Evaluación de la influencia de un grupo de metabolitos característicos de individuos con Parkinson en la función astrocítica humana mediante modelado computacional
dc.contributor.advisor | Pinzón Velasco, Andrés Mauricio | spa |
dc.contributor.author | Rojo Orozco, María Alejandra | spa |
dc.contributor.referee | Arboleda Bustos, Gonzalo Humberto | spa |
dc.contributor.researchgroup | Grupo de Investigación en Bioinformática y Biología de Sistemas | spa |
dc.date.accessioned | 2025-07-16T00:36:45Z | |
dc.date.available | 2025-07-16T00:36:45Z | |
dc.date.issued | 2025-07-15 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El Parkinson (EP) es una enfermedad neurodegenerativa multifactorial y poligénica, caracterizada por la acumulación de proteínas mal plegadas, como la α-sinucleína, y la pérdida de neuronas dopaminérgicas en la sustancia negra. Además, su complejidad biológica y genética aún no se comprende del todo, lo que la convierte en una de las enfermedades neurodegenerativas más prevalentes y costosas a nivel mundial. En este sentido, estudios recientes destacan el papel crucial de las células gliales, en particular los astrocitos, en enfermedades neurodegenerativas, debido a su rol en el soporte neuronal, el reciclaje de neurotransmisores, la homeostasis metabólica y la protección de la barrera hematoencefálica (BHE). Adicionalmente, también se ha evidenciado la implicación del microbioma intestinal en estos procesos mediante el eje intestino-cerebro (Gut-Brain Axis, GBA). En este contexto, el presente trabajo evalúa los efectos de metabolitos desregulados, como triptófano, indol, fructosa, ácido mirístico y ácido fenilacético, identificados en modelos computacionales del microbioma de pacientes con EP, y su impacto sobre un modelo computacional de astrocitos humanos, mediante COBRApy y análisis de balance de flujo (FBA). Se evaluaron escenarios con diferentes restricciones metabólicas, que revelaron alteraciones en rutas asociadas al metabolismo de aminoácidos esenciales y al metabolismo energético. En particular, la restricción de triptófano indujo reconfiguraciones en rutas mitocondriales, de transporte y posibles ajustes en el estado redox celular. La activación de la vía de la quinurenina (KYN) mostró un efecto compensatorio parcial al preservar flujos clave y modular rutas críticas en ausencia de triptófano. Además, se identificaron posibles cambios en la β-oxidación de lípidos, la síntesis de esteroides y el transporte lisosomal, junto con variaciones en reacciones clave P450SCC1m, NDPK6, ASPTAm y Ex_fru. Estos hallazgos subrayan el impacto potencial de metabolitos intestinales en la función astrocítica y su posible vínculo con la progresión de la EP, abriendo oportunidades para hipótesis testables y el refinamiento de modelos computacionales gliales. (Texto tomado de la fuente). | spa |
dc.description.abstract | Parkinson’s disease (PD) is a multifactorial and polygenic neurodegenerative disorder, characterized by the accumulation of misfolded proteins such as α-synuclein and the loss of dopaminergic neurons in the substantia nigra. Additionally, its biological and genetic complexity is still not fully understood, making it one of the most prevalent and costly neurodegenerative diseases worldwide. In this context, recent studies have highlighted the crucial role of glial cells—particularly astrocytes—in neurodegenerative conditions, due to their involvement in neuronal support, neurotransmitter recycling, metabolic homeostasis, and maintenance of the blood-brain barrier (BBB). Furthermore, the involvement of the intestinal microbiome in these processes has also been evidenced, mainly through the gut-brain axis (GBA).In this context, this study evaluates the effects of deregulated metabolites—such as tryptophan, indole, fructose, myristic acid, and phenylacetic acid—identified in computational microbiome models of PD patients, and their impact on a human astrocyte computational model using COBRApy and Flux Balance Analysis (FBA). We evaluated scenarios with different metabolic restrictions, which revealed alterations in pathways associated with essential amino acid metabolism and energy metabolism. In particular, tryptophan restriction induced reconfigurations in mitochondrial and transport pathways, along with potential adjustments to the cellular redox state. Activation of the kynurenine (KYN) pathway showed a partial compensatory effect by preserving key fluxes and modulating critical routes in the absence of tryptophan. Additionally, possible changes were identified in lipid β-oxidation, steroid biosynthesis, and lysosomal transport, along with variations in key reactions such as P450SCC1m, NDPK6, ASPTAm, and Ex_fru. These findings underscore the potential impact of intestinal metabolites on astrocyte function and their possible link to PD progression, opening opportunities for testable hypotheses and further refinement of glial computational models. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioinformática | spa |
dc.description.researcharea | Biología de sistemas | spa |
dc.format.extent | xiv, 96 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88343 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería de Sistemas e Industrial | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | R. Patani, G. E. Hardingham, and S. A. Liddelow, “Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration,” Nature Reviews Neurology 2023 19:7, vol. 19, no. 7, pp. 395–409, Jun. 2023, doi: 10.1038/s41582-023-00822-1. | spa |
dc.relation.references | G. Schiera, C. M. Di Liegro, G. Schirò, G. Sorbello, and I. Di Liegro, “Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood–Brain Barrier,” Cells 2024, Vol. 13, Page 150, vol. 13, no. 2, p. 150, Jan. 2024, doi: 10.3390/CELLS13020150. | spa |
dc.relation.references | Z. Chen et al., “Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases,” CNS Neurosci Ther, vol. 29, no. 1, pp. 24–36, Jan. 2023, doi: 10.1111/CNS.13982. | spa |
dc.relation.references | A. Soung, R. S. Klein, A. Soung, and R. S. Klein, “Astrocytes: Initiators of and Responders to Inflammation,” Glia in Health and Disease, Nov. 2019, doi: 10.5772/INTECHOPEN.89760. | spa |
dc.relation.references | K. Qian et al., “Revisiting the critical roles of reactive astrocytes in neurodegeneration,” Molecular Psychiatry 2023 28:7, vol. 28, no. 7, pp. 2697–2706, Apr. 2023, doi: 10.1038/s41380-023-02061-8. | spa |
dc.relation.references | H. Ahmed et al., “Microbiota-derived metabolites as drivers of gut–brain communication,” Gut Microbes, vol. 14, no. 1, 2022, doi: 10.1080/19490976.2022.2102878. | spa |
dc.relation.references | J. Forero-Rodríguez et al., “Changes in Bacterial Gut Composition in Parkinson’s Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach,” Microorganisms, vol. 12, no. 2, Feb. 2024, doi: 10.3390/MICROORGANISMS12020325. | spa |
dc.relation.references | M. ; Andriamihaja, F. Blachier, C. De Simone, N. Tennoune, M. Andriamihaja, and F. Blachier, “Production of Indole and Indole-Related Compounds by the Intestinal Microbiota and Consequences for the Host: The Good, the Bad, and the Ugly,” Microorganisms 2022, Vol. 10, Page 930, vol. 10, no. 5, p. 930, Apr. 2022, doi: 10.3390/MICROORGANISMS10050930. | spa |
dc.relation.references | M. Afzaal et al., “Human gut microbiota in health and disease: Unveiling the relationship,” Front Microbiol, vol. 13, p. 999001, Sep. 2022, doi: 10.3389/FMICB.2022.999001/BIBTEX. | spa |
dc.relation.references | W. Roth, K. Zadeh, R. Vekariya, Y. Ge, and M. Mohamadzadeh, “Tryptophan Metabolism and Gut-Brain Homeostasis,” Int J Mol Sci, vol. 22, no. 6, p. 2973, Mar. 2021, doi: 10.3390/ijms22062973. | spa |
dc.relation.references | K. Gao, C. L. Mu, A. Farzi, and W. Y. Zhu, “Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain,” Advances in Nutrition, vol. 11, no. 3, pp. 709–723, May 2020, doi: 10.1093/ADVANCES/NMZ127. | spa |
dc.relation.references | T. A. Jenkins, J. C. D. Nguyen, K. E. Polglaze, and P. P. Bertrand, “Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis,” Nutrients 2016, Vol. 8, Page 56, vol. 8, no. 1, p. 56, Jan. 2016, doi: 10.3390/NU8010056. | spa |
dc.relation.references | D. C. Parker et al., “Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer’s Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study,” Journal of Alzheimer’s Disease, vol. 91, no. 3, pp. 1141–1150, Jan. 2023, doi: 10.3233/JAD-220906. | spa |
dc.relation.references | F. Oschmann, H. Berry, K. Obermayer, and K. Lenk, “From in silico astrocyte cell models to neuron-astrocyte network models: A review,” Brain Res Bull, vol. 136, pp. 76–84, Jan. 2018, doi: 10.1016/J.BRAINRESBULL.2017.01.027. | spa |
dc.relation.references | N. Mendoza Mejía, “Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica,” GIBBS UNAL, 2022, Accessed: Aug. 30, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/81715 | spa |
dc.relation.references | M. Kumar, B. Ji, K. Zengler, and J. Nielsen, “Modelling approaches for studying the microbiome,” Nat Microbiol, vol. 4, no. 8, pp. 1253–1267, Aug. 2019, doi: 10.1038/S41564-019-0491-9. | spa |
dc.relation.references | B. García-Jiménez, J. Torres-Bacete, and J. Nogales, “Metabolic modelling approaches for describing and engineering microbial communities,” Comput Struct Biotechnol J, vol. 19, pp. 226–246, Jan. 2021, doi: 10.1016/J.CSBJ.2020.12.003. | spa |
dc.relation.references | X. Fang, C. J. Lloyd, and B. O. Palsson, “Reconstructing organisms in silico: genome-scale models and their emerging applications,” Nature Reviews Microbiology 2020 18:12, vol. 18, no. 12, pp. 731–743, Sep. 2020, doi: 10.1038/s41579-020-00440-4. | spa |
dc.relation.references | F. Oschmann, H. Berry, K. Obermayer, and K. Lenk, “From in silico astrocyte cell models to neuron-astrocyte network models: A review,” Brain Res Bull, vol. 136, pp. 76–84, Jan. 2018, doi: 10.1016/J.BRAINRESBULL.2017.01.027. | spa |
dc.relation.references | R. P. Munhoz, V. Tumas, J. L. Pedroso, and L. Silveira-Moriyama, “The clinical diagnosis of Parkinson’s disease,” Arq Neuropsiquiatr, vol. 82, no. 6, p. 1, 2024, doi: 10.1055/S-0043-1777775. | spa |
dc.relation.references | Z. Han et al., “Genetic analyses identify circulating genes related to brain structures associated with Parkinson’s disease,” npj Parkinson’s Disease 2025 11:1, vol. 11, no. 1, pp. 1–11, Jan. 2025, doi: 10.1038/s41531-024-00859-z. | spa |
dc.relation.references | Q. Mao, W. zhi Qin, A. Zhang, and N. Ye, “Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease,” Acta Pharmacologica Sinica 2020 41:4, vol. 41, no. 4, pp. 471–482, Feb. 2020, doi: 10.1038/s41401-020-0365-y. | spa |
dc.relation.references | X. Yuan et al., “Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson’s disease,” Nature Neuroscience 2025, pp. 1–12, Jan. 2025, doi: 10.1038/s41593-024-01866-2. | spa |
dc.relation.references | B. Li and U. Dettmer, “Interactions of alpha-synuclein with membranes in Parkinson’s disease: Mechanisms and therapeutic strategies,” Neurobiol Dis, vol. 201, p. 106646, Oct. 2024, doi: 10.1016/J.NBD.2024.106646. | spa |
dc.relation.references | A. R. Trainor, D. S. MacDonald, and J. Penney, “Microglia: roles and genetic risk in Parkinson’s disease,” Front Neurosci, vol. 18, p. 1506358, 2024, doi: 10.3389/FNINS.2024.1506358. | spa |
dc.relation.references | T. Wang, Y. Sun, and U. Dettmer, “Astrocytes in Parkinson’s Disease: From Role to Possible Intervention,” Cells, vol. 12, no. 19, p. 2336, Oct. 2023, doi: 10.3390/CELLS12192336. | spa |
dc.relation.references | J. X. Zhang et al., “Mesencephalic astrocyte-derived neurotrophic factor (MANF) prevents the neuroinflammation induced dopaminergic neurodegeneration,” Exp Gerontol, vol. 171, Jan. 2023, doi: 10.1016/J.EXGER.2022.112037. | spa |
dc.relation.references | I. Miyazaki and M. Asanuma, “Neuron-Astrocyte Interactions in Parkinson’s Disease,” Cells 2020, Vol. 9, Page 2623, vol. 9, no. 12, p. 2623, Dec. 2020, doi: 10.3390/CELLS9122623. | spa |
dc.relation.references | A. de Rus Jacquet et al., “The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease,” Nat Commun, vol. 14, no. 1, p. 3651, Jun. 2023, doi: 10.1038/s41467-023-39038-8. | spa |
dc.relation.references | H. Hourfar et al., “The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells,” Int J Biol Macromol, vol. 229, pp. 305–320, Feb. 2023, doi: 10.1016/J.IJBIOMAC.2022.12.134. | spa |
dc.relation.references | L. Iovino, M. E. Tremblay, and L. Civiero, “Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells,” J Pharmacol Sci, vol. 144, no. 3, pp. 151–164, Nov. 2020, doi: 10.1016/J.JPHS.2020.07.011. | spa |
dc.relation.references | G. Xiromerisiou, C. Marogianni, A. Androutsopoulou, P. Ntavaroukas, D. Mysiris, and S. Papoutsopoulou, “Parkinson’s Disease, It Takes Guts: The Correlation between Intestinal Microbiome and Cytokine Network with Neurodegeneration,” Biology 2023, Vol. 12, Page 93, vol. 12, no. 1, p. 93, Jan. 2023, doi: 10.3390/BIOLOGY12010093. | spa |
dc.relation.references | H. Kaur, C. Bose, and S. S. Mande, “Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis,” Front Neurosci, vol. 13, p. 493713, Dec. 2019, doi: 10.3389/FNINS.2019.01365/BIBTEX. | spa |
dc.relation.references | P. L. Heilman et al., “Tryptophan Metabolites Are Associated With Symptoms and Nigral Pathology in Parkinson’s Disease,” Movement Disorders, vol. 35, no. 11, pp. 2028–2037, Nov. 2020, doi: 10.1002/MDS.28202. | spa |
dc.relation.references | C. K. Lim et al., “Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease,” Prog Neurobiol, vol. 155, pp. 76–95, Aug. 2017, doi: 10.1016/J.PNEUROBIO.2015.12.009. | spa |
dc.relation.references | F. Pifferi, B. Laurent, and M. Plourde, “Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease,” Front Physiol, vol. 12, Mar. 2021, doi: 10.3389/FPHYS.2021.645646. | spa |
dc.relation.references | S. Kamano, D. Ozawa, K. Ikenaka, and Y. Nagai, “Role of Lipids in the Pathogenesis of Parkinson’s Disease,” International Journal of Molecular Sciences 2024, Vol. 25, Page 8935, vol. 25, no. 16, p. 8935, Aug. 2024, doi: 10.3390/IJMS25168935. | spa |
dc.relation.references | D. Wang et al., “Identification of Downregulated MECR Gene in Parkinson’s Disease Through Integrated Transcriptomic Analysis and Validation,” Int J Mol Sci, vol. 26, no. 2, p. 550, Jan. 2025, doi: 10.3390/IJMS26020550/S1. | spa |
dc.relation.references | T. E. Moors et al., “Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies,” Mol Neurobiol, vol. 56, no. 2, pp. 1344–1355, Feb. 2019, doi: 10.1007/S12035-018-1090-0/FIGURES/4. | spa |
dc.relation.references | E. Sidransky and G. Lopez, “The link between the GBA gene and parkinsonism,” Lancet Neurol, vol. 11, no. 11, p. 986, Nov. 2012, doi: 10.1016/S1474-4422(12)70190-4. | spa |
dc.relation.references | B. Kalyanaraman, G. Cheng, and M. Hardy, “Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson’s disease and therapeutic implications,” Redox Biol, vol. 71, p. 103092, May 2024, doi: 10.1016/J.REDOX.2024.103092. | spa |
dc.relation.references | A. Qi et al., “Plasma Metabolic Analysis Reveals the Dysregulation of Short-Chain Fatty Acid Metabolism in Parkinson’s Disease,” Mol Neurobiol, vol. 60, no. 5, pp. 2619–2631, May 2023, doi: 10.1007/S12035-022-03157-Y/METRICS. | spa |
dc.relation.references | Z. Li et al., “Gut bacterial profiles in Parkinson’s disease: A systematic review,” CNS Neurosci Ther, vol. 29, no. 1, p. 140, Jan. 2022, doi: 10.1111/CNS.13990. | spa |
dc.relation.references | L. Mahoney-Sanchez et al., “Alpha synuclein determines ferroptosis sensitivity in dopaminergic neurons via modulation of ether-phospholipid membrane composition,” Cell Rep, vol. 40, no. 8, Aug. 2022, doi: 10.1016/J.CELREP.2022.111231. | spa |
dc.relation.references | A. Angarita-Rodríguez et al., “Multi-Omics Integrative Analysis Coupled to Control Theory and Computational Simulation of a Genome-Scale metabolic Model Reveal Controlling Biological Switches in Human Astrocytes Under Palmitic Acid-Induced Lipotoxicity,” Frontiers in Systems Biology, vol. 2, May 2022, doi: 10.3389/FSYSB.2022.896265/FULL. | spa |
dc.relation.references | A. F. Rojas-Cruz et al., “Palmitic Acid Upregulates Type I Interferon–Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes,” Mol Neurobiol, vol. 60, no. 8, pp. 4842–4854, Aug. 2023, doi: 10.1007/S12035-023-03366-Z/TABLES/1. | spa |
dc.relation.references | J. Cohen and C. Torres, “Astrocyte senescence: Evidence and significance,” Aging Cell, vol. 18, no. 3, p. e12937, Jun. 2019, doi: 10.1111/ACEL.12937. | spa |
dc.relation.references | A. Serrano-Pozo et al., “Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer’s disease,” Nature Neuroscience 2024 27:12, vol. 27, no. 12, pp. 2384–2400, Nov. 2024, doi: 10.1038/s41593-024-01791-4. | spa |
dc.relation.references | T. Zidarič, L. Gradišnik, and T. Velnar, “Astrocytes and human artificial blood-brain barrier models,” Bosn J Basic Med Sci, vol. 22, no. 5, p. 651, 2022, doi: 10.17305/BJBMS.2021.6943. | spa |
dc.relation.references | J. J. Hwang et al., “The human brain produces fructose from glucose,” JCI Insight, vol. 2, no. 4, Feb. 2017, doi: 10.1172/JCI.INSIGHT.90508. | spa |
dc.relation.references | H. Koepsell and H. De, “Glucose transporters in brain in health and disease,” Pflügers Archiv - European Journal of Physiology 2020 472:9, vol. 472, no. 9, pp. 1299–1343, Aug. 2020, doi: 10.1007/S00424-020-02441-X. | spa |
dc.relation.references | C. Wang, T. Yang, M. Liang, J. Xie, and N. Song, “Astrocyte dysfunction in Parkinson’s disease: from the perspectives of transmitted α-synuclein and genetic modulation,” Transl Neurodegener, vol. 10, no. 1, Dec. 2021, doi: 10.1186/S40035-021-00265-Y. | spa |
dc.relation.references | Z. Chen et al., “Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases,” CNS Neurosci Ther, vol. 29, no. 1, p. 24, Jan. 2023, doi: 10.1111/CNS.13982. | spa |
dc.relation.references | R. J. Johnson et al., “Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer’s Disease,” Front Aging Neurosci, vol. 12, p. 11, Sep. 2020, doi: 10.3389/FNAGI.2020.560865. | spa |
dc.relation.references | K. K. Y. Ting, “Fructose overconsumption-induced reprogramming of microglia metabolism and function,” Front Immunol, vol. 15, p. 1375453, 2024, doi: 10.3389/FIMMU.2024.1375453. | spa |
dc.relation.references | M. S. Aldhshan, G. Jhanji, N. J. Poritsanos, and T. M. Mizuno, “Glucose Stimulates Glial Cell Line-Derived Neurotrophic Factor Gene Expression in Microglia through a GLUT5-Independent Mechanism,” Int J Mol Sci, vol. 23, no. 13, p. 7073, Jul. 2022, doi: 10.3390/IJMS23137073. | spa |
dc.relation.references | Y. Li et al., “Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction,” Experimental & Molecular Medicine 2023 55:11, vol. 55, no. 11, pp. 2417–2432, Nov. 2023, doi: 10.1038/s12276-023-01112-y. | spa |
dc.relation.references | B. Hassel et al., “Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro,” J Neurochem, vol. 133, no. 4, pp. 572–581, May 2015, doi: 10.1111/JNC.13079. | spa |
dc.relation.references | S. Takahashi and S. Koizumi, “Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases,” International Journal of Molecular Sciences 2021, Vol. 22, Page 6568, vol. 22, no. 12, p. 6568, Jun. 2021, doi: 10.3390/IJMS22126568. | spa |
dc.relation.references | W. Li et al., “Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation,” Aging Dis, vol. 9, no. 4, pp. 674–684, Aug. 2018, doi: 10.14336/AD.2017.1208. | spa |
dc.relation.references | S. Battaglia, D. Liloia, C. Santambrogio, J. Sian-Hulsmann, P. Riederer, and T. M. Michel, “Metabolic Dysfunction in Parkinson’s Disease: Unraveling the Glucose–Lipid Connection,” Biomedicines 2024, Vol. 12, Page 2841, vol. 12, no. 12, p. 2841, Dec. 2024, doi: 10.3390/BIOMEDICINES12122841. | spa |
dc.relation.references | A. Tahanis et al., “Glucocerebrosidase Deficiency Dysregulates Human Astrocyte Lipid Metabolism,” bioRxiv, p. 2025.01.09.632210, Jan. 2025, doi: 10.1101/2025.01.09.632210. | spa |
dc.relation.references | Y. Dai, M. Bi, Q. Jiao, X. Du, C. Yan, and H. Jiang, “Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson’s disease,” npj Parkinson’s Disease 2024 10:1, vol. 10, no. 1, pp. 1–16, Aug. 2024, doi: 10.1038/s41531-024-00753-8. | spa |
dc.relation.references | H. Jiang, M. Bi, Q. Jiao, X. Du, Q. Uinversity, and C. Yan, “Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson’s disease,” Feb. 2024, doi: 10.21203/RS.3.RS-3932493/V1. | spa |
dc.relation.references | K. Lindner, “Isoform- and cellular metabolism-specific apolipoprotein E (ApoE) lipidation in astrocytes,” Alzheimer’s & Dementia, vol. 19, no. S13, p. e079720, Dec. 2023, doi: 10.1002/ALZ.079720. | spa |
dc.relation.references | B. Bicknell, A. Liebert, T. Borody, G. Herkes, C. McLachlan, and H. Kiat, “Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome,” Int J Mol Sci, vol. 24, no. 11, p. 24, Jun. 2023, doi: 10.3390/IJMS24119577. | spa |
dc.relation.references | F. T. Fróes, C. Da Ré, J. Taday, F. Galland, C. A. Gonçalves, and M. C. Leite, “Palmitic acid, but not other long-chain saturated fatty acids, increases S100B protein and TNF-α secretion by astrocytes,” Nutrition Research, vol. 122, pp. 101–112, Feb. 2024, doi: 10.1016/J.NUTRES.2023.12.007. | spa |
dc.relation.references | C. H. Chang, C. H. Lin, and H. Y. Lane, “d-glutamate and Gut Microbiota in Alzheimer’s Disease,” Int J Mol Sci, vol. 21, no. 8, Apr. 2020, doi: 10.3390/IJMS21082676. | spa |
dc.relation.references | W. Zhou, L. Zhao, Z. Mao, Z. Wang, Z. Zhang, and M. Li, “Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles,” Cellular and Molecular Neurobiology 2023 43:6, vol. 43, no. 6, pp. 2675–2696, Apr. 2023, doi: 10.1007/S10571-023-01345-5. | spa |
dc.relation.references | J. V. Andersen, E. W. Westi, E. Jakobsen, N. Urruticoechea, K. Borges, and B. I. Aldana, “Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply,” Mol Brain, vol. 14, no. 1, pp. 1–13, Dec. 2021, doi: 10.1186/S13041-021-00842-2/FIGURES/6. | spa |
dc.relation.references | K. Gao, C. Mu, A. Farzi, and W. Zhu, “Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain,” Advances in Nutrition, vol. 11, no. 3, pp. 709–723, May 2020, doi: 10.1093/advances/nmz127. | spa |
dc.relation.references | D. Li et al., “Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders,” Front Immunol, vol. 13, p. 985378, Sep. 2022, doi: 10.3389/FIMMU.2022.985378/FULL. | spa |
dc.relation.references | H. Kadry, B. Noorani, and L. Cucullo, “A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity,” Fluids and Barriers of the CNS 2020 17:1, vol. 17, no. 1, pp. 1–24, Nov. 2020, doi: 10.1186/S12987-020-00230-3. | spa |
dc.relation.references | H. Hourfar et al., “The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells,” Int J Biol Macromol, vol. 229, pp. 305–320, Feb. 2023, doi: 10.1016/J.IJBIOMAC.2022.12.134. | spa |
dc.relation.references | H. Ahmed et al., “Microbiota-derived metabolites as drivers of gut–brain communication,” Gut Microbes, vol. 14, no. 1, Dec. 2022, doi: 10.1080/19490976.2022.2102878. | spa |
dc.relation.references | G. Magni, B. Riboldi, and S. Ceruti, “Modulation of Glial Cell Functions by the Gut-Brain Axis: A Role in Neurodegenerative Disorders and Pain Transmission,” Cells, vol. 12, no. 12, p. 1612, Jun. 2023, doi: 10.3390/CELLS12121612. | spa |
dc.relation.references | E. Berthouzoz et al., “Oral and intestinal dysbiosis in Parkinson’s disease,” Rev Neurol (Paris), vol. 179, no. 9, pp. 937–946, Nov. 2023, doi: 10.1016/J.NEUROL.2022.12.010. | spa |
dc.relation.references | S. Shandilya, S. Kumar, N. Kumar Jha, K. Kumar Kesari, and J. Ruokolainen, “Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection,” J Adv Res, vol. 38, p. 223, May 2022, doi: 10.1016/J.JARE.2021.09.005. | spa |
dc.relation.references | H. D. E. Booth, W. D. Hirst, and R. Wade-Martins, “The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis,” Trends Neurosci, vol. 40, no. 6, p. 358, Jun. 2017, doi: 10.1016/J.TINS.2017.04.001. | spa |
dc.relation.references | N. H. Pirolli, W. E. Bentley, and S. M. Jay, “Bacterial Extracellular Vesicles and the Gut-Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics,” Adv Biol, vol. 5, no. 7, p. 2000540, Jul. 2021, doi: 10.1002/ADBI.202000540. | spa |
dc.relation.references | J. Forero-Rodríguez et al., “Changes in Bacterial Gut Composition in Parkinson’s Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach,” Microorganisms 2024, Vol. 12, Page 325, vol. 12, no. 2, p. 325, Feb. 2024, doi: 10.3390/MICROORGANISMS12020325. | spa |
dc.relation.references | D. Kollaparampil Kishanchand, K. A. Athira Krishnan, K. Chandrababu, C. A. Philips, U. Sivan, and B. C. Pulikaparambil Sasidharan, “The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson’s Disease,” J Neurosci Res, vol. 103, no. 1, p. e70016, Jan. 2025, doi: 10.1002/JNR.70016. | spa |
dc.relation.references | S. Wei et al., “Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment,” J Cell Physiol, vol. 235, no. 5, pp. 4843–4855, May 2020, doi: 10.1002/JCP.29362. | spa |
dc.relation.references | J. D. Elford, N. Becht, J. Garssen, A. D. Kraneveld, and P. Perez-Pardo, “Buty and the beast: the complex role of butyrate in Parkinson’s disease,” Front Pharmacol, vol. 15, p. 1388401, Apr. 2024, doi: 10.3389/FPHAR.2024.1388401/PDF. | spa |
dc.relation.references | O. Mossad and D. Erny, “The microbiota–microglia axis in central nervous system disorders,” Brain Pathology, vol. 30, no. 6, p. 1159, Nov. 2020, doi: 10.1111/BPA.12908. | spa |
dc.relation.references | S. Li, “Modulation of immunity by tryptophan microbial metabolites,” Front Nutr, vol. 10, p. 1209613, Jun. 2023, doi: 10.3389/FNUT.2023.1209613/BIBTEX. | spa |
dc.relation.references | S. Vascellari et al., “Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease,” mSystems, vol. 5, no. 5, pp. e00561-20, Oct. 2020, doi: 10.1128/MSYSTEMS.00561-20. | spa |
dc.relation.references | R. Villette et al., “Integrated multi-omics highlights alterations of gut microbiome functions in prodromal and idiopathic Parkinson’s disease,” bioRxiv, p. 2024.12.13.628341, Dec. 2024, doi: 10.1101/2024.12.13.628341. | spa |
dc.relation.references | J. R. Bedarf et al., “A prebiotic diet intervention can restore faecal short chain fatty acids in Parkinson’s Disease yet fails to restore the gut microbiome homeostasis,” medRxiv, p. 2024.09.09.24313184, Sep. 2024, doi: 10.1101/2024.09.09.24313184. | spa |
dc.relation.references | K. Hestad, J. Alexander, H. Rootwelt, and J. O. Aaseth, “The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases,” Biomolecules 2022, Vol. 12, Page 998, vol. 12, no. 7, p. 998, Jul. 2022, doi: 10.3390/BIOM12070998. | spa |
dc.relation.references | A. Agus, J. Planchais, and H. Sokol, “Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease.,” Cell Host Microbe, vol. 23, no. 6, pp. 716–724, Jun. 2018, doi: 10.1016/j.chom.2018.05.003. | spa |
dc.relation.references | D. Li et al., “Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders,” Front Immunol, vol. 13, p. 985378, Sep. 2022, doi: 10.3389/FIMMU.2022.985378/BIBTEX. | spa |
dc.relation.references | G. J. Guillemin, “Quinolinic acid, the inescapable neurotoxin,” FEBS J, vol. 279, no. 8, pp. 1356–1365, Apr. 2012, doi: 10.1111/J.1742-4658.2012.08485.X. | spa |
dc.relation.references | C. K. Lim et al., “Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease,” Prog Neurobiol, vol. 155, pp. 76–95, Aug. 2017, doi: 10.1016/J.PNEUROBIO.2015.12.009. | spa |
dc.relation.references | S. J. Brown, X. F. Huang, and K. A. Newell, “The kynurenine pathway in major depression: What we know and where to next,” Neurosci Biobehav Rev, vol. 127, pp. 917–927, Aug. 2021, doi: 10.1016/J.NEUBIOREV.2021.05.018. | spa |
dc.relation.references | N. Joisten, J. L. Ruas, N. Braidy, G. J. Guillemin, and P. Zimmer, “The kynurenine pathway in chronic diseases: a compensatory mechanism or a driving force?,” Trends Mol Med, vol. 27, no. 10, pp. 946–954, Oct. 2021, doi: 10.1016/J.MOLMED.2021.07.006. | spa |
dc.relation.references | D. C. Parker et al., “Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer’s Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study,” Journal of Alzheimer’s Disease, vol. 91, no. 3, pp. 1141–1150, Jan. 2023, doi: 10.3233/JAD-220906. | spa |
dc.relation.references | A. Angarita-Rodríguez, N. Mendoza-Mejía, J. González, J. Papin, A. F. Aristizábal, and A. Pinzón, “Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data,” Frontiers in Systems Biology, vol. 4, p. 1500710, Jan. 2024, doi: 10.3389/FSYSB.2024.1500710/BIBTEX. | spa |
dc.relation.references | M. A. Pappolla, G. Perry, X. Fang, M. Zagorski, K. Sambamurti, and B. Poeggeler, “Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer’s disease.,” Neurobiol Dis, vol. 156, p. 105403, Aug. 2021, doi: 10.1016/j.nbd.2021.105403. | spa |
dc.relation.references | V. Rothhammer et al., “Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor,” Nature Medicine 2016 22:6, vol. 22, no. 6, pp. 586–597, May 2016, doi: 10.1038/nm.4106. | spa |
dc.relation.references | S. Adesso et al., “Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: Interaction between astrocytes and microglia,” Front Pharmacol, vol. 8, no. JUN, p. 253021, Jun. 2017, doi: 10.3389/FPHAR.2017.00370/BIBTEX. | spa |
dc.relation.references | S. Jung, H. Bae, W. S. Song, and C. Jang, “Dietary Fructose and Fructose-Induced Pathologies,” Annu Rev Nutr, vol. 42, p. 45, Aug. 2022, doi: 10.1146/ANNUREV-NUTR-062220-025831. | spa |
dc.relation.references | J. J. Hwang et al., “Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women,” PLoS One, vol. 10, no. 6, Jun. 2015, doi: 10.1371/JOURNAL.PONE.0128582. | spa |
dc.relation.references | R. Zazula, M. Moravec, F. Pehal, T. Nejtek, M. Protuš, and M. Müller, “Myristic Acid Serum Levels and Their Significance for Diagnosis of Systemic Inflammatory Response, Sepsis, and Bacteraemia,” Journal of Personalized Medicine 2021, Vol. 11, Page 306, vol. 11, no. 4, p. 306, Apr. 2021, doi: 10.3390/JPM11040306. | spa |
dc.relation.references | E. Beauchamp, V. Rioux, and P. Legrand, “Acide myristique : nouvelles fonctions de régulation et de signalisation,” médecine/sciences, vol. 25, no. 1, pp. 57–63, Jan. 2009, doi: 10.1051/MEDSCI/200925157. | spa |
dc.relation.references | J. D. Fernstrom and M. H. Fernstrom, “Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain2,” J Nutr, vol. 137, no. 6, pp. 1539S-1547S, Jun. 2007, doi: 10.1093/JN/137.6.1539S. | spa |
dc.relation.references | D. A. Durden and A. A. Boulton, “Identification and Distribution of Phenylacetic Acid in the Brain of the Rat,” J Neurochem, vol. 38, no. 6, pp. 1532–1536, Jun. 1982, doi: 10.1111/J.1471-4159.1982.TB06629.X. | spa |
dc.relation.references | R. T. Stravitz et al., “Safety, Tolerability and Pharmacokinetics of L-Ornithine Phenylacetate in Patients with Acute Liver Injury/Failure and Hyperammonemia,” Hepatology, vol. 67, no. 3, p. 1003, Mar. 2018, doi: 10.1002/HEP.29621. | spa |
dc.relation.references | M. Milkevitch, N. J. Beardsley, and E. J. Delikatny, “Phenylbutyrate Induces Apoptosis and Lipid Accumulations via a Peroxisome Proliferator-Activated Receptor Gamma-Dependent Pathway,” NMR Biomed, vol. 23, no. 5, p. 473, Jun. 2010, doi: 10.1002/NBM.1484. | spa |
dc.relation.references | N. Cortese, A. Procopio, A. Merola, P. Zaffino, and C. Cosentino, “Applications of genome-scale metabolic models to the study of human diseases: A systematic review,” Comput Methods Programs Biomed, vol. 256, p. 108397, Nov. 2024, doi: 10.1016/J.CMPB.2024.108397. | spa |
dc.relation.references | L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat Protoc, vol. 14, no. 3, pp. 639–702, Mar. 2019, doi: 10.1038/S41596-018-0098-2. | spa |
dc.relation.references | A. V. Colarusso, I. Goodchild-Michelman, M. Rayle, and A. R. Zomorrodi, “Computational modeling of metabolism in microbial communities on a genome-scale,” Curr Opin Syst Biol, vol. 26, pp. 46–57, Jun. 2021, doi: 10.1016/J.COISB.2021.04.001. | spa |
dc.relation.references | F. Guil, R. Garcia, J. M. Garcia, R. García, and J. M. García, “Adding metabolic tasks to Human GEM models to improve the study of gene targets and their associated toxicities,” May 2024, doi: 10.21203/RS.3.RS-4311169/V1. | spa |
dc.relation.references | B. Turanli, G. Gulfidan, O. O. Aydogan, C. Kula, G. Selvaraj, and K. Y. Arga, “Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models,” Mol Omics, vol. 20, no. 4, pp. 234–247, May 2024, doi: 10.1039/D3MO00152K. | spa |
dc.relation.references | E. van Pelt-KleinJan, D. H. de Groot, and B. Teusink, “Understanding FBA solutions under multiple nutrient limitations,” Metabolites, vol. 11, no. 5, May 2021, doi: 10.3390/METABO11050257/S1. | spa |
dc.relation.references | D. Osorio, A. Pinzón, C. Martín-Jiménez, G. E. Barreto, and J. González, “Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach,” Front Neurosci, vol. 13, p. 1410, Jan. 2020, doi: 10.3389/FNINS.2019.01410/FULL. | spa |
dc.relation.references | A. Angarita-Rodríguez, N. Mendoza-Mejía, J. González, J. Papin, A. F. Aristizábal, and A. Pinzón, “Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data,” Frontiers in Systems Biology, vol. 4, p. 1500710, Jan. 2024, doi: 10.3389/FSYSB.2024.1500710/BIBTEX. | spa |
dc.relation.references | A. Passi, J. D. Tibocha-Bonilla, M. Kumar, D. Tec-Campos, K. Zengler, and C. Zuniga, “Genome-scale metabolic modeling enables in-depth understanding of big data,” Metabolites, vol. 12, no. 1, p. 14, Jan. 2022, doi: 10.3390/METABO12010014/S1. | spa |
dc.relation.references | A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke, “COBRApy: COnstraints-Based Reconstruction and Analysis for Python,” BMC Syst Biol, vol. 7, no. 1, pp. 1–6, Aug. 2013, doi: 10.1186/1752-0509-7-74/FIGURES/2. | spa |
dc.relation.references | J. D. Orth, I. Thiele, and B. O. Palsson, “What is flux balance analysis?,” Nat Biotechnol, vol. 28, no. 3, p. 245, Mar. 2010, doi: 10.1038/NBT.1614. | spa |
dc.relation.references | P. Nanda and A. Ghosh, “Genome Scale-Differential Flux Analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection,” PLoS Comput Biol, vol. 17, no. 4, p. e1008860, Apr. 2021, doi: 10.1371/JOURNAL.PCBI.1008860. | spa |
dc.relation.references | E. L. Carter, C. Constantinidou, and M. T. Alam, “Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations,” Brief Bioinform, vol. 25, no. 1, p. bbad439, Jan. 2023, doi: 10.1093/BIB/BBAD439. | spa |
dc.relation.references | S. P. Chapman, C. M. Paget, G. N. Johnson, and J. M. Schwartz, “Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii,” Front Plant Sci, vol. 6, no. JUNE, p. 474, Jun. 2015, doi: 10.3389/FPLS.2015.00474. | spa |
dc.relation.references | R. Mahadevan and C. H. Schilling, “The effects of alternate optimal solutions in constraint-based genome-scale metabolic models,” Metab Eng, vol. 5, no. 4, pp. 264–276, Oct. 2003, doi: 10.1016/J.YMBEN.2003.09.002. | spa |
dc.relation.references | A. Samal, “Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks,” Syst Synth Biol, vol. 2, no. 3–4, p. 83, 2009, doi: 10.1007/S11693-009-9025-8. | spa |
dc.relation.references | P. E. Gelbach, H. Cetin, and S. D. Finley, “Flux sampling in genome-scale metabolic modeling of microbial communities,” BMC Bioinformatics, vol. 25, no. 1, p. 45, Dec. 2024, doi: 10.1186/S12859-024-05655-3. | spa |
dc.relation.references | M. P. Gerstl, S. Klamt, C. Jungreuthmayer, and J. Zanghellini, “Exact quantification of cellular robustness in genome-scale metabolic networks,” Bioinformatics, vol. 32, no. 5, p. 730, Mar. 2015, doi: 10.1093/BIOINFORMATICS/BTV649. | spa |
dc.relation.references | E. L. Carter, C. Constantinidou, and M. T. Alam, “Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations,” Brief Bioinform, vol. 25, no. 1, pp. 1–14, Nov. 2023, doi: 10.1093/BIB/BBAD439. | spa |
dc.relation.references | E. Brunk et al., “Recon3D enables a three-dimensional view of gene variation in human metabolism,” Nat Biotechnol, vol. 36, no. 3, pp. 272–281, Mar. 2018, doi: 10.1038/NBT.4072. | spa |
dc.relation.references | “NumPy documentation — NumPy v2.2 Manual.” Accessed: Apr. 17, 2025. [Online]. Available: https://numpy.org/doc/stable/ | spa |
dc.relation.references | “pandas documentation — pandas 2.2.3 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://pandas.pydata.org/docs/ | spa |
dc.relation.references | “Matplotlib documentation — Matplotlib 3.10.1 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://matplotlib.org/stable/index.html | spa |
dc.relation.references | “seaborn.heatmap — seaborn 0.13.2 documentation.” Accessed: Apr. 16, 2025. [Online]. Available: https://seaborn.pydata.org/generated/seaborn.heatmap.html | spa |
dc.relation.references | “Documentation for COBRApy — cobra 0.26.0 documentation.” Accessed: Feb. 18, 2025. [Online]. Available: https://cobrapy-cdiener.readthedocs.io/en/latest/index.html | spa |
dc.relation.references | “sklearn.decomposition — scikit-learn 1.6.1 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://scikit-learn.org/stable/api/sklearn.decomposition.html | spa |
dc.relation.references | “mpl_toolkits.mplot3d — Matplotlib 3.10.1 documentation.” Accessed: Apr. 17, 2025. [Online]. Available: https://matplotlib.org/stable/api/toolkits/mplot3d.html | spa |
dc.relation.references | K. Lenk, E. Satuvuori, J. Lallouette, A. Ladrón-de-Guevara, H. Berry, and J. A. K. Hyttinen, “A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate,” Front Comput Neurosci, vol. 13, Jan. 2020, doi: 10.3389/FNCOM.2019.00092. | spa |
dc.relation.references | Y. C. Lin, G. Cheung, E. Porter, and V. Papadopoulos, “The neurosteroid pregnenolone is synthesized by a mitochondrial P450 enzyme other than CYP11A1 in human glial cells,” J Biol Chem, vol. 298, no. 7, p. 102110, Jul. 2022, doi: 10.1016/J.JBC.2022.102110. | spa |
dc.relation.references | K. Sinchak, M. A. Mohr, and P. E. Micevych, “Hypothalamic Astrocyte Development and Physiology for Neuroprogesterone Induction of the Luteinizing Hormone Surge,” Front Endocrinol (Lausanne), vol. 11, p. 545386, Jun. 2020, doi: 10.3389/FENDO.2020.00420/XML/NLM. | spa |
dc.relation.references | Q. Lu, W. Zong, M. Zhang, Z. Chen, and Z. Yang, “The Overlooked Transformation Mechanisms of VLCFAs: Peroxisomal β-Oxidation,” Agriculture 2022, Vol. 12, Page 947, vol. 12, no. 7, p. 947, Jun. 2022, doi: 10.3390/AGRICULTURE12070947. | spa |
dc.relation.references | K. Lohitaksha et al., “Eicosanoid signaling in neuroinflammation associated with Alzheimer’s disease,” Eur J Pharmacol, vol. 976, p. 176694, Aug. 2024, doi: 10.1016/J.EJPHAR.2024.176694. | spa |
dc.relation.references | H. C. Chen, W. C. Chang, J. Y. Chuang, K. Y. Chang, J. P. Liou, and T. I. Hsu, “The complex role of eicosanoids in the brain: Implications for brain tumor development and therapeutic opportunities,” Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1878, no. 5, p. 188957, Sep. 2023, doi: 10.1016/J.BBCAN.2023.188957. | spa |
dc.relation.references | S. yu Zhu et al., “Lysosomal quality control of cell fate: a novel therapeutic target for human diseases,” Cell Death & Disease 2020 11:9, vol. 11, no. 9, pp. 1–13, Sep. 2020, doi: 10.1038/s41419-020-03032-5. | spa |
dc.relation.references | G. Morrone Parfitt et al., “Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model,” Nature Communications 2024 15:1, vol. 15, no. 1, pp. 1–17, Jan. 2024, doi: 10.1038/s41467-024-44732-2. | spa |
dc.relation.references | C. O. Wong, “Endosomal-Lysosomal Processing of Neurodegeneration-Associated Proteins in Astrocytes,” International Journal of Molecular Sciences 2020, Vol. 21, Page 5149, vol. 21, no. 14, p. 5149, Jul. 2020, doi: 10.3390/IJMS21145149. | spa |
dc.relation.references | C. Kreher, J. Favret, M. Maulik, and D. Shin, “Lysosomal Functions in Glia Associated with Neurodegeneration,” Biomolecules 2021, Vol. 11, Page 400, vol. 11, no. 3, p. 400, Mar. 2021, doi: 10.3390/BIOM11030400. | spa |
dc.relation.references | K. Linda et al., “Neuronal autophagosomes are transported to astrocytes for degradation,” bioRxiv, p. 2024.09.03.610698, Sep. 2024, doi: 10.1101/2024.09.03.610698. | spa |
dc.relation.references | J. Bhupana et al., “Endolysosomal processing of neuron-derived signaling lipids regulates autophagy and lipid droplet degradation in astrocytes,” Oct. 2024, doi: 10.21203/RS.3.RS-4622228/V1. | spa |
dc.relation.references | B. S. Kang et al., “Effects of Pyruvate Kinase M2 (PKM2) Gene Deletion on Astrocyte-Specific Glycolysis and Global Cerebral Ischemia-Induced Neuronal Death,” Antioxidants, vol. 12, no. 2, p. 491, Feb. 2023, doi: 10.3390/ANTIOX12020491/S1. | spa |
dc.relation.references | T. M. Mizuno, P. S. Lew, and G. Jhanji, “Regulation of the fructose transporter gene Slc2a5 expression by glucose in cultured microglial cells,” Int J Mol Sci, vol. 22, no. 23, p. 12668, Dec. 2021, doi: 10.3390/IJMS222312668/S1. | spa |
dc.relation.references | C. Calì, I. Cantando, M. F. Veloz Castillo, L. Gonzalez, and P. Bezzi, “Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases,” International Journal of Molecular Sciences 2024, Vol. 25, Page 8922, vol. 25, no. 16, p. 8922, Aug. 2024, doi: 10.3390/IJMS25168922. | spa |
dc.relation.references | M. I. Ionescu, “Adenylate Kinase: A Ubiquitous Enzyme Correlated with Medical Conditions,” Protein Journal, vol. 38, no. 2, pp. 120–133, Apr. 2019, doi: 10.1007/S10930-019-09811-0/FIGURES/5. | spa |
dc.relation.references | Y. Zhong et al., “Adenylate kinase 4 promotes neuronal energy metabolism and mitophagy in early cerebral ischemia via Parkin/PKM2 pathway,” Exp Neurol, vol. 377, p. 114798, Jul. 2024, doi: 10.1016/J.EXPNEUROL.2024.114798. | spa |
dc.relation.references | P. Garcia-Esparcia, K. Hernández-Ortega, B. Ansoleaga, M. Carmona, and I. Ferrer, “Purine metabolism gene deregulation in Parkinson’s disease,” Neuropathol Appl Neurobiol, vol. 41, no. 7, pp. 926–940, Dec. 2015, doi: 10.1111/NAN.12221. | spa |
dc.relation.references | J. Rose, C. Brian, A. Pappa, M. I. Panayiotidis, and R. Franco, “Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance,” Front Neurosci, vol. 14, p. 536682, Nov. 2020, doi: 10.3389/FNINS.2020.536682/PDF. | spa |
dc.relation.references | N. Westergaard, U. Sonnewald, G. Unsgård, L. Peng, L. Hertz, and A. Schousboe, “Uptake, Release, and Metabolism of Citrate in Neurons and Astrocytes in Primary Cultures,” J Neurochem, vol. 62, no. 5, pp. 1727–1733, May 1994, doi: 10.1046/J.1471-4159.1994.62051727.X. | spa |
dc.relation.references | Y. Zong et al., “Mitochondrial dysfunction: mechanisms and advances in therapy,” Signal Transduction and Targeted Therapy 2024 9:1, vol. 9, no. 1, pp. 1–29, May 2024, doi: 10.1038/s41392-024-01839-8. | spa |
dc.relation.references | M. Chalecka, A. Kazberuk, J. Palka, and A. Surazynski, “P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis,” International Journal of Molecular Sciences 2021, Vol. 22, Page 11763, vol. 22, no. 21, p. 11763, Oct. 2021, doi: 10.3390/IJMS222111763. | spa |
dc.relation.references | G. Pallag et al., “Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited,” Int J Mol Sci, vol. 23, no. 9, p. 5111, May 2022, doi: 10.3390/IJMS23095111/S1. | spa |
dc.relation.references | N. Krishnan, M. B. Dickman, and D. F. Becker, “Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress,” Free Radic Biol Med, vol. 44, no. 4, pp. 671–681, Feb. 2008, doi: 10.1016/J.FREERADBIOMED.2007.10.054. | spa |
dc.relation.references | Y. Li, J. Bie, C. Song, M. Liu, and J. Luo, “PYCR, a key enzyme in proline metabolism, functions in tumorigenesis,” Amino Acids, vol. 53, no. 12, pp. 1841–1850, Dec. 2021, doi: 10.1007/S00726-021-03047-Y/METRICS. | spa |
dc.relation.references | W. Lu and J. Wen, “Metabolic reprogramming and astrocytes polarization following ischemic stroke,” Free Radic Biol Med, vol. 228, pp. 197–206, Feb. 2025, doi: 10.1016/J.FREERADBIOMED.2025.01.002. | spa |
dc.relation.references | P. G. Weightman Potter et al., “Basal fatty acid oxidation increases after recurrent low glucose in human primary astrocytes,” Diabetologia, vol. 62, no. 1, pp. 187–198, Jan. 2019, doi: 10.1007/S00125-018-4744-6/FIGURES/7. | spa |
dc.relation.references | A. D. Parente, D. E. Bolland, K. L. Huisinga, and J. J. Provost, “Physiology of malate dehydrogenase and how dysregulation leads to disease,” Essays Biochem, vol. 68, no. 2, pp. 121–134, Oct. 2024, doi: 10.1042/EBC20230085. | spa |
dc.relation.references | N. C. Brown, Z. N. Canellakis, B. Lundin, P. Reichard, and L. Thelander, “Ribonucleoside Diphosphate Reductase. Purification of the two Subunits, Proteins B1 and B2,” Eur J Biochem, vol. 9, no. 4, pp. 561–573, Jul. 1969, doi: 10.1111/J.1432-1033.1969.TB00646.X. | spa |
dc.relation.references | J. Muri and M. Kopf, “The thioredoxin system: Balancing redox responses in immune cells and tumors,” Eur J Immunol, vol. 53, no. 1, p. 2249948, Jan. 2022, doi: 10.1002/EJI.202249948. | spa |
dc.relation.references | S. Oh, X. L. Mai, J. Kim, A. C. V. de Guzman, J. Y. Lee, and S. Park, “Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases,” Experimental & Molecular Medicine 2024 56:5, vol. 56, no. 5, pp. 1066–1079, May 2024, doi: 10.1038/s12276-024-01222-1. | spa |
dc.relation.references | R. Hegazy, J. R. Cristobal, and J. P. Richard, “Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces,” Biochemistry, vol. 63, no. 21, Nov. 2024, doi: 10.1021/ACS.BIOCHEM.4C00324. | spa |
dc.relation.references | C. H. Yao et al., “Uncoupled glycerol-3-phosphate shuttle in kidney cancer reveals that cytosolic GPD is essential to support lipid synthesis,” Mol Cell, vol. 83, no. 8, pp. 1340-1349.e7, Apr. 2023, doi: 10.1016/J.MOLCEL.2023.03.023. | spa |
dc.relation.references | I. Kapoor and U. Varshney, “Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness,” Current Genetics 2020 66:4, vol. 66, no. 4, pp. 671–682, Apr. 2020, doi: 10.1007/S00294-020-01073-Z. | spa |
dc.relation.references | E. Bonda, G. Rahav, A. Kaya, and M. Bakhanashvili, “p53 in the mitochondria, as a trans-acting protein, provides error-correction activities during the incorporation of non-canonical dUTP into DNA,” Oncotarget, vol. 7, no. 45, p. 73323, 2016, doi: 10.18632/ONCOTARGET.12331. | spa |
dc.relation.references | M. Kılıç, Ç. S. Kasapkara, S. Kılavuz, N. Ö. Mungan, and G. Biberoğlu, “A possible biomarker of neurocytolysis in infantile gangliosidoses: aspartate transaminase,” Metab Brain Dis, vol. 34, no. 2, pp. 495–503, Apr. 2019, doi: 10.1007/S11011-019-0391-Y. | spa |
dc.relation.references | V. R. Muddapu, A. Mandali, V. S. Chakravarthy, and S. Ramaswamy, “A Computational Model of Loss of Dopaminergic Cells in Parkinson’s Disease Due to Glutamate-Induced Excitotoxicity,” Front Neural Circuits, vol. 13, p. 11, Jan. 2019, doi: 10.3389/FNCIR.2019.00011. | spa |
dc.relation.references | X. Zhong et al., “Flavin adenine dinucleotide ameliorates hypertensive vascular remodeling via activating short chain acyl-CoA dehydrogenase,” Life Sci, vol. 258, p. 118156, Oct. 2020, doi: 10.1016/J.LFS.2020.118156. | spa |
dc.relation.references | A. Gugliucci, “Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases,” Advances in Nutrition, vol. 8, no. 1, pp. 54–62, Jan. 2017, doi: 10.3945/AN.116.013912. | spa |
dc.relation.references | G. Morris et al., “The Glutathione System: A New Drug Target in Neuroimmune Disorders,” Mol Neurobiol, vol. 50, no. 3, pp. 1059–1084, Dec. 2014, doi: 10.1007/S12035-014-8705-X/METRICS. | spa |
dc.relation.references | L. A. Sordillo and P. P. Sordillo, “Optical Spectroscopy of Tryptophan Metabolites in Neurodegenerative Disease,” in Neurophotonics and Biomedical Spectroscopy, Elsevier, 2019, pp. 137–157. doi: 10.1016/B978-0-323-48067-3.00007-X. | spa |
dc.relation.references | D. Li et al., “Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders,” Front Immunol, vol. 13, Sep. 2022, doi: 10.3389/FIMMU.2022.985378. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.proposal | Microbioma | spa |
dc.subject.proposal | Astrocitos | spa |
dc.subject.proposal | Eje intestino-cerebro | spa |
dc.subject.proposal | Parkinson | spa |
dc.subject.proposal | Triptófano | spa |
dc.subject.proposal | Modelado computacional | spa |
dc.subject.proposal | Microbiome | eng |
dc.subject.proposal | Astrocytes | eng |
dc.subject.proposal | Gut-brain axis | eng |
dc.subject.proposal | Parkinson's disease | eng |
dc.subject.proposal | Tryptophan | eng |
dc.subject.proposal | Computational modeling | eng |
dc.subject.unesco | Análisis estadístico | spa |
dc.subject.unesco | Statistical analysis | eng |
dc.subject.wikidata | astrocito humano | spa |
dc.subject.wikidata | human astrocyte | eng |
dc.subject.wikidata | enfermedad de Parkinson | spa |
dc.subject.wikidata | Parkinson's disease | eng |
dc.title | Evaluación de la influencia de un grupo de metabolitos característicos de individuos con Parkinson en la función astrocítica humana mediante modelado computacional | spa |
dc.title.translated | Evaluation of the influence of a group of metabolites characteristic of individuals with Parkinson’s disease on human astrocyte function through computational modeling | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1090477160.2025.pdf
- Tamaño:
- 3.65 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: