Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering

dc.contributor.advisorVelasco Estrada, Leonardospa
dc.contributor.advisorOlaya Flórez, Jhon Jairospa
dc.contributor.authorRojas Flórez, Mónica Lilianaspa
dc.contributor.researchgroupInformation-guided design, automation, and nanotechnology iam-nanospa
dc.date.accessioned2023-11-28T19:27:34Z
dc.date.available2023-11-28T19:27:34Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractLa corrosión es responsable de causar grandes daños a las instalaciones industriales, tuberías y otras estructuras, por lo que se ha investigado constantemente para desarrollar diversas tecnologías para mitigar estos daños. Una de estas áreas de investigación es el uso de recubrimientos de materiales mediante aleaciones de alta entropía. Una aleación de alta entropía es aquella que está compuesta por cinco o más elementos en una composición aproximadamente equiatómica y tiene una entropía configuracional mayor o igual a 1.5R, donde R es la constante universal de los gases. En este trabajo, mediante la modalidad de colaboración científica, el Instituto Tecnológico de Karlsruhe - KIT de Alemania, realizó el proceso de deposición de los recubrimientos multicomponentes de aleación de alta entropía de CrNbMoTaW en el sustrato acero 316L con la técnica sputtering. El objetivo principal de este estudio fue investigar la resistencia a la corrosión, la composición química y otras propiedades del recubrimiento HEA variando el flujo de Ar y presión de trabajo en la deposición de la película nanoestructurada. Para los recubrimientos se utilizaron blancos de 99.99% de pureza con una distancia entre estos y el sustrato de 300mm ± 5. La microestructura de los recubrimientos se analizó mediante AFM (microscopia de fuerza atómica), SEM (microscopia electrónica de barrido), XRD (difracción de rayos X), XPS (espectroscopía de fotoemisión de rayos X), EDS (espectroscopía de energía dispersada) e interferometría. Se determinó el comportamiento de la resistencia a la corrosión mediante las técnicas de Velocidad de corrosión con la técnica Polarización Potenciodinámica Tafel y Espectroscopia de Impedancia Electroquímica (EIS), adicionalmente, para evaluar la dureza de los recubrimientos HEAs se realizaron analisis de dureza mediante pruebas de nanoindentación con punta de diamante Berkovich. Durante la investigación, se obtiene recubrimientos en conformidad a los requisitos de HEA, así mismo se lograron obtener comportamientos aproximados de resistencia a la corrosión del acero inoxidable 316L. (Texto tomado de la fuente).spa
dc.description.abstractCorrosion is responsible for causing major damage to industrial facilities, pipelines, and other structures, which is why constant research has been carried out to develop various technologies to mitigate these damages. One of these research areas is the use of high-entropy alloys material coatings. A high-entropy alloy is one that is composed of five or more elements in approximately equiatomic composition and has a configurational entropy greater than or equal to 1.5R, where R is the universal gas constant. In this work, the Karlsruhe Institute of Technology - KIT of Germany, carried out the deposition process of high-entropy alloy CrNbMoTaW multicomponent coatings on the 316L steel substrate using the sputtering technique in a scientific collaboration. The main objective of this study was to investigate the corrosion resistance, chemical composition, and other properties of the HEA coating by varying the Ar flow and working pressure in the deposition of the nanostructured film. For the coatings, 99.99% pure targets were used with a distance between these and the substrate of 300mm ± 5. The microstructure of the coatings was analyzed by AFM (atomic force microscopy), SEM (scanning electron microscopy), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), EDS (energy-dispersive spectroscopy), and interferometry. The behavior of the corrosion resistance was determined by the Electrochemical Impedance Spectroscopy (EIS) and Corrosion Rate techniques using Tafel Potentiodynamic Polarization, additionally, to evaluate the hardness of the HEA coatings, nanoindentation tests were performed using a Berkovich diamond tip. During the investigation, the coatings were found to conform to the HEA requirements, and approximate behaviors of corrosion resistance of stainless steel 316L were achieved.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngeniería de superficiesspa
dc.format.extentxx, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85013
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesFundación Universa, “Más de 26 mil millones de pesos pierde la industria colombiana debido a la corrosión de materiales.” [Online]. Available: https://www.universia.net/co/actualidad/orientacion-academica/mas-26-milmillones-pesos-pierde-industria-colombiana-debido-corrosion-materiales1045848.htmlspa
dc.relation.referencesJ. Wadsworth, T. G. Nieh, and J. J. Stephens, “Recent advances in aerospace refractory metal alloys,” International Materials Reviews, vol. 33, no. 3, 1988.spa
dc.relation.referencesR. E. Gold and D. L. Harrod, “Refractory metal alloys for fusion reactor applications,” Journal of Nuclear Materials, vol. 85–86, no. PART 2, pp. 805–815, 1979, doi: 10.1016/0022-3115(79)90359-3.spa
dc.relation.referencesM. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, “High Entropy Alloys. Fundamentals and Applications,” National Energy Technology, 2016. doi: 10.1007/978-3-319- 27013-5.spa
dc.relation.referencesA. Gali and E. P. George, “Tensile properties of high and medium entropy alloys,” Intermetallics (Barking), vol. 39, pp. 74–78, 2013, doi: 10.1016/j.intermet.2013.03.018.spa
dc.relation.referencesJ. W. Yeh et al., “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv Eng Mater, vol. 6, no. 5, pp. 299– 303, 2004, doi: 10.1002/adem.200300567.spa
dc.relation.referencesL. Angarita, “Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de renio y boro,” Universidad EAFIT, vol. 1, no. 1, pp. 11–92, 2017.spa
dc.relation.referencesR. Ortiz, “Síntesis y caracterización de un recubrimiento Al-Si-N otenido a través del proceso de pulverización catódica reactiva variando el voltaje bias DC,” Universidad del Valle, p. 96, 2011.spa
dc.relation.referencesB. R. Braeckman et al., “High entropy alloy thin films deposited by magnetron sputtering of powder targets,” Thin Solid Films, 2015, doi: 10.1016/j.tsf.2015.02.070.spa
dc.relation.referencesT. K. Chen, T. T. Shun, J. W. Yeh, and M. S. Wong, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering,” vol. 189, pp. 193–200, 2004, doi: 10.1016/j.surfcoat.2004.08.023.spa
dc.relation.referencesV. K. Soni, S. Sanyal, K. R. Rao, and S. K. Sinha, “A review on phase prediction in high entropy alloys,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 22. SAGE Publications Ltd, pp. 6268–6286, Nov. 01, 2021. doi: 10.1177/09544062211008935.spa
dc.relation.referencesB. Xiao, W. Jia, H. Tang, J. Wang, and L. Zhou, “Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting,” J Mater Sci Technol, vol. 108, pp. 54–63, May 2022, doi: 10.1016/j.jmst.2021.07.041.spa
dc.relation.referencesJ. Luo and N. Zhou, “High-entropy grain boundaries,” Commun Mater, vol. 4, no. 1, Dec. 2023, doi: 10.1038/s43246-023-00335-w.spa
dc.relation.referencesJ. Chen et al., “A review on fundamental of high entropy alloys with promising high– temperature properties,” Journal of Alloys and Compounds, vol. 760. Elsevier Ltd, pp. 15–30, Sep. 05, 2018. doi: 10.1016/j.jallcom.2018.05.067.spa
dc.relation.referencesJ. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci Rep, vol. 6, Nov. 2016, doi: 10.1038/srep37946.spa
dc.relation.referencesL. Luo et al., “High-entropy alloys for solid hydrogen storage: a review,” International Journal of Hydrogen Energy. Elsevier Ltd, 2023. doi: 10.1016/j.ijhydene.2023.07.146.spa
dc.relation.referencesS. K. Padamata, A. Yasinskiy, and V. Yanov, “Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review,” Metals (Basel), vol. 12, no. 2, pp. 1–17, 2022.spa
dc.relation.referencesP. M. Martin, Deposition technologies for films and coatings, Second. Elsevier Inc., 2005.spa
dc.relation.references“Diagram of the Sputtering Process,” The Global Source SEMICORE. [Online]. Available: https://www.semicore.com/news/67-reactive-sputtering-basicsspa
dc.relation.referencesZ. Zhang et al., “Recent research progress on high-entropy alloys as electrocatalytic materials,” J Alloys Compd, vol. 918, p. 165585, 2022, doi: 10.1016/j.jallcom.2022.165585.spa
dc.relation.referencesA. Sarkar et al., “High entropy oxides for reversible energy storage,” Nat Commun, vol. 9, no. 1, Dec. 2018, doi: 10.1038/s41467-018-05774-5.spa
dc.relation.referencesM. R. Chellali et al., “On the homogeneity of high entropy oxides: An investigation at the atomic scale,” Scr Mater, vol. 166, pp. 58–63, Jun. 2019, doi: 10.1016/j.scriptamat.2019.02.039.spa
dc.relation.referencesJ. W. Yeh, “Recent progress in high-entropy alloys,” Annales de Chimie: Science des Materiaux, vol. 31, no. 6, pp. 633–648, 2006, doi: 10.3166/acsm.31.633-648.spa
dc.relation.referencesJ. P. Couzinié and G. Dirras, “Body-centered cubic high-entropy alloys: From processing to underlying deformation mechanisms,” Materials Characterization, vol. 147. Elsevier Inc., pp. 533–544, Jan. 01, 2019. doi: 10.1016/j.matchar.2018.07.015.spa
dc.relation.referencesJ. Yeh, “Alloy Design Strategies and Future Trends in High-Entropy Alloys,” Department of Materials Science and Engineering, National Tsing Hua University, 2013, doi: 10.1007/s11837-013-0761-6.spa
dc.relation.referencesB. S. Murty, J. W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, “High-entropy alloys: basic concepts,” in High-Entropy Alloys, Elsevier, 2019, pp. 13–30. doi: 10.1016/b978-0-12-816067-1.00002-3.spa
dc.relation.referencesJ. W. Yeh, “Overview of high entropy alloys,” in High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, 2016, pp. 1–19. doi: 10.1007/978-3-319-27013-5_1.spa
dc.relation.referencesJ. Luo and N. Zhou, “High-entropy grain boundaries,” Commun Mater, vol. 4, no. 1, Dec. 2023, doi: 10.1038/s43246-023-00335-w.spa
dc.relation.referencesX. Liu et al., “A statistics-based study and machine-learning of stacking fault energies in HEAs,” J Alloys Compd, vol. 966, Dec. 2023, doi: 10.1016/j.jallcom.2023.171547.spa
dc.relation.referencesZ. Lei, X. Liu, H. Wang, Y. Wu, S. Jiang, and Z. Lu, “Development of advanced materials via entropy engineering,” Scr Mater, vol. 165, pp. 164–169, May 2019, doi: 10.1016/j.scriptamat.2019.02.015.spa
dc.relation.referencesL. L. Snead, D. T. Hoelzer, M. Rieth, and A. A. N. Nemith, “Refractory Alloys: Vanadium, niobium, molybdenum, tungsten,” in Structural Alloys for Nuclear Energy Applications, Elsevier, 2019, pp. 585–640. doi: 10.1016/B978-0-12-397046- 6.00013-7.spa
dc.relation.referencesH. Y. Ha, T. H. Lee, J. H. Bae, and D. W. Chun, “Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels,” Metals (Basel), vol. 8, no. 8, Aug. 2018, doi: 10.3390/met8080653.spa
dc.relation.referencesJ. N. Wanklyn, “THE ROLE OF MOLYBDENUM IN THE CREVICE CORROSION OF STAINLESS STEELS*,” 1981.spa
dc.relation.referencesR. C. Newman, “THE DISSOLUTION AND PASSIVATION KINETICS OF STAINLESS ALLOYS CONTAINING MOLYBDENUM-1. COULOMETRIC STUDIES OF Fe-Cr AND Fe-Cr-Mo ALLOYS,” 1985.spa
dc.relation.referencesÂ. Pe and R. Garcõ, Dynamic atomic force microscopy methods, vol. 47. 2002.spa
dc.relation.referencesB. Cappella and M. Kappl, “Force measurements with the atomic force microscope : Technique , interpretation and applications,” vol. 59, pp. 1–152, 2005, doi: 10.1016/j.surfrep.2005.08.003.spa
dc.relation.referencesE. Cheikh et al., “Investigación de los efectos de la asimetría Rsk y la curtosis Rku en el comportamiento tribológico en un ensayo pin-on-disc de superficies mecanizadas mediante procesos convencionales de fresado y torneado,” Investigación de materiales., vol. 24, no. 2, 2021.spa
dc.relation.referencesE. C. Talibouya Ba, M. R. Dumont, P. S. Martins, R. M. Drumond, M. P. M. da Cruz, and V. F. Vieira, “Investigation of the effects of skewness Rsk and kurtosis Rku on tribological behavior in a pin-on-disc test of surfaces machined by conventional milling and turning processes,” Materials Research, vol. 24, no. 2, pp. 1–14, 2021, doi: 10.1590/1980-5373-MR-2020-0435.spa
dc.relation.referencesS. Zhao and S. Wen, “Microscopía electrónica de barrido,” pp. 1–14, 2021.spa
dc.relation.referencesH. Sobre and C. Educaci, “Una breve introducción a SEM ( microscopía electrónica de barrido ),” SCIMED, vol. 44, no. 0, pp. 1–6.spa
dc.relation.referencesM. Ipohorski and P. B. Bozzano, “Microscopía electrónica de barrido en la caracterización de materiales,” Cienc Invest, vol. 63, no. 3, pp. 43–53, 2013.spa
dc.relation.referencesL. A. Benavides Castillo, “NANOTUBOS DE CARBONO APLICADOS AL ELECTRODO NEGATIVO DE UNA BATERÍA DE Ni/MH,” 2013.spa
dc.relation.referencesF. García, “Síntesis y caracterización de materiales basados en aluminosilicato de Litio para aplicaciones con coeficiente de dilatación térmica controlado,” UNIVERSIDAD DE OVIEDO, 2018.spa
dc.relation.referencesX. D. Techniques, “X-Ray Diffraction Techniques,” University of California, vol. 9, no. 12, pp. 331–362, 1986.spa
dc.relation.referencesA. A. Bunaciu et al., “X-Ray Diffraction: Instrumentation and Applications,” Crit Rev Anal Chem, vol. 8347, 2015, doi: 10.1080/10408347.2014.949616.spa
dc.relation.referencesA. Chauhan, “Powder XRD Technique and its Applications in Science and Technology,” J Anal Bioanal Tech, vol. 5, no. 6, 2014, doi: 10.4172/2155- 9872.1000212.spa
dc.relation.referencesH. Khan, A. S. Yerramilli, A. D’Oliveira, T. L. Alford, D. C. Boffito, and G. S. Patience, “Experimental methods in chemical engineering: X-ray diffraction spectroscopy— XRD,” Canadian Journal of Chemical Engineering, vol. 98, no. 6, pp. 1255–1266, 2020, doi: 10.1002/cjce.23747.spa
dc.relation.referencesS. R. Falsafi, H. Rostamabadi, and S. M. Jafari, X-ray diffraction (XRD) of nanoencapsulated food ingredients. Elsevier Inc., 2020. doi: 10.1016/b978-0-12- 815667-4.00009-2.spa
dc.relation.referencesJ. Epp, X-Ray Diffraction (XRD) Techniques for Materials Characterization. Elsevier Ltd, 2016. doi: 10.1016/B978-0-08-100040-3.00004-3.spa
dc.relation.referencesS. Fatimah, R. Ragadhita, D. F. Al Husaeni, and A. B. D. Nandiyanto, “How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method,” ASEAN Journal of Science and Engineering, vol. 2, no. 1, pp. 65–76, 2021, doi: 10.17509/ajse.v2i1.37647.spa
dc.relation.referencesS. Nasrazadani and S. Hassani, “Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries,” Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, pp. 39–54, 2016, doi: 10.1016/B978-0-08-100117-2.00010-8.spa
dc.relation.referencesC. Li, D. Wang, and L. Kong, “Application of Machine Learning Techniques in Mineral Classification for Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Images,” J Pet Sci Eng, vol. 200, no. December 2020, p. 108178, 2021, doi: 10.1016/j.petrol.2020.108178.spa
dc.relation.referencesP. D. Ngo, “Energy Dispersive Spectroscopy,” Failure Analysis of Integrated Circuits, pp. 205–215, 1999, doi: 10.1007/978-1-4615-4919-2_12.spa
dc.relation.referencesV. D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), no. X. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-814182-3.00021-3spa
dc.relation.referencesD. R. Baer and S. Thevuthasan, Characterization of Thin Films and Coatings, Third Edit. Elsevier Ltd., 2009. doi: 10.1016/B978-0-8155-2031-3.00016-8.spa
dc.relation.referencesK. Riles, “Recent searches for continuous gravitational waves,” Mod Phys Lett A, vol. 32, no. 39, pp. 1–23, 2017, doi: 10.1142/S021773231730035X.spa
dc.relation.referencesS. Khan, S. Le Calvé, and D. Newport, “A review of optical interferometry techniques for VOC detection,” Sens Actuators A Phys, vol. 302, 2020, doi: 10.1016/j.sna.2019.111782.spa
dc.relation.referencesP. HARIHARAN, Basics of Interferometry, Second Edi. Sydney, Australia: Academic Press is an imprint of Elsevier, 1386.spa
dc.relation.referencesZ. Hu, “Characterization of Materials, Nanomaterials, and Thin Films by Nanoindentation,” in Microscopy Methods in Nanomaterials Characterization, Micro and Nano Technologies, 2017, pp. 165–239. doi: 10.1016/B978-0-323-46141- 2.00006-7.spa
dc.relation.referencesU. Ramamurty and J. Il Jang, “Nanoindentation for probing the mechanical behavior of molecular crystals-a review of the technique and how to use it,” CrystEngComm, vol. 16, no. 1, pp. 12–23, 2014, doi: 10.1039/c3ce41266k.spa
dc.relation.referencesX. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Mater Charact, vol. 48, no. 1, pp. 11– 36, 2002, doi: 10.1016/S1044-5803(02)00192-4.spa
dc.relation.referencesN. K. Mukhopadhyay and P. Paufler, “Micro- and nanoindentation techniques for mechanical characterisation of materials,” International Materials Reviews, vol. 51, no. 4, pp. 209–245, 2006, doi: 10.1179/174328006X102475.spa
dc.relation.referencesG. Instruments, “Getting Started with Electrochemical Corrosion Measurement rev 2,” Gamry Instruments Inc, pp. 1–11, 2017.spa
dc.relation.referencesGamry, “Gamry EIS part 1 - The Basics of Electrochemical Impedance Spectroscopy,” Gamry Instruments, pp. 1–18, 2017.spa
dc.relation.referencesC. Gabrielli and M. Keddam, “Review of applications of impedance and noise analysis to uniform and localized corrosion,” Corrosion, vol. 48, no. 10, pp. 796–811, 1992, doi: 10.5006/1.3315878.spa
dc.relation.referencesG. W. Walter, “A review of impedance plot methods used for corrosion performance analysis of painted metals,” Corros Sci, vol. 26, no. 9, pp. 681–703, 1986, doi: 10.1016/0010-938X(86)90033-8.spa
dc.relation.referencesSemicore Equipment Inc., “Sputtering Yield Rates.” Accessed: Dec. 19, 2021. [Online]. Available: https://www.semicore.com/reference/sputtering-yields-referencespa
dc.relation.referencesV. Miranda López and V. Manuel López Hirata, “Microestructura y Propiedades Mecánicas de la Aleación AlCuMnNi de Alta Entropía,” Instituto Politécnico Nacional Fabricación, 2016.spa
dc.relation.referencesH. D. V. Mejía, A. M. Echavarría, J. A. Calderón, and G. Gilberto Bejarano, “Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by DC magnetron sputtering,” J Alloys Compd, vol. 828, 2020, doi: 10.1016/j.jallcom.2020.154396.spa
dc.relation.referencesJ. Yang et al., “Influence of coating thickness on microstructure, mechanical and LBE corrosion performance of amorphous AlCrFeTiNb high-entropy alloy coatings,” Surf Coat Technol, vol. 441, no. April, p. 128502, 2022, doi: 10.1016/j.surfcoat.2022.128502.spa
dc.relation.referencesS. K. Bachani, C. J. Wang, B. S. Lou, L. C. Chang, and J. W. Lee, “Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content,” Surf Coat Technol, vol. 403, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126351.spa
dc.relation.referencesC. Tian, H. Cai, and Y. Xue, “Effect of Working Pressure on Tribological Properties of Ce-Ti/MoS2 Coatings Using Magnetron Sputter,” Coatings, vol. 12, no. 10, pp. 1– 15, 2022, doi: 10.3390/coatings12101576.spa
dc.relation.referencesX. Liu, J. Kavanagh, A. Matthews, and A. Leyland, “The combined effects of Cu and Ag on the nanostructure and mechanical properties of CrCuAgN PVD coatings,” Surf Coat Technol, vol. 284, pp. 101–111, 2015, doi: 10.1016/j.surfcoat.2015.08.070.spa
dc.relation.referencesH. Nourolahi, M. A. Bolorizadeh, and A. Behjat, “Light absorption with branched gold cauliflower-like nanostructure arrays,” Vacuum, vol. 123, pp. 29–34, 2016, doi: 10.1016/j.vacuum.2015.10.008.spa
dc.relation.referencesH. Elmkhah, T. F. Zhang, A. Abdollah-zadeh, K. H. Kim, and F. Mahboubi, “Surface characteristics for the TieAleN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages,” J Alloys Compd, vol. 688, pp. 820–827, 2016, doi: 10.1016/j.jallcom.2016.07.013.spa
dc.relation.referencesX. He, W. Liao, G. Wang, L. Zhong, and M. Li, “Evaluation of hydrodynamic lubrication performance of textured surface from the perspective of skewness and kurtosis,” Industrial Lubrication and Tribology, vol. 70, no. 5, pp. 829–837, 2018, doi: 10.1108/ILT-10-2016-0236.spa
dc.relation.referencesL. Chang and Y. R. Jeng, “Effects of negative skewness of surface roughness on the contact and lubrication of nominally flat metallic surfaces,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 227, no. 6, pp. 559–569, 2013, doi: 10.1177/1350650112465365.spa
dc.relation.referencesM. Taufik and P. K. Jain, “Laser assisted finishing process for improved surface finish of fused deposition modelled parts,” J Manuf Process, vol. 30, no. January 2018, pp. 161–177, 2017, doi: 10.1016/j.jmapro.2017.09.020.spa
dc.relation.referencesJ. A. Thornton, “High rate thick film growth,” Annual Review of Materials Science, vol. 7, p. 239, 1977.spa
dc.relation.referencesT. C. Huang, S. Y. Hsu, Y. T. Lai, S. Y. Tsai, and J. G. Duh, “Effect of NiTi metallic layer thickness on scratch resistance and wear behavior of high entropy alloy (CrAlNbSiV) nitride coating,” Surf Coat Technol, vol. 425, no. 101, p. 127713, 2021, doi: 10.1016/j.surfcoat.2021.127713.spa
dc.relation.referencesY. F. Zhao et al., “Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu,” J Mater Sci Technol, vol. 116, pp. 199–213, 2022, doi: 10.1016/j.jmst.2021.10.036.spa
dc.relation.referencesJ. Yang et al., “Effect of Au-ion irradiation on the surface morphology, microstructure and mechanical properties of amorphous AlCrFeMoTi HEA coating,” Surf Coat Technol, vol. 418, no. March, p. 127252, 2021, doi: 10.1016/j.surfcoat.2021.127252.spa
dc.relation.referencesL. Ma, F. Wiame, X. Chen, and X. Ma, “Effect of Nb on the surface composition of FeCrAl alloys after anodic polarization,” Mater Des, vol. 219, 2022, doi: 10.1016/j.matdes.2022.110728.spa
dc.relation.referencesH. Brunckova, M. Kanuchova, H. Kolev, E. Mudra, and L. Medvecky, “XPS characterization of SmNbO 4 and SmTaO 4 precursors prepared by sol-gel method,” Appl Surf Sci, vol. 473, no. December 2018, pp. 1–5, 2019, doi: 10.1016/j.apsusc.2018.12.143.spa
dc.relation.referencesR. Hu, J. Du, Y. Zhang, Q. Ji, R. Zhang, and J. Chen, “Microstructure and corrosion properties of AlxCuFeNiCoCr(x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content,” J Alloys Compd, vol. 921, p. 165455, 2022, doi: 10.1016/j.jallcom.2022.165455.spa
dc.relation.referencesS. Sarojini and R. Vanathi Vijayalakshmi, “XPS studies on silver ion conducting solid electrolyte SbI3-Ag2MoO4,” Mater Today Proc, no. xxxx, pp. 3–7, 2022, doi: 10.1016/j.matpr.2022.05.489.spa
dc.relation.referencesMC Biesinger, “X-ray Photoelectron Spectroscopy (XPS) Reference Pages.” [Online]. Available: http://www.xpsfitting.com/spa
dc.relation.referencesG. W. Strzelecki et al., “Multi-component low and high entropy metallic coatings synthesized by pulsed magnetron sputtering,” Surf Coat Technol, vol. 446, no. August, 2022, doi: 10.1016/j.surfcoat.2022.128802.spa
dc.relation.referencesM. Dada, P. Popoola, N. Mathe, S. Adeosun, and S. Pityana, “Investigating the elastic modulus and hardness properties of a high entropy alloy coating using nanoindentation,” International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 339–345, 2021, doi: 10.1016/j.ijlmm.2021.04.002.spa
dc.relation.referencesS. Zhao et al., “Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding,” Surf Coat Technol, vol. 417, no. December 2020, p. 127228, 2021, doi: 10.1016/j.surfcoat.2021.127228.spa
dc.relation.referencesL. Lyu, J. Yang, M. Zhou, M. Yan, and J. Yang, “Microstructure, mechanical properties and lead-bismuth eutectic corrosion behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO high entropy metal sublattice ceramic coatings,” Vacuum, vol. 209, no. August 2022, p. 111774, 2023, doi: 10.1016/j.vacuum.2022.111774.spa
dc.relation.referencesP. Slepski, M. Szocinski, G. Lentka, and K. Darowicki, “Novel fast non-linear electrochemical impedance method for corrosion investigations,” Measurement (Lond), vol. 173, no. November 2020, p. 108667, 2021, doi: 10.1016/j.measurement.2020.108667.spa
dc.relation.referencesF. B. Growcock and R. J. Jasinski, Impedance Spectroscopy. 1989. doi: 10.1021/bk1989-0396.ch036.spa
dc.relation.referencesC. España, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas,” Universidad Nacional de Colombia, pp. 1–164, 2021.spa
dc.relation.referencesP. Zhang et al., “A high corrosion resistant high entropy alloys (HEAs) coatings with single BCC solid solution structure by laser remelting,” Mater Lett, vol. 324, no. May, p. 132728, 2022, doi: 10.1016/j.matlet.2022.132728.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAleación de alta entropíaspa
dc.subject.proposalSputteringspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalHEAsspa
dc.subject.proposalAnticorrosivasspa
dc.subject.proposalHigh entropy alloyeng
dc.subject.proposalSputteringeng
dc.subject.proposalCorrosioneng
dc.subject.proposalHEAseng
dc.subject.proposalAnticorrosiveeng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.subject.unescoTecnología de materialesspa
dc.subject.unescoMaterials engineeringeng
dc.subject.unescoEnsayo de materialesspa
dc.subject.unescoMaterials testingeng
dc.titleCaracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputteringspa
dc.title.translatedCharacterization of the corrosion resistance of high entropy multi- component CrNiMoTaW alloys deposited using the sputtering techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Mónica_Liliana_Rojas_Flórez.pdf
Tamaño:
4.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia para publicación de obras en el Repositorio Institucional UNAL v4 U.FT.09.006.004 - Monica Liliana Rojas Florez.pdf
Tamaño:
301.12 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia