influenza vaccination, as well as the most used machine-learning methods and their metrics. The methodology was then applied to a real use case at a colombian healthcare provider (population of 19520 individuals, 44% vaccinated and 56% unvaccinated). Four machine-learning methods were trained and compared (Logistic Regression, Random Forest, XGBoost, and MultiLayer Perceptron), prioritizing the identification of the unvaccinated. The best performances were achieved by MLP (70% specificity and 55% recall) and XGBoost (70% specificity and 53% recall), with an AUC of 67%, indicating moderate predictive capacity. Within the subpopulation predicted as unvaccinated (11586 people), clustering via Partitioning Around Medoids defined six clusters; clusters 2 and 6 (predominantly clinical roles, older age, and more days of sick leave) were prioritized due to higher exposure and potential operational impact. The study provides a reproducible methodology and a transferable starting point for other contexts (communities, non-healthcare companies) and for conditions with dynamics similar to influenza (pneumococcal disease, COVID-19 boosters, HPV). | eng |
| dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería - Analítica | |
| dc.format.extent | 1 recurso en línea (70 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89374 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | |
| dc.relation.references | Afolabi, S., Ajadi, N., Jimoh, A., & Adenekan, I. (2025). Predicting diabetes using supervised machine learning algorithms on E-health records. Informatics and Health. | |
| dc.relation.references | Akinrinade, O., & Du, C. (2025). Skin cancer detection using deep machine learning techniques. Intelligence-Based Medicine. | |
| dc.relation.references | Andrade, G. (2022). Predictive demographic factors of Covid-19 vaccine. Vacunas. | |
| dc.relation.references | Bish, A., Yardley, L., Nicoll, A., & Michie, S. (2011). Factors associated with uptake of vaccination against pandemic influenza: A systematic review. Vaccine. | |
| dc.relation.references | Boakye, E. A. (2023). Trends in Reasons for Human Papillomavirus Vaccine Hesitancy: 2010-2020. PEDIATRICS. | |
| dc.relation.references | Buda, S., Tolksdorf, K., & Schuler, E. (2017). Establishing an ICD-10 code based SARI-surveillance in Germany – description of the system and first results from five recent influenza seasons. BMC Public Health. | |
| dc.relation.references | Burch, A., Lee, E., Shackelford, P., Schmidt, P., & Bolin, P. (2021). Willingness to Vaccinate Against COVID-19: Predictors of Vaccine Uptake Among Adults in the US. Journal of Prevention. | |
| dc.relation.references | Candio, P., Violato, M., Clarke, P. M., & Duch, R. (2023). Prevalence, predictors and reasons for COVID 19 vaccine hesitancy: Results. Health policy. | |
| dc.relation.references | Castillo, L., Malo, D., Díaz, D., García, I., Pulido, P., & Castañeda, C. (2022). Economic costs of severe seasonal influenza in Colombia, 2017–2019: A multi-center analysis. PLOS ONE. | |
| dc.relation.references | CDC. (2024). Acerca de la influenza. Obtenido de https://espanol.cdc.gov/flu/about/index.html | |
| dc.relation.references | Cheong, Q., Au-yeung, M., Quon, S., Concepcion, K., & Dzevela Kong, J. (2021). Predictive modeling of vaccination uptake in US counties: A machine learning-based approach. Journal of Medical Internet Research. | |
| dc.relation.references | Courville, Caroline, Cadarette, S. M., Wissinger, E., & Alvarez, F. P. (2022). The Economic Burden of Influenza among Adults Aged 18 to 64: A Systematic Literature Review. Influenza and other respiratory viruses. | |
| dc.relation.references | Di Gregori, V., Franchino, G., Marcantoni, C., Simone, B., & Costantino, C. (2014). Logistic regression of attitudes and coverage for influenza vaccination among Italian Public Health medical residents. J prev med hyg. | |
| dc.relation.references | Dodoo, C. C., Hanson-Yamoah, E., Adedia, D., Erzua, I., Yamoah, P., Brobbey, F., . . . Mensah, J. (2024). Using machine learning algorithms to predict COVID-19 vaccine uptake: A. Vaccine: X. | |
| dc.relation.references | Dutta, P., Paul, S., & Kumar, A. (2021). Electronic Devices, Circuits, and Systems for Biomedical Applications. Krishnagar. | |
| dc.relation.references | Ebrahimi, O. V., Sandbakken, E. M., Moss, S. M., Johnson, S. U., Hoffart, A., Bauermeister, S., . . . Leonardsen, E. H. (2025). Modifiable risk factors of vaccine hesitancy: insights from a mixed methods multiple population study combining machine learning and thematic analysis during the COVID-19 pandemic. BMC Medicine. | |
| dc.relation.references | Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist level classification of skin cancer with deep neural networks. Nature. | |
| dc.relation.references | Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. | |
| dc.relation.references | Fernandes, N., Costa, D., Costa, D., Keating, J., & Arantes, J. (2021). Predicting COVID-19 Vaccination Intention: The Determinants of Vaccine Hesitancy. Vaccines. | |
| dc.relation.references | File Jr, T. M., & Marrie, T. J. (2010). Burden of Community-Acquired Pneumonia in North American Adults. Postgraduate Medicine. | |
| dc.relation.references | Fix, J., Donneyong, M. M., Rapp, S. R., Sattari, M., Snively, B. M., Wactawski-Wende, J., & Gower, E. W. (2022). Predictors of Influenza and Pneumococcal Vaccination Among Participants in the Women’s Health Initiative. Public Health Rep. | |
| dc.relation.references | Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. | |
| dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer. | |
| dc.relation.references | Hearon, E. (2025). Encoding Categorical Variables. LibreTexts. | |
| dc.relation.references | Huang, Z. (1998). Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery 2. | |
| dc.relation.references | Hussen, Y. H., Ibrahim, M. H., Badran, S. G., & Eldeeb, S. M. (2022). Hesitancy for influenza vaccine among healthcare workers and mothers of preschool children: A cross-sectional study in Zagazig, Egypt. Journal of Family and Community Medicine. | |
| dc.relation.references | INS Colombia. (2024). Protoclo de vigilancia en salud publica Infección Respiratoria Aguda. | |
| dc.relation.references | Kristin L. Nichol, M. M. (1995). The Effectiveness of Vaccination against Influenza in Healthy, Working Adults. New England Journal of Medicine. | |
| dc.relation.references | LaValley, M. (2008). Logistic Regression. Circulation. | |
| dc.relation.references | Li, K., Yu, T., & Seabury, S. (2022). Trends and disparities in the utilization of influenza vaccines among commercially insured US adults during the COVID-19 pandemic. Vaccine. | |
| dc.relation.references | Little, R. J., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. | |
| dc.relation.references | Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., . . . Lee, S.-I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. | |
| dc.relation.references | Mewhirter, J., Sagir, M., & Rebecca, S. (2022). Towards a predictive model of COVID-19 vaccine hesitancy among American adults. Vaccine. | |
| dc.relation.references | MinSalud Chile. (2018). Adherencia a la vacunación. | |
| dc.relation.references | Minsalud Colombia. (2018). Lineamientos para la prevención, diagnóstico, manejo y control de casos de Influenza. | |
| dc.relation.references | MinSalud Colombia. (2024). LINEAMIENTOS TÉCNICOS Y OPERATIVOS PARA LA VACUNACIÓN CONTRA INFLUENZA ESTACIONAL CEPA SUR 2024. Dirección de Promoción y Prevención, Subdirección de Enfermedades Transmisibles, Grupo de Gestión Integrada de Enfermedades Inmunoprevenibles. | |
| dc.relation.references | Mohammed, M., Khan, M., & Bashier, M. (2016). Machine learning: algorithms and applications. CRC Press. | |
| dc.relation.references | Molinari, M., Noelle-Angelique, Ortega-Sanchez, I. R., Messonnier, M. L., Thompson, W. W., Wortley, P. M., . . . Bridges, C. B. (2007). The Annual Impact of Seasonal Influenza in the US: Measuring Disease Burden and Costs. Vaccine. | |
| dc.relation.references | Mondal, P., Sinharoy, A., & Su, L. (2021). Sociodemographic predictors of COVID-19 vaccine acceptance: a. Public Health. | |
| dc.relation.references | Nafilyan, V., Dolby, T., Finning, K., Pawelek, P., Morgan, J., Edge, R., . . . van Tongeren, M. (2022). Differences in COVID-19 vaccination coverage by occupation in England. Occupational and Environmental Medicine. | |
| dc.relation.references | Nateski, V. (2017). An overview of the supervised machine learning methods. Research Gate. | |
| dc.relation.references | Osterholm, T, M., Kelley, N. S., Sommer, A., & Belongia, E. A. (2012). Efficacy and Effectiveness of Influenza Vaccines: A Systematic Review and Meta-Analysis. The Lancet Infectious Diseases. | |
| dc.relation.references | Pedregosa, F., Varoquaux, G., Gramfordt, A., Michel, V., & Thirion, B. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12. | |
| dc.relation.references | Qureshi, M. S., Qureshi, M. B., Iqrar, U., Raza, A., Ghadi, Y. Y., Innab, N., . . . Qahmash, A. (2024). AI based predictive acceptability model for effective vaccine delivery in healthcare systems. scientific reports. | |
| dc.relation.references | Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. NEJM. | |
| dc.relation.references | Ruiz, J., & Bell, R. (2021). Predictors of intention to vaccinate against COVID-19: Results of a nationwide survey. Vaccine. | |
| dc.relation.references | Salman, H., Kalakech, A., & Steiti, A. (2024). Random Forest Algorithm Overview. Babylonian Journal of Machine Learning. | |
| dc.relation.references | Santibanez, T., Nguyen, K., & Greby, S. (2020). Parental vaccine hesitancy and childhood influenza vaccination. Pediatrics. | |
| dc.relation.references | Sarker, I. (2021). Machine Learning: Algorithms, Real-World Applications and Research. SN Computer Science. | |
| dc.relation.references | Soji, O., & Omozele, A. (2024). Data-driven decision-making in healthcare: Improving patient outcomes. ResearchGate. | |
| dc.relation.references | Sokale, I., Alvarez, J., Rosales, O., Bakota, E., Amos, C. I., Badr, H., & Oluyomi, A. O. (2022). COVID-19 Vaccine Uptake among US Adults According to Standard Occupational Groups (Vaccines, 2022). Vaccines. | |
| dc.relation.references | Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management. | |
| dc.relation.references | Syed, I., & Sabit, A. (2022). Predictors of COVID-19 vaccination rate in USA: A machine learning. ELSEVIER. | |
| dc.relation.references | Yan Chan, K., Abu-Salih, B., Qaddoura, R., Al-Zoubi, A., Palade, V., Pham, D.-S., . . . Muhammad, K. (2023). Deep neural networks in the cloud: Review, applications, challenges and. ELSEVIER. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | |
| dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | |
| dc.subject.lemb | Salud pública | |
| dc.subject.lemb | Teoría de la estimación | |
| dc.subject.lemb | Aprendizaje automático (inteligencia artificail) | |
| dc.subject.proposal | Aceptación vacunal | spa |
| dc.subject.proposal | Aprendizaje de máquinas | spa |
| dc.subject.proposal | Clasificación binaria | spa |
| dc.subject.proposal | Clustering | spa |
| dc.subject.proposal | Estadística descriptiva | spa |
| dc.subject.proposal | Vaccine acceptance | eng |
| dc.subject.proposal | Machine learning | eng |
| dc.subject.proposal | Binary classification | eng |
| dc.subject.proposal | Clustering | eng |
| dc.subject.proposal | Descriptive statistics | eng |
| dc.subject.proposal | COVID-19 | |
| dc.title | Método predictivo para clasificar la aceptación de la vacunación contra la influenza empleando técnicas de aprendizaje de máquinas. | |
| dc.title.translated | Predictive method to classify influenza vaccination acceptance using machine learning techniques. | |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Analítica.pdf
- Tamaño:
- 851.74 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

