Modelo de evaluación adaptativa para la medición del desempeño y el diagnóstico de fallas en procesos de enseñanza-aprendizaje

dc.contributor.advisorOvalle Carranza, Demetrio Arturo
dc.contributor.authorSalazar Ospina, Oscar Mauricio
dc.date.accessioned2021-08-12T20:20:39Z
dc.date.available2021-08-12T20:20:39Z
dc.date.issued2020-07-15
dc.descriptionIlustracionesspa
dc.description.abstractLas actividades de evaluación un papel muy importante en el proceso de enseñanza-aprendizaje de los estudiantes, a partir de este se validan los conocimientos adquiridos por los estudiantes y se generan mecanismos de retroalimentación. En procesos y entornos virtuales de aprendizaje este concepto no pierde importancia y ha sido objeto de estudio por numerosos trabajos. Dichos trabajos han explorado diversas maneras de integración con entornos virtuales, generación de calificaciones automáticas, tipologías de preguntas, seguimientos, retroalimentación, etc. Sin embargo, el proceso de evaluación no responde a las necesidades actuales y por lo general solo utilizan un modelo genérico de evaluación para todos los estudiantes. A los entornos actuales de aprendizaje virtual se han incorporado numerosos mecanismos de adaptación tales como: presentación y recuperación de recursos, recomendación de recursos adaptados, adaptación a características contextuales del usuario, adaptación de formatos y colores en los recursos, entro otros elementos. Lo anterior contrasta enormemente con el proceso de evaluación, debido a que actualmente se están adaptando los recursos educativos para la enseñanza, pero en el momento de evaluar no se están considerando las limitaciones, necesidades, preferencias y otros elementos de vital importancia para el estudiante (Chrysafiadi, Troussas, and Virvou 2020; Gusev et al. 2014; Hajjej, Hlaoui, and Ayed 2015). Adicionalmente, una de las características más representativas de este tipo de entornos es el gran número de usuarios con el que cuentan, esto dificulta enormemente el proceso de detección manual de fallas y la retroalimentación por parte de los profesores (Duque-Méndez, Tabares-Morales, and Ovalle 2020). Con base en lo anterior, esta tesis de doctorado tiene como objetivo proponer un modelo de evaluación adaptativa para la medición del desempeño y el diagnóstico de fallas en procesos de enseñanza-aprendizaje. Es decir, busca mejorar los mecanismos de evaluación actuales a partir de la representación de un modelo formal que integre los conceptos ligados al dominio de evaluación adaptativa. A partir de este modelo, se busca desarrollar un módulo de diseño instruccional que permita crear evaluaciones bien estructuradas que consideren los elementos tradicionales (cursos, preguntas, respuestas, etc.) pero que a la vez se enfoquen en todos los objetivos educacionales de curso. A partir de la definición de esta estructura se busca detectar falencias durante el proceso con el fin de proveer información de utilidad para generar estrategias individuales y/o grupales. Es importante resaltar también, que el modelo se centra en un proceso de evaluación adaptativo que busca validar los conocimientos de los estudiantes de manera individual, centrándose plenamente en las características y niveles cognitivos de cada uno de los estudiantes. Para lograr lo anteriormente expuesto, la tesis se apoya en técnicas de Inteligencia Artificial, sistemas de recomendación, mecanismos de representación del conocimiento y técnicas de la computación. (Tomado de la fuente)spa
dc.description.abstractThe assessment activities play a very important role in the teaching-learning process of the students, from this the knowledge acquired by the students is validated and feedback mechanisms are generated. In virtual learning environments this concept does not lose importance and has been studied in several works. These works have explored various ways of integration with virtual environments, generation of automatic grades, types of questions, follow-ups, feedback, etc. However, the assessment process does not respond to current needs and generally only use a generic assessment model for all students. Several adaptation mechanisms have been incorporated into current virtual learning environments such as: presentation and retrieval of resources, recommendation of adapted resources, adaptation to contextual features of the user, adaptation of formats and colors in resources, among other elements. The foregoing contrasts with the assessment process, because currently educational resources are being adapted for teaching, but at the time of assessment, limitations, needs, preferences and other elements of vital importance for the student are not being considered (Chrysafiadi, Troussas, and Virvou 2020; Gusev et al. 2014; Hajjej, Hlaoui, and Ayed 2015). Additionally, one of the most representative characteristics of this type of environment is the large number of users they have, this greatly hinders the process of manual fault detection and feedback from teachers (Duque-Méndez, Tabares-Morales, and Ovalle 2020). Based on the above, this doctoral thesis aims to propose an adaptive assessment model for performance measurement and fault diagnosis in teaching-learning processes. That is, it seeks to improve current evaluation mechanisms from the representation of a formal model Modelo de evaluación adaptativa para la medición del desempeño y el diagnóstico de fallas en procesos de aprendizaje Página 11 de 147 that integrates the concepts linked to the adaptive assessment domain. Based on this model, the aim is to develop an instructional design module that allows the creation of wellstructured evaluations that consider traditional elements (courses, questions, answers, etc.) but that at the same time focus on all the educational objectives of the course. From the definition of this structure, it is sought to detect shortcomings during the process to provide useful information to generate individual and / or group strategies. It is also important to highlight that the model focuses on an adaptive assessment process that seeks to validate the knowledge of the students individually, fully focusing on the characteristics and cognitive levels of each of the students. To achieve the above, the thesis is based on Artificial Intelligence techniques, recommendation systems, knowledge representation mechanisms and computing techniques. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería de sistemasspa
dc.description.methodsCon el fin de dar cumplimiento a los objetivos planteados previamente, la tesis considera seis etapas para su desarrollo. En las diferentes etapas se utilizarán métodos y técnicas propias de la Inteligencia Artificial, la informática educativa, la evaluación virtual, entre otras. Etapa 1: revisión de la literatura y estructuración del marco teórico y del estado del arte en el ámbito de la evaluación virtual, la evaluación virtual adaptativa, la representación del conocimiento y la detección de fallas cognitivas. Etapa 2: análisis y comparación de los modelos existentes y las técnicas utilizadas en el proceso de evaluación virtual adaptativa y la detección de fallas cognitivas en procesos de aprendizaje. Etapa 3: implementación del modelo de representación adecuado para el dominio de la investigación. Etapa 4: diseñar y proponer el modelo de evaluación adaptativa que permita detectar fallas cognitivas en procesos de enseñanza-aprendizaje. Etapa 5: desarrollo e implementación de un prototipo funcional basado en el modelo de evaluación adaptativa propuesto. Etapa 6: diseño de los casos de estudio y evaluación del prototipo funcional.spa
dc.description.researchareaHerramientas de evaluación virtual adaptativas apoyadas en técnicas de Inteligencia Artificialspa
dc.description.sponsorshipBeca de doctorado 727 de 2015spa
dc.format.extent147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79931
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.referencesAbdelghany, Abdelghany Salah, Nagy Ramadan Darwish, and Hesham Ahmed Hefni. 2019. “An Agile Methodology for Ontology Development.” International Journal of Intelligent Engineering and Systems 12(2):170–81.spa
dc.relation.referencesAckerman, Terry A. 2010. “The Theory and Practice of Item Response Theory by de Ayala, R. J.” Journal of Educational Measurement 47(4):471–76.spa
dc.relation.referencesAmelung, M., K. Krieger, and D. Rosner. 2011. “E-Assessment as a Service.” IEEE Transactions on Learning Technologies 4(2):162–74.spa
dc.relation.referencesAnderson, Lorin W. and David R. Krathwohl. 2001. A Taxonomy for Learning, Teaching, and Assessing : A Revision of Bloom’s Taxonomy of Educational Objectives. Longman.spa
dc.relation.referencesBaneres, D., M. Elena Rodríguez, A. E. Guerrero-Roldán, and X. Baró. 2016. “Towards an Adaptive E-Assessment System Based on Trustworthiness.” Pp. 25–47 in Formative Assessment, Learning Data Analytics and Gamification. Elsevier.spa
dc.relation.referencesBaneres, David, Xavier Baro, Ana-Elena Guerrero-Roldan, and M. Elena Rodriguez. 2015. “Towards a General Adaptive E-Assessment System.” Pp. 314–21 in 2015 International Conference on Intelligent Networking and Collaborative Systems. IEEE.spa
dc.relation.referencesBenchoff, Delia E., Marcela P. Gonzalez, and Constanza R. Huapaya. 2018. “Personalization of Tests for Formative Self-Assessment.” Revista Iberoamericana de Tecnologias Del Aprendizaje 13(2):70–74.spa
dc.relation.referencesBernardi, Angelo, Carlo Innamorati, Cesare Padovani, Roberta Romanelli, Aristide Saggino, Marco Tommasi, and Pierpaolo Vittorini. 2019. “On the Design and Development of an Assessment System with Adaptive Capabilities.” Pp. 190–99 in Advances in Intelligent Systems and Computing. Vol. 804. Springer Verlag.spa
dc.relation.referencesBloom, Benjamin S. (Benjamin Samuel). 1956. Taxonomy of Educational Objectives; the Classification of Educational Goals,. Longmans, Green.spa
dc.relation.referencesCarrera, Álvaro, Carlos A. Iglesias, Javier García-Algarra, and Dušan Kolařík. 2014. “A Real-Life Application of Multi-Agent Systems for Fault Diagnosis in the Provision of an Internet Business Service.” Journal of Network and Computer Applications 37:146–54.spa
dc.relation.referencesChrysafiadi, Konstantina, Christos Troussas, and Maria Virvou. 2020. “Combination of Fuzzy and Cognitive Theories for Adaptive E-Assessment.” Expert Systems with Applications 161:113614.spa
dc.relation.referencesCorcho, Oscar, Mariano Fernandez, Asunción Gómez, and Angel López. 2005. “Building Legal Ontologies with METHONTOLOGY and WebODE.” Pp. 142–57 in Law and the Semantic Web. Springer Berlin Heidelberg.spa
dc.relation.referencesD’Agostino, E., A. Casali, R. Corti, and A. Torres. 2005. “Sistema de Apoyo Al Aprendizaje Diagnóstico Utilizando Perfiles de Usuario : EndoDiag II.” Pp. 1–14 in VIII Simposio Argentino de Informática y Salud.spa
dc.relation.referencesDouligeris, Christos, Eleni Seralidou, and Panagiotis Gkotsiopoulos. 2018. “Let’s Learn with Kahoot!” Pp. 677–85 in IEEE Global Engineering Education Conference, EDUCON. Vols. 2018-April. IEEE Computer Society.spa
dc.relation.referencesFalcó, Enrique, Borja Pérez, Jose Casaña, Yasmin Ezzatvar, and Joaquín Calatayud. 2020. “INCLUSION OF INTERACTIVE VIDEO CONTENT USING EDPUZZLE© AS PART OF THE PRACTICAL TRAINING IN STUDENTS OF PHYSICAL THERAPY.” Pp. 4955–4955 in INTED2020 Proceedings. Vol. 1. IATED.spa
dc.relation.referencesGómez-Pérez, Asunción and Mari Carmen Suárez-Figueroa. 2009. NeOn Methodology for Building Ontology Networks: A Scenario-Based Methodology.spa
dc.relation.referencesGusev, Marjan, Sasko Ristov, Goce Armenski, Pano Gushev, and Goran Velkoski. 2014. “E-Assessment with Interactive Images.” Pp. 484–91 in 2014 IEEE Global Engineering Education Conference (EDUCON). IEEE.spa
dc.relation.referencesHambleton, Ronald K. and Russell W. Jones. 1993. “Comparison of Classical Test Theory and Item Response Theory and Their Applications to Test Development.” Educational Measurement: Issues and Practice 12(3):38–47.spa
dc.relation.referencesLim, Woan Ning. 2017. “Improving Student Engagement in Higher Education through Mobile-Based Interactive Teaching Model Using Socrative.” Pp. 404–12 in IEEE Global Engineering Education Conference, EDUCON. IEEE Computer Society.spa
dc.relation.referencesMonteiro, Dinis and Bráulio Alturas. 2012. “The Adoption of E-Recruitment: The Portuguese Case: Study of Limitations and Possibilities by the Point of View from Candidates and from Recruiters.” in Information Systems and Technologies : proceedings of the 7th Iberian Conference on Information Systems and Technologies : (CISTI 2012).spa
dc.relation.referencesMunzenmaier, Cecelia and Nancy Rubin. 2013. “BLOOM’S TAXONOMY: What’s Old Is New Again.” The ELearning Guild .spa
dc.relation.referencesRomero, Lucila, Milagros Gutierrez, and Laura Caliusco. 2013. “A Conceptualization of E-Assessment Domain.” in Information Systems and Technologies : proceedings of the 8th Iberian Conference on Information Systems and Technologies (CISTI 2013) : Lisboa, Portugal, June 19-22, 2013.spa
dc.relation.referencesTabares, Valentina, Paula Rodriguez, Nestor Duque, Rosa Vicari, and Julian Moreno. 2012. “Multi-Agent Model for Evaluation of Learning Objects from Repository Federations - ELO-Index.” Respuestas 17(1):48–54spa
dc.relation.referencesToledo, Guadalupe, Carmen Mezura, Nicandro Cruz, and Edgard Benítez. 2013. “Modelo de Evaluación Adaptativa y Personalizada Mediante Razonamiento Probabilista.” in LACLO 2015 - Décima Conferencia Latinoamericana de Objetos y Tecnologías de Aprendizaje.spa
dc.relation.referencesVillarroel, Rodolfo, Hector Cornide-Reyes, Roberto Munoz, and Thiago Barcelos. 2018. “Flipped Classroom + Plickers, an Experience to Propitiate Collaborative Learning in Software Engineering.” Pp. 1–7 in Proceedings - International Conference of the Chilean Computer Science Society, SCCC. Vols. 2017-October. IEEE Computer Society.spa
dc.relation.referencesWang, Feng-Hsu. 2004. “A Fuzzy Neural Network for Item Sequencing in Personalized Cognitive Scaffolding with Adaptive Formative Assessment.” Expert Systems with Applications 27(1):11–25.spa
dc.relation.referencesYu, Jonathan, Paul Davis, Scott Gould, and Kerry Taylor. 2014. “LINKED DATA APPROACH FOR AUTOMATED FAILURE DETECTION IN SEWER RISING MAINS USING REAL - TIME SENSOR DATA.”spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc370 - Educaciónspa
dc.subject.lembEnseñanza con ayuda de computadores
dc.subject.lembAnálisis de sistemas
dc.subject.lembInnovaciones educativas
dc.subject.proposalevaluación virtual adaptativaspa
dc.subject.proposalontologíasspa
dc.subject.proposalLógica difusaspa
dc.subject.proposalDiseño instruccional de evaluacionesspa
dc.subject.proposalFiltrado colaborativospa
dc.subject.proposalPerfiles de usuariospa
dc.subject.proposalSistemas de recomendaciónspa
dc.subject.proposalDetección de falenciasspa
dc.subject.proposalE-Assessmenteng
dc.subject.proposalAdaptive e-Assessmentfra
dc.subject.proposalOntologieseng
dc.subject.proposalFuzzy logiceng
dc.subject.proposalInstructional design of assessmentseng
dc.subject.proposalCollaborative filteringeng
dc.subject.proposalUser profileseng
dc.subject.proposalFailure detectioneng
dc.titleModelo de evaluación adaptativa para la medición del desempeño y el diagnóstico de fallas en procesos de enseñanza-aprendizajespa
dc.title.translatedAdaptive assessment model for performance measurement and failure diagnosis in teachinglearning processeseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152184079.2021.pdf
Tamaño:
10.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: