Evaluación de la influencia de un grupo de metabolitos característicos de individuos con Parkinson en la función astrocítica humana mediante modelado computacional

dc.contributor.advisorPinzón Velasco, Andrés Mauriciospa
dc.contributor.authorRojo Orozco, María Alejandraspa
dc.contributor.refereeArboleda Bustos, Gonzalo Humbertospa
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemasspa
dc.date.accessioned2025-07-16T00:36:45Z
dc.date.available2025-07-16T00:36:45Z
dc.date.issued2025-07-15
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl Parkinson (EP) es una enfermedad neurodegenerativa multifactorial y poligénica, caracterizada por la acumulación de proteínas mal plegadas, como la α-sinucleína, y la pérdida de neuronas dopaminérgicas en la sustancia negra. Además, su complejidad biológica y genética aún no se comprende del todo, lo que la convierte en una de las enfermedades neurodegenerativas más prevalentes y costosas a nivel mundial. En este sentido, estudios recientes destacan el papel crucial de las células gliales, en particular los astrocitos, en enfermedades neurodegenerativas, debido a su rol en el soporte neuronal, el reciclaje de neurotransmisores, la homeostasis metabólica y la protección de la barrera hematoencefálica (BHE). Adicionalmente, también se ha evidenciado la implicación del microbioma intestinal en estos procesos mediante el eje intestino-cerebro (Gut-Brain Axis, GBA). En este contexto, el presente trabajo evalúa los efectos de metabolitos desregulados, como triptófano, indol, fructosa, ácido mirístico y ácido fenilacético, identificados en modelos computacionales del microbioma de pacientes con EP, y su impacto sobre un modelo computacional de astrocitos humanos, mediante COBRApy y análisis de balance de flujo (FBA). Se evaluaron escenarios con diferentes restricciones metabólicas, que revelaron alteraciones en rutas asociadas al metabolismo de aminoácidos esenciales y al metabolismo energético. En particular, la restricción de triptófano indujo reconfiguraciones en rutas mitocondriales, de transporte y posibles ajustes en el estado redox celular. La activación de la vía de la quinurenina (KYN) mostró un efecto compensatorio parcial al preservar flujos clave y modular rutas críticas en ausencia de triptófano. Además, se identificaron posibles cambios en la β-oxidación de lípidos, la síntesis de esteroides y el transporte lisosomal, junto con variaciones en reacciones clave P450SCC1m, NDPK6, ASPTAm y Ex_fru. Estos hallazgos subrayan el impacto potencial de metabolitos intestinales en la función astrocítica y su posible vínculo con la progresión de la EP, abriendo oportunidades para hipótesis testables y el refinamiento de modelos computacionales gliales. (Texto tomado de la fuente).spa
dc.description.abstractParkinson’s disease (PD) is a multifactorial and polygenic neurodegenerative disorder, characterized by the accumulation of misfolded proteins such as α-synuclein and the loss of dopaminergic neurons in the substantia nigra. Additionally, its biological and genetic complexity is still not fully understood, making it one of the most prevalent and costly neurodegenerative diseases worldwide. In this context, recent studies have highlighted the crucial role of glial cells—particularly astrocytes—in neurodegenerative conditions, due to their involvement in neuronal support, neurotransmitter recycling, metabolic homeostasis, and maintenance of the blood-brain barrier (BBB). Furthermore, the involvement of the intestinal microbiome in these processes has also been evidenced, mainly through the gut-brain axis (GBA).In this context, this study evaluates the effects of deregulated metabolites—such as tryptophan, indole, fructose, myristic acid, and phenylacetic acid—identified in computational microbiome models of PD patients, and their impact on a human astrocyte computational model using COBRApy and Flux Balance Analysis (FBA). We evaluated scenarios with different metabolic restrictions, which revealed alterations in pathways associated with essential amino acid metabolism and energy metabolism. In particular, tryptophan restriction induced reconfigurations in mitochondrial and transport pathways, along with potential adjustments to the cellular redox state. Activation of the kynurenine (KYN) pathway showed a partial compensatory effect by preserving key fluxes and modulating critical routes in the absence of tryptophan. Additionally, possible changes were identified in lipid β-oxidation, steroid biosynthesis, and lysosomal transport, along with variations in key reactions such as P450SCC1m, NDPK6, ASPTAm, and Ex_fru. These findings underscore the potential impact of intestinal metabolites on astrocyte function and their possible link to PD progression, opening opportunities for testable hypotheses and further refinement of glial computational models.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBiología de sistemasspa
dc.format.extentxiv, 96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88343
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.indexedBiremespa
dc.relation.referencesR. Patani, G. E. Hardingham, and S. A. Liddelow, “Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration,” Nature Reviews Neurology 2023 19:7, vol. 19, no. 7, pp. 395–409, Jun. 2023, doi: 10.1038/s41582-023-00822-1.spa
dc.relation.referencesG. Schiera, C. M. Di Liegro, G. Schirò, G. Sorbello, and I. Di Liegro, “Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood–Brain Barrier,” Cells 2024, Vol. 13, Page 150, vol. 13, no. 2, p. 150, Jan. 2024, doi: 10.3390/CELLS13020150.spa
dc.relation.referencesZ. Chen et al., “Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases,” CNS Neurosci Ther, vol. 29, no. 1, pp. 24–36, Jan. 2023, doi: 10.1111/CNS.13982.spa
dc.relation.referencesA. Soung, R. S. Klein, A. Soung, and R. S. Klein, “Astrocytes: Initiators of and Responders to Inflammation,” Glia in Health and Disease, Nov. 2019, doi: 10.5772/INTECHOPEN.89760.spa
dc.relation.referencesK. Qian et al., “Revisiting the critical roles of reactive astrocytes in neurodegeneration,” Molecular Psychiatry 2023 28:7, vol. 28, no. 7, pp. 2697–2706, Apr. 2023, doi: 10.1038/s41380-023-02061-8.spa
dc.relation.referencesH. Ahmed et al., “Microbiota-derived metabolites as drivers of gut–brain communication,” Gut Microbes, vol. 14, no. 1, 2022, doi: 10.1080/19490976.2022.2102878.spa
dc.relation.referencesJ. Forero-Rodríguez et al., “Changes in Bacterial Gut Composition in Parkinson’s Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach,” Microorganisms, vol. 12, no. 2, Feb. 2024, doi: 10.3390/MICROORGANISMS12020325.spa
dc.relation.referencesM. ; Andriamihaja, F. Blachier, C. De Simone, N. Tennoune, M. Andriamihaja, and F. Blachier, “Production of Indole and Indole-Related Compounds by the Intestinal Microbiota and Consequences for the Host: The Good, the Bad, and the Ugly,” Microorganisms 2022, Vol. 10, Page 930, vol. 10, no. 5, p. 930, Apr. 2022, doi: 10.3390/MICROORGANISMS10050930.spa
dc.relation.referencesM. Afzaal et al., “Human gut microbiota in health and disease: Unveiling the relationship,” Front Microbiol, vol. 13, p. 999001, Sep. 2022, doi: 10.3389/FMICB.2022.999001/BIBTEX.spa
dc.relation.referencesW. Roth, K. Zadeh, R. Vekariya, Y. Ge, and M. Mohamadzadeh, “Tryptophan Metabolism and Gut-Brain Homeostasis,” Int J Mol Sci, vol. 22, no. 6, p. 2973, Mar. 2021, doi: 10.3390/ijms22062973.spa
dc.relation.referencesK. Gao, C. L. Mu, A. Farzi, and W. Y. Zhu, “Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain,” Advances in Nutrition, vol. 11, no. 3, pp. 709–723, May 2020, doi: 10.1093/ADVANCES/NMZ127.spa
dc.relation.referencesT. A. Jenkins, J. C. D. Nguyen, K. E. Polglaze, and P. P. Bertrand, “Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis,” Nutrients 2016, Vol. 8, Page 56, vol. 8, no. 1, p. 56, Jan. 2016, doi: 10.3390/NU8010056.spa
dc.relation.referencesD. C. Parker et al., “Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer’s Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study,” Journal of Alzheimer’s Disease, vol. 91, no. 3, pp. 1141–1150, Jan. 2023, doi: 10.3233/JAD-220906.spa
dc.relation.referencesF. Oschmann, H. Berry, K. Obermayer, and K. Lenk, “From in silico astrocyte cell models to neuron-astrocyte network models: A review,” Brain Res Bull, vol. 136, pp. 76–84, Jan. 2018, doi: 10.1016/J.BRAINRESBULL.2017.01.027.spa
dc.relation.referencesN. Mendoza Mejía, “Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica,” GIBBS UNAL, 2022, Accessed: Aug. 30, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/81715spa
dc.relation.referencesM. Kumar, B. Ji, K. Zengler, and J. Nielsen, “Modelling approaches for studying the microbiome,” Nat Microbiol, vol. 4, no. 8, pp. 1253–1267, Aug. 2019, doi: 10.1038/S41564-019-0491-9.spa
dc.relation.referencesB. García-Jiménez, J. Torres-Bacete, and J. Nogales, “Metabolic modelling approaches for describing and engineering microbial communities,” Comput Struct Biotechnol J, vol. 19, pp. 226–246, Jan. 2021, doi: 10.1016/J.CSBJ.2020.12.003.spa
dc.relation.referencesX. Fang, C. J. Lloyd, and B. O. Palsson, “Reconstructing organisms in silico: genome-scale models and their emerging applications,” Nature Reviews Microbiology 2020 18:12, vol. 18, no. 12, pp. 731–743, Sep. 2020, doi: 10.1038/s41579-020-00440-4.spa
dc.relation.referencesF. Oschmann, H. Berry, K. Obermayer, and K. Lenk, “From in silico astrocyte cell models to neuron-astrocyte network models: A review,” Brain Res Bull, vol. 136, pp. 76–84, Jan. 2018, doi: 10.1016/J.BRAINRESBULL.2017.01.027.spa
dc.relation.referencesR. P. Munhoz, V. Tumas, J. L. Pedroso, and L. Silveira-Moriyama, “The clinical diagnosis of Parkinson’s disease,” Arq Neuropsiquiatr, vol. 82, no. 6, p. 1, 2024, doi: 10.1055/S-0043-1777775.spa
dc.relation.referencesZ. Han et al., “Genetic analyses identify circulating genes related to brain structures associated with Parkinson’s disease,” npj Parkinson’s Disease 2025 11:1, vol. 11, no. 1, pp. 1–11, Jan. 2025, doi: 10.1038/s41531-024-00859-z.spa
dc.relation.referencesQ. Mao, W. zhi Qin, A. Zhang, and N. Ye, “Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease,” Acta Pharmacologica Sinica 2020 41:4, vol. 41, no. 4, pp. 471–482, Feb. 2020, doi: 10.1038/s41401-020-0365-y.spa
dc.relation.referencesX. Yuan et al., “Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson’s disease,” Nature Neuroscience 2025, pp. 1–12, Jan. 2025, doi: 10.1038/s41593-024-01866-2.spa
dc.relation.referencesB. Li and U. Dettmer, “Interactions of alpha-synuclein with membranes in Parkinson’s disease: Mechanisms and therapeutic strategies,” Neurobiol Dis, vol. 201, p. 106646, Oct. 2024, doi: 10.1016/J.NBD.2024.106646.spa
dc.relation.referencesA. R. Trainor, D. S. MacDonald, and J. Penney, “Microglia: roles and genetic risk in Parkinson’s disease,” Front Neurosci, vol. 18, p. 1506358, 2024, doi: 10.3389/FNINS.2024.1506358.spa
dc.relation.referencesT. Wang, Y. Sun, and U. Dettmer, “Astrocytes in Parkinson’s Disease: From Role to Possible Intervention,” Cells, vol. 12, no. 19, p. 2336, Oct. 2023, doi: 10.3390/CELLS12192336.spa
dc.relation.referencesJ. X. Zhang et al., “Mesencephalic astrocyte-derived neurotrophic factor (MANF) prevents the neuroinflammation induced dopaminergic neurodegeneration,” Exp Gerontol, vol. 171, Jan. 2023, doi: 10.1016/J.EXGER.2022.112037.spa
dc.relation.referencesI. Miyazaki and M. Asanuma, “Neuron-Astrocyte Interactions in Parkinson’s Disease,” Cells 2020, Vol. 9, Page 2623, vol. 9, no. 12, p. 2623, Dec. 2020, doi: 10.3390/CELLS9122623.spa
dc.relation.referencesA. de Rus Jacquet et al., “The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease,” Nat Commun, vol. 14, no. 1, p. 3651, Jun. 2023, doi: 10.1038/s41467-023-39038-8.spa
dc.relation.referencesH. Hourfar et al., “The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells,” Int J Biol Macromol, vol. 229, pp. 305–320, Feb. 2023, doi: 10.1016/J.IJBIOMAC.2022.12.134.spa
dc.relation.referencesL. Iovino, M. E. Tremblay, and L. Civiero, “Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells,” J Pharmacol Sci, vol. 144, no. 3, pp. 151–164, Nov. 2020, doi: 10.1016/J.JPHS.2020.07.011.spa
dc.relation.referencesG. Xiromerisiou, C. Marogianni, A. Androutsopoulou, P. Ntavaroukas, D. Mysiris, and S. Papoutsopoulou, “Parkinson’s Disease, It Takes Guts: The Correlation between Intestinal Microbiome and Cytokine Network with Neurodegeneration,” Biology 2023, Vol. 12, Page 93, vol. 12, no. 1, p. 93, Jan. 2023, doi: 10.3390/BIOLOGY12010093.spa
dc.relation.referencesH. Kaur, C. Bose, and S. S. Mande, “Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis,” Front Neurosci, vol. 13, p. 493713, Dec. 2019, doi: 10.3389/FNINS.2019.01365/BIBTEX.spa
dc.relation.referencesP. L. Heilman et al., “Tryptophan Metabolites Are Associated With Symptoms and Nigral Pathology in Parkinson’s Disease,” Movement Disorders, vol. 35, no. 11, pp. 2028–2037, Nov. 2020, doi: 10.1002/MDS.28202.spa
dc.relation.referencesC. K. Lim et al., “Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease,” Prog Neurobiol, vol. 155, pp. 76–95, Aug. 2017, doi: 10.1016/J.PNEUROBIO.2015.12.009.spa
dc.relation.referencesF. Pifferi, B. Laurent, and M. Plourde, “Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease,” Front Physiol, vol. 12, Mar. 2021, doi: 10.3389/FPHYS.2021.645646.spa
dc.relation.referencesS. Kamano, D. Ozawa, K. Ikenaka, and Y. Nagai, “Role of Lipids in the Pathogenesis of Parkinson’s Disease,” International Journal of Molecular Sciences 2024, Vol. 25, Page 8935, vol. 25, no. 16, p. 8935, Aug. 2024, doi: 10.3390/IJMS25168935.spa
dc.relation.referencesD. Wang et al., “Identification of Downregulated MECR Gene in Parkinson’s Disease Through Integrated Transcriptomic Analysis and Validation,” Int J Mol Sci, vol. 26, no. 2, p. 550, Jan. 2025, doi: 10.3390/IJMS26020550/S1.spa
dc.relation.referencesT. E. Moors et al., “Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies,” Mol Neurobiol, vol. 56, no. 2, pp. 1344–1355, Feb. 2019, doi: 10.1007/S12035-018-1090-0/FIGURES/4.spa
dc.relation.referencesE. Sidransky and G. Lopez, “The link between the GBA gene and parkinsonism,” Lancet Neurol, vol. 11, no. 11, p. 986, Nov. 2012, doi: 10.1016/S1474-4422(12)70190-4.spa
dc.relation.referencesB. Kalyanaraman, G. Cheng, and M. Hardy, “Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson’s disease and therapeutic implications,” Redox Biol, vol. 71, p. 103092, May 2024, doi: 10.1016/J.REDOX.2024.103092.spa
dc.relation.referencesA. Qi et al., “Plasma Metabolic Analysis Reveals the Dysregulation of Short-Chain Fatty Acid Metabolism in Parkinson’s Disease,” Mol Neurobiol, vol. 60, no. 5, pp. 2619–2631, May 2023, doi: 10.1007/S12035-022-03157-Y/METRICS.spa
dc.relation.referencesZ. Li et al., “Gut bacterial profiles in Parkinson’s disease: A systematic review,” CNS Neurosci Ther, vol. 29, no. 1, p. 140, Jan. 2022, doi: 10.1111/CNS.13990.spa
dc.relation.referencesL. Mahoney-Sanchez et al., “Alpha synuclein determines ferroptosis sensitivity in dopaminergic neurons via modulation of ether-phospholipid membrane composition,” Cell Rep, vol. 40, no. 8, Aug. 2022, doi: 10.1016/J.CELREP.2022.111231.spa
dc.relation.referencesA. Angarita-Rodríguez et al., “Multi-Omics Integrative Analysis Coupled to Control Theory and Computational Simulation of a Genome-Scale metabolic Model Reveal Controlling Biological Switches in Human Astrocytes Under Palmitic Acid-Induced Lipotoxicity,” Frontiers in Systems Biology, vol. 2, May 2022, doi: 10.3389/FSYSB.2022.896265/FULL.spa
dc.relation.referencesA. F. Rojas-Cruz et al., “Palmitic Acid Upregulates Type I Interferon–Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes,” Mol Neurobiol, vol. 60, no. 8, pp. 4842–4854, Aug. 2023, doi: 10.1007/S12035-023-03366-Z/TABLES/1.spa
dc.relation.referencesJ. Cohen and C. Torres, “Astrocyte senescence: Evidence and significance,” Aging Cell, vol. 18, no. 3, p. e12937, Jun. 2019, doi: 10.1111/ACEL.12937.spa
dc.relation.referencesA. Serrano-Pozo et al., “Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer’s disease,” Nature Neuroscience 2024 27:12, vol. 27, no. 12, pp. 2384–2400, Nov. 2024, doi: 10.1038/s41593-024-01791-4.spa
dc.relation.referencesT. Zidarič, L. Gradišnik, and T. Velnar, “Astrocytes and human artificial blood-brain barrier models,” Bosn J Basic Med Sci, vol. 22, no. 5, p. 651, 2022, doi: 10.17305/BJBMS.2021.6943.spa
dc.relation.referencesJ. J. Hwang et al., “The human brain produces fructose from glucose,” JCI Insight, vol. 2, no. 4, Feb. 2017, doi: 10.1172/JCI.INSIGHT.90508.spa
dc.relation.referencesH. Koepsell and H. De, “Glucose transporters in brain in health and disease,” Pflügers Archiv - European Journal of Physiology 2020 472:9, vol. 472, no. 9, pp. 1299–1343, Aug. 2020, doi: 10.1007/S00424-020-02441-X.spa
dc.relation.referencesC. Wang, T. Yang, M. Liang, J. Xie, and N. Song, “Astrocyte dysfunction in Parkinson’s disease: from the perspectives of transmitted α-synuclein and genetic modulation,” Transl Neurodegener, vol. 10, no. 1, Dec. 2021, doi: 10.1186/S40035-021-00265-Y.spa
dc.relation.referencesZ. Chen et al., “Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases,” CNS Neurosci Ther, vol. 29, no. 1, p. 24, Jan. 2023, doi: 10.1111/CNS.13982.spa
dc.relation.referencesR. J. Johnson et al., “Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer’s Disease,” Front Aging Neurosci, vol. 12, p. 11, Sep. 2020, doi: 10.3389/FNAGI.2020.560865.spa
dc.relation.referencesK. K. Y. Ting, “Fructose overconsumption-induced reprogramming of microglia metabolism and function,” Front Immunol, vol. 15, p. 1375453, 2024, doi: 10.3389/FIMMU.2024.1375453.spa
dc.relation.referencesM. S. Aldhshan, G. Jhanji, N. J. Poritsanos, and T. M. Mizuno, “Glucose Stimulates Glial Cell Line-Derived Neurotrophic Factor Gene Expression in Microglia through a GLUT5-Independent Mechanism,” Int J Mol Sci, vol. 23, no. 13, p. 7073, Jul. 2022, doi: 10.3390/IJMS23137073.spa
dc.relation.referencesY. Li et al., “Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction,” Experimental & Molecular Medicine 2023 55:11, vol. 55, no. 11, pp. 2417–2432, Nov. 2023, doi: 10.1038/s12276-023-01112-y.spa
dc.relation.referencesB. Hassel et al., “Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro,” J Neurochem, vol. 133, no. 4, pp. 572–581, May 2015, doi: 10.1111/JNC.13079.spa
dc.relation.referencesS. Takahashi and S. Koizumi, “Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases,” International Journal of Molecular Sciences 2021, Vol. 22, Page 6568, vol. 22, no. 12, p. 6568, Jun. 2021, doi: 10.3390/IJMS22126568.spa
dc.relation.referencesW. Li et al., “Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation,” Aging Dis, vol. 9, no. 4, pp. 674–684, Aug. 2018, doi: 10.14336/AD.2017.1208.spa
dc.relation.referencesS. Battaglia, D. Liloia, C. Santambrogio, J. Sian-Hulsmann, P. Riederer, and T. M. Michel, “Metabolic Dysfunction in Parkinson’s Disease: Unraveling the Glucose–Lipid Connection,” Biomedicines 2024, Vol. 12, Page 2841, vol. 12, no. 12, p. 2841, Dec. 2024, doi: 10.3390/BIOMEDICINES12122841.spa
dc.relation.referencesA. Tahanis et al., “Glucocerebrosidase Deficiency Dysregulates Human Astrocyte Lipid Metabolism,” bioRxiv, p. 2025.01.09.632210, Jan. 2025, doi: 10.1101/2025.01.09.632210.spa
dc.relation.referencesY. Dai, M. Bi, Q. Jiao, X. Du, C. Yan, and H. Jiang, “Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson’s disease,” npj Parkinson’s Disease 2024 10:1, vol. 10, no. 1, pp. 1–16, Aug. 2024, doi: 10.1038/s41531-024-00753-8.spa
dc.relation.referencesH. Jiang, M. Bi, Q. Jiao, X. Du, Q. Uinversity, and C. Yan, “Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson’s disease,” Feb. 2024, doi: 10.21203/RS.3.RS-3932493/V1.spa
dc.relation.referencesK. Lindner, “Isoform- and cellular metabolism-specific apolipoprotein E (ApoE) lipidation in astrocytes,” Alzheimer’s & Dementia, vol. 19, no. S13, p. e079720, Dec. 2023, doi: 10.1002/ALZ.079720.spa
dc.relation.referencesB. Bicknell, A. Liebert, T. Borody, G. Herkes, C. McLachlan, and H. Kiat, “Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome,” Int J Mol Sci, vol. 24, no. 11, p. 24, Jun. 2023, doi: 10.3390/IJMS24119577.spa
dc.relation.referencesF. T. Fróes, C. Da Ré, J. Taday, F. Galland, C. A. Gonçalves, and M. C. Leite, “Palmitic acid, but not other long-chain saturated fatty acids, increases S100B protein and TNF-α secretion by astrocytes,” Nutrition Research, vol. 122, pp. 101–112, Feb. 2024, doi: 10.1016/J.NUTRES.2023.12.007.spa
dc.relation.referencesC. H. Chang, C. H. Lin, and H. Y. Lane, “d-glutamate and Gut Microbiota in Alzheimer’s Disease,” Int J Mol Sci, vol. 21, no. 8, Apr. 2020, doi: 10.3390/IJMS21082676.spa
dc.relation.referencesW. Zhou, L. Zhao, Z. Mao, Z. Wang, Z. Zhang, and M. Li, “Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles,” Cellular and Molecular Neurobiology 2023 43:6, vol. 43, no. 6, pp. 2675–2696, Apr. 2023, doi: 10.1007/S10571-023-01345-5.spa
dc.relation.referencesJ. V. Andersen, E. W. Westi, E. Jakobsen, N. Urruticoechea, K. Borges, and B. I. Aldana, “Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply,” Mol Brain, vol. 14, no. 1, pp. 1–13, Dec. 2021, doi: 10.1186/S13041-021-00842-2/FIGURES/6.spa
dc.relation.referencesK. Gao, C. Mu, A. Farzi, and W. Zhu, “Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain,” Advances in Nutrition, vol. 11, no. 3, pp. 709–723, May 2020, doi: 10.1093/advances/nmz127.spa
dc.relation.referencesD. Li et al., “Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders,” Front Immunol, vol. 13, p. 985378, Sep. 2022, doi: 10.3389/FIMMU.2022.985378/FULL.spa
dc.relation.referencesH. Kadry, B. Noorani, and L. Cucullo, “A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity,” Fluids and Barriers of the CNS 2020 17:1, vol. 17, no. 1, pp. 1–24, Nov. 2020, doi: 10.1186/S12987-020-00230-3.spa
dc.relation.referencesH. Hourfar et al., “The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells,” Int J Biol Macromol, vol. 229, pp. 305–320, Feb. 2023, doi: 10.1016/J.IJBIOMAC.2022.12.134.spa
dc.relation.referencesH. Ahmed et al., “Microbiota-derived metabolites as drivers of gut–brain communication,” Gut Microbes, vol. 14, no. 1, Dec. 2022, doi: 10.1080/19490976.2022.2102878.spa
dc.relation.referencesG. Magni, B. Riboldi, and S. Ceruti, “Modulation of Glial Cell Functions by the Gut-Brain Axis: A Role in Neurodegenerative Disorders and Pain Transmission,” Cells, vol. 12, no. 12, p. 1612, Jun. 2023, doi: 10.3390/CELLS12121612.spa
dc.relation.referencesE. Berthouzoz et al., “Oral and intestinal dysbiosis in Parkinson’s disease,” Rev Neurol (Paris), vol. 179, no. 9, pp. 937–946, Nov. 2023, doi: 10.1016/J.NEUROL.2022.12.010.spa
dc.relation.referencesS. Shandilya, S. Kumar, N. Kumar Jha, K. Kumar Kesari, and J. Ruokolainen, “Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection,” J Adv Res, vol. 38, p. 223, May 2022, doi: 10.1016/J.JARE.2021.09.005.spa
dc.relation.referencesH. D. E. Booth, W. D. Hirst, and R. Wade-Martins, “The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis,” Trends Neurosci, vol. 40, no. 6, p. 358, Jun. 2017, doi: 10.1016/J.TINS.2017.04.001.spa
dc.relation.referencesN. H. Pirolli, W. E. Bentley, and S. M. Jay, “Bacterial Extracellular Vesicles and the Gut-Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics,” Adv Biol, vol. 5, no. 7, p. 2000540, Jul. 2021, doi: 10.1002/ADBI.202000540.spa
dc.relation.referencesJ. Forero-Rodríguez et al., “Changes in Bacterial Gut Composition in Parkinson’s Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach,” Microorganisms 2024, Vol. 12, Page 325, vol. 12, no. 2, p. 325, Feb. 2024, doi: 10.3390/MICROORGANISMS12020325.spa
dc.relation.referencesD. Kollaparampil Kishanchand, K. A. Athira Krishnan, K. Chandrababu, C. A. Philips, U. Sivan, and B. C. Pulikaparambil Sasidharan, “The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson’s Disease,” J Neurosci Res, vol. 103, no. 1, p. e70016, Jan. 2025, doi: 10.1002/JNR.70016.spa
dc.relation.referencesS. Wei et al., “Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment,” J Cell Physiol, vol. 235, no. 5, pp. 4843–4855, May 2020, doi: 10.1002/JCP.29362.spa
dc.relation.referencesJ. D. Elford, N. Becht, J. Garssen, A. D. Kraneveld, and P. Perez-Pardo, “Buty and the beast: the complex role of butyrate in Parkinson’s disease,” Front Pharmacol, vol. 15, p. 1388401, Apr. 2024, doi: 10.3389/FPHAR.2024.1388401/PDF.spa
dc.relation.referencesO. Mossad and D. Erny, “The microbiota–microglia axis in central nervous system disorders,” Brain Pathology, vol. 30, no. 6, p. 1159, Nov. 2020, doi: 10.1111/BPA.12908.spa
dc.relation.referencesS. Li, “Modulation of immunity by tryptophan microbial metabolites,” Front Nutr, vol. 10, p. 1209613, Jun. 2023, doi: 10.3389/FNUT.2023.1209613/BIBTEX.spa
dc.relation.referencesS. Vascellari et al., “Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease,” mSystems, vol. 5, no. 5, pp. e00561-20, Oct. 2020, doi: 10.1128/MSYSTEMS.00561-20.spa
dc.relation.referencesR. Villette et al., “Integrated multi-omics highlights alterations of gut microbiome functions in prodromal and idiopathic Parkinson’s disease,” bioRxiv, p. 2024.12.13.628341, Dec. 2024, doi: 10.1101/2024.12.13.628341.spa
dc.relation.referencesJ. R. Bedarf et al., “A prebiotic diet intervention can restore faecal short chain fatty acids in Parkinson’s Disease yet fails to restore the gut microbiome homeostasis,” medRxiv, p. 2024.09.09.24313184, Sep. 2024, doi: 10.1101/2024.09.09.24313184.spa
dc.relation.referencesK. Hestad, J. Alexander, H. Rootwelt, and J. O. Aaseth, “The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases,” Biomolecules 2022, Vol. 12, Page 998, vol. 12, no. 7, p. 998, Jul. 2022, doi: 10.3390/BIOM12070998.spa
dc.relation.referencesA. Agus, J. Planchais, and H. Sokol, “Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease.,” Cell Host Microbe, vol. 23, no. 6, pp. 716–724, Jun. 2018, doi: 10.1016/j.chom.2018.05.003.spa
dc.relation.referencesD. Li et al., “Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders,” Front Immunol, vol. 13, p. 985378, Sep. 2022, doi: 10.3389/FIMMU.2022.985378/BIBTEX.spa
dc.relation.referencesG. J. Guillemin, “Quinolinic acid, the inescapable neurotoxin,” FEBS J, vol. 279, no. 8, pp. 1356–1365, Apr. 2012, doi: 10.1111/J.1742-4658.2012.08485.X.spa
dc.relation.referencesC. K. Lim et al., “Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease,” Prog Neurobiol, vol. 155, pp. 76–95, Aug. 2017, doi: 10.1016/J.PNEUROBIO.2015.12.009.spa
dc.relation.referencesS. J. Brown, X. F. Huang, and K. A. Newell, “The kynurenine pathway in major depression: What we know and where to next,” Neurosci Biobehav Rev, vol. 127, pp. 917–927, Aug. 2021, doi: 10.1016/J.NEUBIOREV.2021.05.018.spa
dc.relation.referencesN. Joisten, J. L. Ruas, N. Braidy, G. J. Guillemin, and P. Zimmer, “The kynurenine pathway in chronic diseases: a compensatory mechanism or a driving force?,” Trends Mol Med, vol. 27, no. 10, pp. 946–954, Oct. 2021, doi: 10.1016/J.MOLMED.2021.07.006.spa
dc.relation.referencesD. C. Parker et al., “Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer’s Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study,” Journal of Alzheimer’s Disease, vol. 91, no. 3, pp. 1141–1150, Jan. 2023, doi: 10.3233/JAD-220906.spa
dc.relation.referencesA. Angarita-Rodríguez, N. Mendoza-Mejía, J. González, J. Papin, A. F. Aristizábal, and A. Pinzón, “Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data,” Frontiers in Systems Biology, vol. 4, p. 1500710, Jan. 2024, doi: 10.3389/FSYSB.2024.1500710/BIBTEX.spa
dc.relation.referencesM. A. Pappolla, G. Perry, X. Fang, M. Zagorski, K. Sambamurti, and B. Poeggeler, “Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer’s disease.,” Neurobiol Dis, vol. 156, p. 105403, Aug. 2021, doi: 10.1016/j.nbd.2021.105403.spa
dc.relation.referencesV. Rothhammer et al., “Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor,” Nature Medicine 2016 22:6, vol. 22, no. 6, pp. 586–597, May 2016, doi: 10.1038/nm.4106.spa
dc.relation.referencesS. Adesso et al., “Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: Interaction between astrocytes and microglia,” Front Pharmacol, vol. 8, no. JUN, p. 253021, Jun. 2017, doi: 10.3389/FPHAR.2017.00370/BIBTEX.spa
dc.relation.referencesS. Jung, H. Bae, W. S. Song, and C. Jang, “Dietary Fructose and Fructose-Induced Pathologies,” Annu Rev Nutr, vol. 42, p. 45, Aug. 2022, doi: 10.1146/ANNUREV-NUTR-062220-025831.spa
dc.relation.referencesJ. J. Hwang et al., “Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women,” PLoS One, vol. 10, no. 6, Jun. 2015, doi: 10.1371/JOURNAL.PONE.0128582.spa
dc.relation.referencesR. Zazula, M. Moravec, F. Pehal, T. Nejtek, M. Protuš, and M. Müller, “Myristic Acid Serum Levels and Their Significance for Diagnosis of Systemic Inflammatory Response, Sepsis, and Bacteraemia,” Journal of Personalized Medicine 2021, Vol. 11, Page 306, vol. 11, no. 4, p. 306, Apr. 2021, doi: 10.3390/JPM11040306.spa
dc.relation.referencesE. Beauchamp, V. Rioux, and P. Legrand, “Acide myristique : nouvelles fonctions de régulation et de signalisation,” médecine/sciences, vol. 25, no. 1, pp. 57–63, Jan. 2009, doi: 10.1051/MEDSCI/200925157.spa
dc.relation.referencesJ. D. Fernstrom and M. H. Fernstrom, “Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain2,” J Nutr, vol. 137, no. 6, pp. 1539S-1547S, Jun. 2007, doi: 10.1093/JN/137.6.1539S.spa
dc.relation.referencesD. A. Durden and A. A. Boulton, “Identification and Distribution of Phenylacetic Acid in the Brain of the Rat,” J Neurochem, vol. 38, no. 6, pp. 1532–1536, Jun. 1982, doi: 10.1111/J.1471-4159.1982.TB06629.X.spa
dc.relation.referencesR. T. Stravitz et al., “Safety, Tolerability and Pharmacokinetics of L-Ornithine Phenylacetate in Patients with Acute Liver Injury/Failure and Hyperammonemia,” Hepatology, vol. 67, no. 3, p. 1003, Mar. 2018, doi: 10.1002/HEP.29621.spa
dc.relation.referencesM. Milkevitch, N. J. Beardsley, and E. J. Delikatny, “Phenylbutyrate Induces Apoptosis and Lipid Accumulations via a Peroxisome Proliferator-Activated Receptor Gamma-Dependent Pathway,” NMR Biomed, vol. 23, no. 5, p. 473, Jun. 2010, doi: 10.1002/NBM.1484.spa
dc.relation.referencesN. Cortese, A. Procopio, A. Merola, P. Zaffino, and C. Cosentino, “Applications of genome-scale metabolic models to the study of human diseases: A systematic review,” Comput Methods Programs Biomed, vol. 256, p. 108397, Nov. 2024, doi: 10.1016/J.CMPB.2024.108397.spa
dc.relation.referencesL. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat Protoc, vol. 14, no. 3, pp. 639–702, Mar. 2019, doi: 10.1038/S41596-018-0098-2.spa
dc.relation.referencesA. V. Colarusso, I. Goodchild-Michelman, M. Rayle, and A. R. Zomorrodi, “Computational modeling of metabolism in microbial communities on a genome-scale,” Curr Opin Syst Biol, vol. 26, pp. 46–57, Jun. 2021, doi: 10.1016/J.COISB.2021.04.001.spa
dc.relation.referencesF. Guil, R. Garcia, J. M. Garcia, R. García, and J. M. García, “Adding metabolic tasks to Human GEM models to improve the study of gene targets and their associated toxicities,” May 2024, doi: 10.21203/RS.3.RS-4311169/V1.spa
dc.relation.referencesB. Turanli, G. Gulfidan, O. O. Aydogan, C. Kula, G. Selvaraj, and K. Y. Arga, “Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models,” Mol Omics, vol. 20, no. 4, pp. 234–247, May 2024, doi: 10.1039/D3MO00152K.spa
dc.relation.referencesE. van Pelt-KleinJan, D. H. de Groot, and B. Teusink, “Understanding FBA solutions under multiple nutrient limitations,” Metabolites, vol. 11, no. 5, May 2021, doi: 10.3390/METABO11050257/S1.spa
dc.relation.referencesD. Osorio, A. Pinzón, C. Martín-Jiménez, G. E. Barreto, and J. González, “Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach,” Front Neurosci, vol. 13, p. 1410, Jan. 2020, doi: 10.3389/FNINS.2019.01410/FULL.spa
dc.relation.referencesA. Angarita-Rodríguez, N. Mendoza-Mejía, J. González, J. Papin, A. F. Aristizábal, and A. Pinzón, “Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data,” Frontiers in Systems Biology, vol. 4, p. 1500710, Jan. 2024, doi: 10.3389/FSYSB.2024.1500710/BIBTEX.spa
dc.relation.referencesA. Passi, J. D. Tibocha-Bonilla, M. Kumar, D. Tec-Campos, K. Zengler, and C. Zuniga, “Genome-scale metabolic modeling enables in-depth understanding of big data,” Metabolites, vol. 12, no. 1, p. 14, Jan. 2022, doi: 10.3390/METABO12010014/S1.spa
dc.relation.referencesA. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke, “COBRApy: COnstraints-Based Reconstruction and Analysis for Python,” BMC Syst Biol, vol. 7, no. 1, pp. 1–6, Aug. 2013, doi: 10.1186/1752-0509-7-74/FIGURES/2.spa
dc.relation.referencesJ. D. Orth, I. Thiele, and B. O. Palsson, “What is flux balance analysis?,” Nat Biotechnol, vol. 28, no. 3, p. 245, Mar. 2010, doi: 10.1038/NBT.1614.spa
dc.relation.referencesP. Nanda and A. Ghosh, “Genome Scale-Differential Flux Analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection,” PLoS Comput Biol, vol. 17, no. 4, p. e1008860, Apr. 2021, doi: 10.1371/JOURNAL.PCBI.1008860.spa
dc.relation.referencesE. L. Carter, C. Constantinidou, and M. T. Alam, “Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations,” Brief Bioinform, vol. 25, no. 1, p. bbad439, Jan. 2023, doi: 10.1093/BIB/BBAD439.spa
dc.relation.referencesS. P. Chapman, C. M. Paget, G. N. Johnson, and J. M. Schwartz, “Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii,” Front Plant Sci, vol. 6, no. JUNE, p. 474, Jun. 2015, doi: 10.3389/FPLS.2015.00474.spa
dc.relation.referencesR. Mahadevan and C. H. Schilling, “The effects of alternate optimal solutions in constraint-based genome-scale metabolic models,” Metab Eng, vol. 5, no. 4, pp. 264–276, Oct. 2003, doi: 10.1016/J.YMBEN.2003.09.002.spa
dc.relation.referencesA. Samal, “Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks,” Syst Synth Biol, vol. 2, no. 3–4, p. 83, 2009, doi: 10.1007/S11693-009-9025-8.spa
dc.relation.referencesP. E. Gelbach, H. Cetin, and S. D. Finley, “Flux sampling in genome-scale metabolic modeling of microbial communities,” BMC Bioinformatics, vol. 25, no. 1, p. 45, Dec. 2024, doi: 10.1186/S12859-024-05655-3.spa
dc.relation.referencesM. P. Gerstl, S. Klamt, C. Jungreuthmayer, and J. Zanghellini, “Exact quantification of cellular robustness in genome-scale metabolic networks,” Bioinformatics, vol. 32, no. 5, p. 730, Mar. 2015, doi: 10.1093/BIOINFORMATICS/BTV649.spa
dc.relation.referencesE. L. Carter, C. Constantinidou, and M. T. Alam, “Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations,” Brief Bioinform, vol. 25, no. 1, pp. 1–14, Nov. 2023, doi: 10.1093/BIB/BBAD439.spa
dc.relation.referencesE. Brunk et al., “Recon3D enables a three-dimensional view of gene variation in human metabolism,” Nat Biotechnol, vol. 36, no. 3, pp. 272–281, Mar. 2018, doi: 10.1038/NBT.4072.spa
dc.relation.references“NumPy documentation — NumPy v2.2 Manual.” Accessed: Apr. 17, 2025. [Online]. Available: https://numpy.org/doc/stable/spa
dc.relation.references“pandas documentation — pandas 2.2.3 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://pandas.pydata.org/docs/spa
dc.relation.references“Matplotlib documentation — Matplotlib 3.10.1 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://matplotlib.org/stable/index.htmlspa
dc.relation.references“seaborn.heatmap — seaborn 0.13.2 documentation.” Accessed: Apr. 16, 2025. [Online]. Available: https://seaborn.pydata.org/generated/seaborn.heatmap.htmlspa
dc.relation.references“Documentation for COBRApy — cobra 0.26.0 documentation.” Accessed: Feb. 18, 2025. [Online]. Available: https://cobrapy-cdiener.readthedocs.io/en/latest/index.htmlspa
dc.relation.references“sklearn.decomposition — scikit-learn 1.6.1 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://scikit-learn.org/stable/api/sklearn.decomposition.htmlspa
dc.relation.references“mpl_toolkits.mplot3d — Matplotlib 3.10.1 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://matplotlib.org/stable/api/toolkits/mplot3d.htmlspa
dc.relation.referencesK. Lenk, E. Satuvuori, J. Lallouette, A. Ladrón-de-Guevara, H. Berry, and J. A. K. Hyttinen, “A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate,” Front Comput Neurosci, vol. 13, Jan. 2020, doi: 10.3389/FNCOM.2019.00092.spa
dc.relation.referencesY. C. Lin, G. Cheung, E. Porter, and V. Papadopoulos, “The neurosteroid pregnenolone is synthesized by a mitochondrial P450 enzyme other than CYP11A1 in human glial cells,” J Biol Chem, vol. 298, no. 7, p. 102110, Jul. 2022, doi: 10.1016/J.JBC.2022.102110.spa
dc.relation.referencesK. Sinchak, M. A. Mohr, and P. E. Micevych, “Hypothalamic Astrocyte Development and Physiology for Neuroprogesterone Induction of the Luteinizing Hormone Surge,” Front Endocrinol (Lausanne), vol. 11, p. 545386, Jun. 2020, doi: 10.3389/FENDO.2020.00420/XML/NLM.spa
dc.relation.referencesQ. Lu, W. Zong, M. Zhang, Z. Chen, and Z. Yang, “The Overlooked Transformation Mechanisms of VLCFAs: Peroxisomal β-Oxidation,” Agriculture 2022, Vol. 12, Page 947, vol. 12, no. 7, p. 947, Jun. 2022, doi: 10.3390/AGRICULTURE12070947.spa
dc.relation.referencesK. Lohitaksha et al., “Eicosanoid signaling in neuroinflammation associated with Alzheimer’s disease,” Eur J Pharmacol, vol. 976, p. 176694, Aug. 2024, doi: 10.1016/J.EJPHAR.2024.176694.spa
dc.relation.referencesH. C. Chen, W. C. Chang, J. Y. Chuang, K. Y. Chang, J. P. Liou, and T. I. Hsu, “The complex role of eicosanoids in the brain: Implications for brain tumor development and therapeutic opportunities,” Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1878, no. 5, p. 188957, Sep. 2023, doi: 10.1016/J.BBCAN.2023.188957.spa
dc.relation.referencesS. yu Zhu et al., “Lysosomal quality control of cell fate: a novel therapeutic target for human diseases,” Cell Death & Disease 2020 11:9, vol. 11, no. 9, pp. 1–13, Sep. 2020, doi: 10.1038/s41419-020-03032-5.spa
dc.relation.referencesG. Morrone Parfitt et al., “Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model,” Nature Communications 2024 15:1, vol. 15, no. 1, pp. 1–17, Jan. 2024, doi: 10.1038/s41467-024-44732-2.spa
dc.relation.referencesC. O. Wong, “Endosomal-Lysosomal Processing of Neurodegeneration-Associated Proteins in Astrocytes,” International Journal of Molecular Sciences 2020, Vol. 21, Page 5149, vol. 21, no. 14, p. 5149, Jul. 2020, doi: 10.3390/IJMS21145149.spa
dc.relation.referencesC. Kreher, J. Favret, M. Maulik, and D. Shin, “Lysosomal Functions in Glia Associated with Neurodegeneration,” Biomolecules 2021, Vol. 11, Page 400, vol. 11, no. 3, p. 400, Mar. 2021, doi: 10.3390/BIOM11030400.spa
dc.relation.referencesK. Linda et al., “Neuronal autophagosomes are transported to astrocytes for degradation,” bioRxiv, p. 2024.09.03.610698, Sep. 2024, doi: 10.1101/2024.09.03.610698.spa
dc.relation.referencesJ. Bhupana et al., “Endolysosomal processing of neuron-derived signaling lipids regulates autophagy and lipid droplet degradation in astrocytes,” Oct. 2024, doi: 10.21203/RS.3.RS-4622228/V1.spa
dc.relation.referencesB. S. Kang et al., “Effects of Pyruvate Kinase M2 (PKM2) Gene Deletion on Astrocyte-Specific Glycolysis and Global Cerebral Ischemia-Induced Neuronal Death,” Antioxidants, vol. 12, no. 2, p. 491, Feb. 2023, doi: 10.3390/ANTIOX12020491/S1.spa
dc.relation.referencesT. M. Mizuno, P. S. Lew, and G. Jhanji, “Regulation of the fructose transporter gene Slc2a5 expression by glucose in cultured microglial cells,” Int J Mol Sci, vol. 22, no. 23, p. 12668, Dec. 2021, doi: 10.3390/IJMS222312668/S1.spa
dc.relation.referencesC. Calì, I. Cantando, M. F. Veloz Castillo, L. Gonzalez, and P. Bezzi, “Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases,” International Journal of Molecular Sciences 2024, Vol. 25, Page 8922, vol. 25, no. 16, p. 8922, Aug. 2024, doi: 10.3390/IJMS25168922.spa
dc.relation.referencesM. I. Ionescu, “Adenylate Kinase: A Ubiquitous Enzyme Correlated with Medical Conditions,” Protein Journal, vol. 38, no. 2, pp. 120–133, Apr. 2019, doi: 10.1007/S10930-019-09811-0/FIGURES/5.spa
dc.relation.referencesY. Zhong et al., “Adenylate kinase 4 promotes neuronal energy metabolism and mitophagy in early cerebral ischemia via Parkin/PKM2 pathway,” Exp Neurol, vol. 377, p. 114798, Jul. 2024, doi: 10.1016/J.EXPNEUROL.2024.114798.spa
dc.relation.referencesP. Garcia-Esparcia, K. Hernández-Ortega, B. Ansoleaga, M. Carmona, and I. Ferrer, “Purine metabolism gene deregulation in Parkinson’s disease,” Neuropathol Appl Neurobiol, vol. 41, no. 7, pp. 926–940, Dec. 2015, doi: 10.1111/NAN.12221.spa
dc.relation.referencesJ. Rose, C. Brian, A. Pappa, M. I. Panayiotidis, and R. Franco, “Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance,” Front Neurosci, vol. 14, p. 536682, Nov. 2020, doi: 10.3389/FNINS.2020.536682/PDF.spa
dc.relation.referencesN. Westergaard, U. Sonnewald, G. Unsgård, L. Peng, L. Hertz, and A. Schousboe, “Uptake, Release, and Metabolism of Citrate in Neurons and Astrocytes in Primary Cultures,” J Neurochem, vol. 62, no. 5, pp. 1727–1733, May 1994, doi: 10.1046/J.1471-4159.1994.62051727.X.spa
dc.relation.referencesY. Zong et al., “Mitochondrial dysfunction: mechanisms and advances in therapy,” Signal Transduction and Targeted Therapy 2024 9:1, vol. 9, no. 1, pp. 1–29, May 2024, doi: 10.1038/s41392-024-01839-8.spa
dc.relation.referencesM. Chalecka, A. Kazberuk, J. Palka, and A. Surazynski, “P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis,” International Journal of Molecular Sciences 2021, Vol. 22, Page 11763, vol. 22, no. 21, p. 11763, Oct. 2021, doi: 10.3390/IJMS222111763.spa
dc.relation.referencesG. Pallag et al., “Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited,” Int J Mol Sci, vol. 23, no. 9, p. 5111, May 2022, doi: 10.3390/IJMS23095111/S1.spa
dc.relation.referencesN. Krishnan, M. B. Dickman, and D. F. Becker, “Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress,” Free Radic Biol Med, vol. 44, no. 4, pp. 671–681, Feb. 2008, doi: 10.1016/J.FREERADBIOMED.2007.10.054.spa
dc.relation.referencesY. Li, J. Bie, C. Song, M. Liu, and J. Luo, “PYCR, a key enzyme in proline metabolism, functions in tumorigenesis,” Amino Acids, vol. 53, no. 12, pp. 1841–1850, Dec. 2021, doi: 10.1007/S00726-021-03047-Y/METRICS.spa
dc.relation.referencesW. Lu and J. Wen, “Metabolic reprogramming and astrocytes polarization following ischemic stroke,” Free Radic Biol Med, vol. 228, pp. 197–206, Feb. 2025, doi: 10.1016/J.FREERADBIOMED.2025.01.002.spa
dc.relation.referencesP. G. Weightman Potter et al., “Basal fatty acid oxidation increases after recurrent low glucose in human primary astrocytes,” Diabetologia, vol. 62, no. 1, pp. 187–198, Jan. 2019, doi: 10.1007/S00125-018-4744-6/FIGURES/7.spa
dc.relation.referencesA. D. Parente, D. E. Bolland, K. L. Huisinga, and J. J. Provost, “Physiology of malate dehydrogenase and how dysregulation leads to disease,” Essays Biochem, vol. 68, no. 2, pp. 121–134, Oct. 2024, doi: 10.1042/EBC20230085.spa
dc.relation.referencesN. C. Brown, Z. N. Canellakis, B. Lundin, P. Reichard, and L. Thelander, “Ribonucleoside Diphosphate Reductase. Purification of the two Subunits, Proteins B1 and B2,” Eur J Biochem, vol. 9, no. 4, pp. 561–573, Jul. 1969, doi: 10.1111/J.1432-1033.1969.TB00646.X.spa
dc.relation.referencesJ. Muri and M. Kopf, “The thioredoxin system: Balancing redox responses in immune cells and tumors,” Eur J Immunol, vol. 53, no. 1, p. 2249948, Jan. 2022, doi: 10.1002/EJI.202249948.spa
dc.relation.referencesS. Oh, X. L. Mai, J. Kim, A. C. V. de Guzman, J. Y. Lee, and S. Park, “Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases,” Experimental & Molecular Medicine 2024 56:5, vol. 56, no. 5, pp. 1066–1079, May 2024, doi: 10.1038/s12276-024-01222-1.spa
dc.relation.referencesR. Hegazy, J. R. Cristobal, and J. P. Richard, “Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces,” Biochemistry, vol. 63, no. 21, Nov. 2024, doi: 10.1021/ACS.BIOCHEM.4C00324.spa
dc.relation.referencesC. H. Yao et al., “Uncoupled glycerol-3-phosphate shuttle in kidney cancer reveals that cytosolic GPD is essential to support lipid synthesis,” Mol Cell, vol. 83, no. 8, pp. 1340-1349.e7, Apr. 2023, doi: 10.1016/J.MOLCEL.2023.03.023.spa
dc.relation.referencesI. Kapoor and U. Varshney, “Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness,” Current Genetics 2020 66:4, vol. 66, no. 4, pp. 671–682, Apr. 2020, doi: 10.1007/S00294-020-01073-Z.spa
dc.relation.referencesE. Bonda, G. Rahav, A. Kaya, and M. Bakhanashvili, “p53 in the mitochondria, as a trans-acting protein, provides error-correction activities during the incorporation of non-canonical dUTP into DNA,” Oncotarget, vol. 7, no. 45, p. 73323, 2016, doi: 10.18632/ONCOTARGET.12331.spa
dc.relation.referencesM. Kılıç, Ç. S. Kasapkara, S. Kılavuz, N. Ö. Mungan, and G. Biberoğlu, “A possible biomarker of neurocytolysis in infantile gangliosidoses: aspartate transaminase,” Metab Brain Dis, vol. 34, no. 2, pp. 495–503, Apr. 2019, doi: 10.1007/S11011-019-0391-Y.spa
dc.relation.referencesV. R. Muddapu, A. Mandali, V. S. Chakravarthy, and S. Ramaswamy, “A Computational Model of Loss of Dopaminergic Cells in Parkinson’s Disease Due to Glutamate-Induced Excitotoxicity,” Front Neural Circuits, vol. 13, p. 11, Jan. 2019, doi: 10.3389/FNCIR.2019.00011.spa
dc.relation.referencesX. Zhong et al., “Flavin adenine dinucleotide ameliorates hypertensive vascular remodeling via activating short chain acyl-CoA dehydrogenase,” Life Sci, vol. 258, p. 118156, Oct. 2020, doi: 10.1016/J.LFS.2020.118156.spa
dc.relation.referencesA. Gugliucci, “Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases,” Advances in Nutrition, vol. 8, no. 1, pp. 54–62, Jan. 2017, doi: 10.3945/AN.116.013912.spa
dc.relation.referencesG. Morris et al., “The Glutathione System: A New Drug Target in Neuroimmune Disorders,” Mol Neurobiol, vol. 50, no. 3, pp. 1059–1084, Dec. 2014, doi: 10.1007/S12035-014-8705-X/METRICS.spa
dc.relation.referencesL. A. Sordillo and P. P. Sordillo, “Optical Spectroscopy of Tryptophan Metabolites in Neurodegenerative Disease,” in Neurophotonics and Biomedical Spectroscopy, Elsevier, 2019, pp. 137–157. doi: 10.1016/B978-0-323-48067-3.00007-X.spa
dc.relation.referencesD. Li et al., “Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders,” Front Immunol, vol. 13, Sep. 2022, doi: 10.3389/FIMMU.2022.985378.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.proposalMicrobiomaspa
dc.subject.proposalAstrocitosspa
dc.subject.proposalEje intestino-cerebrospa
dc.subject.proposalParkinsonspa
dc.subject.proposalTriptófanospa
dc.subject.proposalModelado computacionalspa
dc.subject.proposalMicrobiomeeng
dc.subject.proposalAstrocyteseng
dc.subject.proposalGut-brain axiseng
dc.subject.proposalParkinson's diseaseeng
dc.subject.proposalTryptophaneng
dc.subject.proposalComputational modelingeng
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.subject.wikidataastrocito humanospa
dc.subject.wikidatahuman astrocyteeng
dc.subject.wikidataenfermedad de Parkinsonspa
dc.subject.wikidataParkinson's diseaseeng
dc.titleEvaluación de la influencia de un grupo de metabolitos característicos de individuos con Parkinson en la función astrocítica humana mediante modelado computacionalspa
dc.title.translatedEvaluation of the influence of a group of metabolites characteristic of individuals with Parkinson’s disease on human astrocyte function through computational modelingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090477160.2025.pdf
Tamaño:
3.65 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: