Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance

dc.contributor.advisorBeltrán Calvo, Gloria Inés
dc.contributor.advisorHernández Carrillo, Rodrígo
dc.contributor.authorRosada González, Omar Andrés
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN GEOTECNIA - GIGUNspa
dc.date.accessioned2021-10-11T14:17:30Z
dc.date.available2021-10-11T14:17:30Z
dc.date.issued2021-10-08
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl comportamiento cinemático de un talud rocoso esta supeditado de manera primaria a las propiedades geométricas de las discontinuidades en macizos rocosos de poca altura (alrededor a 100 metros de alto). Un método numérico que es capaz de simular estas propiedades es el de las redes de fracturas discretas (DFN). Los parámetros primarios que son necesarios para la modelación de una DFN son: dirección, tamaño, porcentaje de terminación e intensidad de las discontinuidades. En esta investigación, se explora qué tan susceptible es un modelo de DFN ante la presencia de datos que direccionalmente clasifican como discordantes, para esto fue necesario la elaboración de un código escrito en Matlab que permite estudiar estos datos utilizando criterios estadísticos, tomados de la estadística direccional en coordenadas esféricas. Adicionalmente se propone una metodología que plantea una manera de analizar e interpretar este tipo de información y de esta forma, poder evaluar el nivel de representación de las discontinuidades simuladas respecto a las condiciones que tienen las mismas in-situ para tres casos de estudio, utilizando un equipo de fotogrametría de corto alcance para la caracterización de las fracturas. Finalmente se proponen una serie de temas que pueden ser considerados en futuras investigaciones relacionadas con este tema de investigación. (Texto tomado de la fuente).spa
dc.description.abstractThe kinematic rock slope behavior is subject mainly to joint geometric properties in rock masses of low height (around 100mhigh). TheDiscrete FractureNetwork (DFN) is a numerical method that can simulate this kind of property. The primary properties that are necessary for modeling a DFN are the following: orientation, fracture length, termination percentage, and fracture intensity. This research, try to prove how sensitive is a DFN model when it has directional outlier data, because of this, it was necessary to write a code in Matlab that is able to study this data using statistical analysis of spherical data. Also, this research proposes a methodology based on how to handle this kind of information and in this way, evaluate how representative is the joint simulation respect to in-situ rock joint in three study cases, using close-range photogrammetric equipment. Finally, it is proposed a set of topics that could be considered in future research.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.notesIncluye anexos
dc.description.researchareaModelación y análisis en geotecniaspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extentxix, 174 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80477
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.references3GSM (2010). ShapeMetrix3D: 3D imaging for measuring and assesing rock and terrain surfaces.spa
dc.relation.references3GSM (2011). Measurement and assessment of rock and terrain surfaces by metric 3D images. (December):1–14.spa
dc.relation.referencesAcosta, J. and Ulloa, C. E. (2001). Memoria geológica de la plancha 227 La Mesa.spa
dc.relation.referencesAlghalandis, Y. F. (2014). Stochastic Modelling of Fractures in RockMasses. University of Adelaide, (March).spa
dc.relation.referencesBaecher, G. B., Lanney, N. A., and Einstein, H. H. (1977). Statistical description of rock properties and sampling. 18th U.S. Symposium on RockMechanics, USRMS 1977, (January 1977).spa
dc.relation.referencesBarton, N. R. (1978). Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. International Journal of RockMechanics and Mining Sciences & Geomechanics Abstracts, 15(2):319–368.spa
dc.relation.referencesBecker, I., Koehrer, B., Waldvogel, M., Jelinek, W., and Hilgers, C. (2018). Comparing fracture statistics from outcrop and reservoir data using conventional manual and t-LiDAR derived scanlines in Ca2 carbonates from the Southern Permian Basin, Germany. Marine and Petroleum Geology, 95(April):228–245.spa
dc.relation.referencesBonilla-Sierra, V., Elmouttie, M., Donzé, F. V., and Scholtès, L. (2017). Composite wedge failure using photogrammetric measurements and DFN-DEM modelling. Journal of Rock Mechanics and Geotechnical Engineering, 9(1):41–53.spa
dc.relation.referencesBorradaile, G. (2003). Statistics of Earth Science Data. Berlin, 1st ed edition.spa
dc.relation.referencesBrideau, M.-A. and Stead, D. (2009). The role of rear release surfaces, block size and lateral confinement on rock slope failure mechanisms. 62nd Canadian Geotechnical Conference, (1971):489–496.spa
dc.relation.referencesBrzovic, A., Rogers, S., Webb, G., Hurtado, J. P., Marin, N., Schachter, P., Alvarez, J., and Baraona, K. (2015). Discrete fracture network modelling to quantify rock mass preconditioning at the El Teniente Mine, Chile. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 124(3):163–177.spa
dc.relation.referencesBuyer, A. and Schubert, W. (2017). Calculation the Spacing of Discontinuities from 3D Point Clouds. Procedia Engineering, 191:270–278.spa
dc.relation.referencesCanavos, G. (1988). Probabilidad y Estadística: Aplicaciones y métodos. McGraw-Hill.spa
dc.relation.referencesCarter, B. J. and Lajtai, E. Z. (1992). Rock slope stability and distributed joint systems. Canadian Geotechnical Journal, 29(1):53–60.spa
dc.relation.referencesChilès, J.-P. (2005). Stochastic Modeling of Natural Fractured Media: A Review. pages 285–294.spa
dc.relation.referencesCleveland, L. J. andWartman, J. (2006). Principles and applications of digital photogrammetry for geotechnical engineering. Geotechnical Special Publication, (149):128–135.spa
dc.relation.referencesCottrel, M., Kamera, R., and Hermanson, J. (2017). FracMan Kinematic Stability Assessment of Tunnels in Forsmark Layout D2. (February).spa
dc.relation.referencesDavy, P., Le Goc, R., and Darcel, C. (2013). A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. Journal of Geophysical Research: Solid Earth, 118(4):1393–1407.spa
dc.relation.referencesDershowitz, W. and Einstein, H. H. (1988). Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(2):21–51.spa
dc.relation.referencesDershowitz, W., Hermanson, J., Follin, S., and Mauldon, M. (2000). Fracture intensity measures in 1-D, 2-D, and 3-D at Äspö, Sweden. 4th North American RockMechanics Symposium, NARMS 2000, pages 849–853.spa
dc.relation.referencesDershowitz, W., Pointe, P., and Doe, T. (2004). Advances in Discrete Fracture Network modeling. pages 882–894.spa
dc.relation.referencesDershowitz,W. S. (1985). Rock joint systems. PhD thesis,Masachusetts Institute of Technology.spa
dc.relation.referencesDershowitz,W. S. and Herda, H. H. (1992). Interpretation of fracture spacing and intensity. In The 33rd U.S. Symposium on RockMechanics (USRMS), pages 757–766.spa
dc.relation.referencesDiederichs, M. S. (1990). DIPS: An interactive and graphical approach to the analysis of orientation based data. PhD thesis, University of Toronto.spa
dc.relation.referencesDrews, T., Miernik, G., Anders, K., Höfle, B., Profe, J., Emmerich, A., and Bechstädt, T. (2018). Validation of fracture data recognition in rock masses by automated plane detection in 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 109(June):19–31.spa
dc.relation.referencesElmo, D. (2006). Evaluation of a hybrid FEM/DEM approach for determination of rock mass strength using a combination of discontinuity mapping and fracture mechanics. (March).spa
dc.relation.referencesElmo, D., Rogers, S., Stead, D., and Eberhardt, E. (2014). Discrete fracture network approach to characterise rock mass fragmentation and implications for geomechanical upscaling. Transactions of the Institutions ofMining and Metallurgy, Section A: Mining Technology, 123(3):149–161.spa
dc.relation.referencesEsmaeilzadeh, A. and Shahriar, K. (2019). Optimized fuzzy cmeans – fuzzy covariance – fuzzy maximum likelihood estimation clustering method based on deferential evolutionary optimization algorithm for identification of rock mass discontinuities sets. Periodica Polytechnica Civil Engineering, 63(2):674–686.spa
dc.relation.referencesFadakar Alghalandis, Y., Elmo, D., and Eberhardt, E. (2017). Similarity Analysis of Discrete Fracture Networks. (January 2018):0–20.spa
dc.relation.referencesFairhurst, C. (2014). Thinking Deeper. ARMA e-newsletter, (1):1–17.spa
dc.relation.referencesFeng, X. T. andHudson, J. A. (2004). The ways ahead for rock engineering design methodologies. International Journal ofRockMechanics andMining Sciences, 41(2):255–273.spa
dc.relation.referencesFeng, X. T. and Hudson, J. A. (2011). Rock Engineering Design. CRC Press, Boca Raton, 1st ed edition.spa
dc.relation.referencesFereshtenejad, S., Yoon, D. H., and Song, J. J. (2020). Application of the covariance matrix clustering algorithm for partitioning joint sets having various joint pole sizes and densities. Geosystem Engineering, 23(1):1–12.spa
dc.relation.referencesFisher, N. I., Lewis, T., and Embleton, B. J. (1993). Statistical analysis of spherical data. Cambridge University Press (CUP).spa
dc.relation.referencesFisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130):295–305.spa
dc.relation.referencesFossen, H. (2010). Structural Geology. Cambrideg University Press, page 481.spa
dc.relation.referencesFrancioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., and Calamita, F. (2020). Application of unmanned aerial vehicle data and discrete fracture network models for improved rockfall simulations. Remote Sensing, 12(12).spa
dc.relation.referencesGao, F., Chen, D., Zhou, K., Niu, W., and Liu, H. (2019). A Fast Clustering Method for Identifying RockDiscontinuity Sets. KSCE Journal of Civil Engineering, 23(2):556–566.spa
dc.relation.referencesGarcía, J. M. (2015). Nuevas Metodologías para el Análisis de Estabilidad de Taludes en Infraestructuras Lineales. Technical report.spa
dc.relation.referencesGolder Associates (2020). FracMan7 User’sManual. page 583.spa
dc.relation.referencesGonzález de Vallejo, L., Ferrer, M., Ortuño, L., and Oteo, C. (2004). Ingeniería Geológica. Pearson, Madrid.spa
dc.relation.referencesGoodman, R. E. (1989). Introduction to RockMechanics. 2nd ed edition.spa
dc.relation.referencesGoodman, R. E. and Shi, G. (1985). Block Theory and its Application to Rock Engineering.Prentice-Hall, New Jersey, 1st ed edition.spa
dc.relation.referencesGrenon, M., Landry, A., Hadjigeorgiou, J., and Lajoie, P. L. (2017). Discrete fracture network based drift stability at the Éléonore mine. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 126(1):22–33.spa
dc.relation.referencesHammah, R. E. and Curran, J. H. (1998). Fuzzy cluster algorithm for the automatic identification of joint sets. International Journal of Rock Mechanics and Mining Sciences, 35(7):889–905.spa
dc.relation.referencesHammah, R. E. and Curran, J. H. (1999). On distance measures for the fuzzy K-means algorithm for joint data. RockMechanics and Rock Engineering, 32(1):1–27.spa
dc.relation.referencesHan, S.,Wang, G., and Li, M. (2018). A trace map comparison algorithm for the discrete fracture network models of rock masses. Computers and Geosciences, 115(September 2017):31–41.spa
dc.relation.referencesHaneberg, W. C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bulletin of Engineering Geology and the Environment, 67(4):457–469.spa
dc.relation.referencesHavaej, M., Coggan, J., Stead, D., and Elmo, D. (2016). A combined remote sensing–numerical modelling approach to the stability analysis of delabole slate quarry, Cornwall, UK. RockMechanics and Rock Engineering, 49(4):1227–1245.spa
dc.relation.referencesHekmatnejad, A., Crespin, B., Opazo, A., Emery, X., Hitschfeld-Kahler, N., and Elmo, D. (2020). Investigating the impact of the estimation error of fracture intensity (P32) on the evaluation of in-situ rock fragmentation and potential of blocks forming around tunnels. Tunnelling and Underground Space Technology, 106 (September):103596.spa
dc.relation.referencesHekmatnejad, A., Emery, X., Brzovic, A., Schachter, P., and Vallejos, J. A. (2017). Spatial modeling of discontinuity intensity from borehole observations at El Teniente mine, Chile. Engineering Geology, 228:97–106.spa
dc.relation.referencesHernández-Carrillo, R. (2020). Reliability Assessment of Rock Slopes by Evidence Theory. PhD thesis, Universidad Nacional de Colombia - Sede Bogotá.spa
dc.relation.referencesHoek, E. (1996). RockMass Classification. In Practical Rock Engineering, number 1972, pages 221 – 252.spa
dc.relation.referencesHoek, E. (2006). Practical Rock Engineering. page 339.spa
dc.relation.referencesHoek, E., Kaiser, P. K., and Bawden,W. F. (1998). Support of Underground Excavations in Hard Rock. A.A Balkema, Rotterdam, 3rd ed edition.spa
dc.relation.referencesHudson, J. A. (2001). Rock engineering case histories: key factors, mechanisms and problems. In Elorante, P. and Sarkka, P., editors, Proceedings of the ISRM Regional Symposium Eurock, pages 13–20, Espoo, Finland. Balkema, Rotterdam.spa
dc.relation.referencesHudson, J. A. and Feng, X. T. (2015). Rock Engineering Risk. CRCPress/Balkema, London, 1st ed edition.spa
dc.relation.referencesHudson, J. A. and Harrison, J. P. (1992). A new approach to studying complete rock engineering problems. Quarterly Journal of Engineering Geology,, 25:93–105.spa
dc.relation.referencesHudson, J. A. and Harrison, J. P. (1997). Engineering RockMechanics: An Introduction to the Principles.spa
dc.relation.referencesItasca (2010).Numerical modeling software for advanced engineering analysis of jointed and blocky material, groundwater, and structural support in three dimensions.spa
dc.relation.referencesItasca (2019). Jointing Tools (GUI/GIIC) in UDEC | US Minneapolis - Itasca Consulting Group, Inc.spa
dc.relation.referencesJaboyedoff, M.,Oppikofer, T., Abella, A.,Derron, M.-h., Loye, A.,Metzger, R., and Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61:5–28.spa
dc.relation.referencesJambayev, A. S. (2013). Discrete Fracture Network Modeling for a Carbonate Reservoir. PhD thesis.spa
dc.relation.referencesJebahi, M., Andre, D., Terreros, I., and Iordanoff, I. (2015). Volume 1: Discrete Element Method to Model 3D Continuous Materials. In Numerical Methods in Engineering Series: Discrete Element Model and Simulation of Continuous Materials Behavior Set, page 198. ISTE / JohnWiley & Sons, London, 1st ed edition.spa
dc.relation.referencesJimenez, R. (2008). Fuzzy spectral clustering for identification of rock discontinuity sets. RockMechanics and Rock Engineering, 41:929–939.spa
dc.relation.referencesJing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics andMining Sciences, 40(3):283–353.spa
dc.relation.referencesJing, L. and Stephansson, O. (2007a). Discrete Fracture Network (DFN) Method. Developments in Geotechnical Engineering, 85:365–398.spa
dc.relation.referencesJing, L. and Stephansson,O. (2007b). Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications. Elsevier, 1st ed edition.spa
dc.relation.referencesJouanna, P., Armangau, C., Batchelor, A., Bonazzi, D., Bruel, D., Ledoux, E., Cheung, P., Etchecopar, A., Fouillac, C., Louis, P., Mechler, P., Tabbagh, A., and Valla, P. (1993). A Summary of Field Test Methods in Fractured Rocks. ACADEMIC PRESS, INC.spa
dc.relation.referencesKhalokakaie, R. and ZareNaghadehi, M. (2012). Ranking the rock slope instability potential using the Interaction Matrix (IM) technique; a case study in Iran. Arabian Journal of Geosciences, 5(2):263–273.spa
dc.relation.referencesKim, D. H., Balasubramaniam, A. S., and Gratchev, I. (2018). Application of photogrammetry and image analysis for rock slope investigation. Geotechnical Engineering, 49(2):49–56.spa
dc.relation.referencesKulatilake, P. H.,Wathugala,D. N., and Stephansson,O. (1993). Stochastic Three Dimensional Joint Size, Intensity and SystemModelling and a Validation to an Area in Stripa Mine, Sweden. Soils and Foundations, 33(1):55–70.spa
dc.relation.referencesLei, Q., Latham, J. P., and Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85:151–176.spa
dc.relation.referencesLei, Q., Latham, J. P., and Xiang, J. (2016). Implementation of an Empirical Joint Constitutive Model into Finite-Discrete Element Analysis of the Geomechanical Behaviour of Fractured Rocks. RockMechanics and Rock Engineering, 49(12):4799–4816.spa
dc.relation.referencesLey, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman and Hall/CRC.spa
dc.relation.referencesMadabhushi, G. (2014). Centrifuge Modelling for Civil Engineers. CRC Press, Boca Raton.spa
dc.relation.referencesMandl, G. (2005). Rock Joints: The Mechanical Genesis. Springer, 1st ed edition.spa
dc.relation.referencesMardia, K. V. (1972). Statistics of Directional Data. Academic Press, London, 1st ed edition.spa
dc.relation.referencesMardia, K. V. and Jupp, P. (2000). Directional Statistics. John Wiley & Sons, Baffins Lane.spa
dc.relation.referencesMcClure, M.W. andHorne, R. N. (2013). Discrete Fracture Network Modeling of Hydraulic Stimulation-Coupling Flow and Geomechanics.spa
dc.relation.referencesMenegoni, N., Giordan, D., Perotti, C., and Tannant, D. D. (2019). Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery – Ormea rock slope, Italy. Engineering Geology, 252(March 2018):145–163.spa
dc.relation.referencesMerrien-Soukatchoff, V., Korini, T., and Thoraval, A. (2012). Use of an integrated discrete fracture network code for stochastic stability analyses of fractured rock masses. Rock Mechanics and Rock Engineering, 45(2):159–181.spa
dc.relation.referencesMiyoshi, T., Elmo, D., and Rogers, S. (2018). Influence of data analysis when exploiting DFN model representation in the application of rock mass classification systems. Journal of RockMechanics and Geotechnical Engineering, 10(6):1046–1062.spa
dc.relation.referencesMunkhchuluun, M. (2017). Linking the Fracture Intensity of an in Situ Rock Mass To Block Cave Mine Fragmentation. (August):108.spa
dc.relation.referencesNaghadehi, M. Z., Jimenez, R., KhaloKakaie, R., and Jalali, S. M. E. (2011). A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes. Engineering Geology, 118(3-4):82–92.spa
dc.relation.referencesNex, F. and Remondino, F. (2013). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1):1–15.spa
dc.relation.referencesNguyen, A. T. and Gasc-barbier, V. M.-s. M. V. M. (2016). Grouping discontinuities in representative sets : influence on the stability analysis of slope cuts. Bulletin of Engineering Geology and the Environment, 75(4):1429–1444.spa
dc.relation.referencesNikoli´c, M., Roje-Bonacci, T., and Ibrahimbegovi´c, A. (2016). Overview of the numerical methods for the modelling of rock mechanics problems. Tehnicki vjesnik - Technical Gazette, 23(2):627–637.spa
dc.relation.referencesNorrish, N. I. and Wyllie, D. C. (1996). Rock Slope Stability Analysis. In Landslides: Investigation and Mitigation, chapter 15, pages 391–425. The National Academies.spa
dc.relation.referencesOyanguren, P. and Monge, L. A. (2005). Mecánica de Rocas: Fundamentos e Ingeniería de Taludes. 12(5):528–537.spa
dc.relation.referencesPalmström, A. (2001). Measurement and characterizations of rock mass jointing. In-Situ Characterization of Rocks - Chapter 2, pages 1–40.spa
dc.relation.referencesPatiño, A., Fuquen, J., Ramos, J., Pedraza, A., Ceballos, L., Pinzón, L., Jerónimo, Y., Álvarez, L., and Torres, A. (2011a). Memoria geológica de la plancha 247 Cáqueza.spa
dc.relation.referencesPatiño, A., Fuquen, J., Ramos, J., Pedraza, A., Ceballos, L., Pinzón, L., Jerónimo, Y., Álvarez, L., and Torres, A. (2011b). Plancha 247 Bogotá Sur Este (Caqueza).spa
dc.relation.referencesPeñuela, J. L., Beltrán-Calvo, G. I., andHernández-Carrillo, R. (2019). Adquisición y evaluación de datos geométricos de macizos rocosos a partir de imágenes tridimensionales para su uso en análisis geotécnicos. Ingeniería y Ciencia, 15(29):43–73.spa
dc.relation.referencesPlesha, M. E. (1987). Constitutive models for rock discontinuities with dilatancy and surface degradation. International Journal for Numerical and Analytical Methods in Geomechanics, 11(4):345–362.spa
dc.relation.referencesPriest, S. (1993). Discontinuity Analysis for Rock Engineering. Springer, Hong Kong, 1st ed edition.spa
dc.relation.referencesProctor, R., White, T., and Terzaghi, K. (1946). Rock tunneling with steel supports. Youngstown.spa
dc.relation.referencesRiquelme, A., Tomás, R., Cano, M., Pastor, J. L., and Abellán, A. (2018). Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51(10):3005–3028.spa
dc.relation.referencesRiquelme, A. J., Abellán, A., Tomás, R., and Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers and Geosciences, 68:38–52.spa
dc.relation.referencesRiquelme, A. J., Tomás, R., and Abellán, A. (2016). Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84:165–176.spa
dc.relation.referencesRobertson, a. M. (1970). The interpretation of geological factors for use in slope theory. Planning Open Pit Mines, Proceedings, Johannesburg, pages 55–71.spa
dc.relation.referencesRocsience (2020). Stereonet Equal Angle / Equal Area Projection Comparison in Dips.spa
dc.relation.referencesRogers, S., Bewick, R., Brzovic, A., andGaudreau,D. (2017). Integrating photogrammetry and discrete fracture network modelling for improved conditional simulation of underground wedge stability. Proceedings of the Eighth International Conference on Deep and High StressMining, (March):599–610.spa
dc.relation.referencesRogers, S., Elmo,D.,Webb, G., andCatalan, A. (2014). Volumetric Fracture Intensity Measurement for Improved Rock Mass Characterisation and Fragmentation Assessment in Block Caving Operations. Rock Mechanics and Rock Engineering, 48(2):633–649.spa
dc.relation.referencesSanabria, J. A. (2019). Evaluación del riesgo ante caída de bloques en taludes de roca a partir de procesamiento de imágenes digitales y simulación de redes de fracturamiento y de trayectorias de bloques. Msc thesis, Universidad Nacional de Colombia - Sede Bogotá, Bogotá.spa
dc.relation.referencesSaxena, A., Prasad, M.,Gupta, A., Bharill, N., Patel,O. P., Tiwari, A., Er, M. J.,Ding,W., and Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267:664–681.spa
dc.relation.referencesStaub, I., Fredriksson, A., Outters, N., and Golder Associates (2002). Strategy for a Rock Mechanics Site Descriptive Model.spa
dc.relation.referencesSturzenegger, M. and Stead, D. (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3-4):163–182.spa
dc.relation.referencesTannant, D. (2015). Review of Photogrammetry-Based Techniques for Characterization and Hazard Assessment of Rock Faces. International journal of geohazards and environment, 1:76–87.spa
dc.relation.referencesTerzaghi, R. D. (1965). Sources of error in joint surveys. Geotechnique, 15(3):287–304.spa
dc.relation.referencesTurner, A. and Schuster, R. (1996). Landslides: Investigation and Mitigation. National Academy of Sciences.spa
dc.relation.referencesUlloa, C., Rodriguez, E., and Acosta, J. (1998). Plancha 227 La Mesa.spa
dc.relation.referencesVillalobos, S., Cacciari, P., and Futai, M. (2020). Stability assessment around a railway tunnel using terrestrial laser scanner data and finite element analysis. Revista Ingenieria de Construccion, 35(1):21–33.spa
dc.relation.referencesVu, P. T., Ni, C.-F., Li,W.-C., Lee, I.-H., and Lin, C.-P. (2019). Particle-BasedWorkflow for Modeling Uncertainty of Reactive Transport in 3D Discrete Fracture Networks. Water, 11(12):2502.spa
dc.relation.referencesWang, X. (2005). Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces. Faculty of the Virginia Polytechnic Institute and State University, page 113.spa
dc.relation.referencesWarburton, P. M. (1980). A stereological interpretation of joint trace data. International Journal of RockMechanics andMining Sciences and Geomechanics, 17(4):181–190.spa
dc.relation.referencesWarburton, P. M. (1985). A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers and Geosciences, 11(6):707–712.spa
dc.relation.referencesWood, D. M. (2017). Geotechnical modelling. GeotechnicalModelling, pages 1–488.spa
dc.relation.referencesWyllie, D. (2018). Rock Slope Engineering: Civil Applications, volume 13. CRC press, 5th edition.spa
dc.relation.referencesWyllie, D. and Mah, C. (2004). Rock Slope Engineering Civil and Mining. Spon Press, London, 4th ed edition.spa
dc.relation.referencesZhang, L. and Einstein, H. H. (2000). Estimating the intensity of rock discontinuities. International Journal of Rock Mechanics and Mining Sciences, 37(5):819–837.spa
dc.relation.referencesZheng, H., Liu, D. F., and Li, C. G. (2005). Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering, 64(14):1871–1888.spa
dc.relation.referencesZúñiga, J., Pairoa, S., and Becerra, J. (2012). Generación de Modelos Tridimensionales a partir de Fotogrametría , Aplicaciones en Geología Estructural. pages 1–3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembPetrology - techniqueeng
dc.subject.lembPetrología - Técnicaspa
dc.subject.lembRock mechanicseng
dc.subject.lembMecánica de rocasspa
dc.subject.lembRock slopeseng
dc.subject.lembTaludes rocososspa
dc.subject.proposalDiscontinuidadesspa
dc.subject.proposalRedes de fracturas discretasspa
dc.subject.proposalDFNeng
dc.subject.proposalFracmaneng
dc.subject.proposalFotogrametría de corto alcancespa
dc.subject.proposalFishereng
dc.subject.proposalEstadística direccional en coordenadas esféricasspa
dc.subject.proposalShapeMetrixeng
dc.subject.proposalSlopeseng
dc.subject.proposalRock mechanicseng
dc.subject.proposalRockeng
dc.subject.proposalJointseng
dc.subject.proposalDirectional statistics on spherical coordinateseng
dc.subject.proposalClose-range photogrammetryeng
dc.subject.proposalTaludesspa
dc.subject.proposalRocasspa
dc.titlePropuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcancespa
dc.title.translatedMethodological proposal for the adjustment of a discrete fracture network (DFN) from short-range photogrammetryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCaracterización de macizos rocosos mediante técnicas de análisis de imágenes tridimensionales para análisis de estabilidad en taludes vialesspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1107058051.2021.pdf
Tamaño:
66.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: