A state-of-the-art review of the Bouc-Wen model and hysteresis characterization through sparse regression techniques

dc.contributor.advisorÁlvarez Marín, Diego Andrés, Jorge Eduardo
dc.contributor.advisorBedoya Ruiz, Daniel Alveiro
dc.contributor.authorHeredia Pérez, Michael
dc.contributor.orcidHeredia Pérez, Michael [0009000762992147]
dc.contributor.researchgroupIngeniería Sísmica y Sismología
dc.date.accessioned2025-10-02T16:21:15Z
dc.date.available2025-10-02T16:21:15Z
dc.date.issued2025
dc.descriptionfotografías, graficasspa
dc.description.abstractThis thesis presents a comprehensive study of the Bouc-Wen model for hysteresis, focusing on its historical evolution, mathematical formulations, and capacity to represent complex behaviors such as asymmetry, degradation, pinching, and emerging recognized phenomena like s-shaped and flag-shaped responses. A detailed analysis of the model's variations was conducted, spanning over more than two decades of research, to identify trends, challenges, and gaps in current implementations. Building upon this foundation, a library of candidate functions was developed to represent hysteretic behavior through the sparse identification of nonlinear dynamics (SINDy) framework. Experiments revealed that while the basic SINDy algorithm can approximate certain aspects of hysteresis, it struggles to fully capture the dynamics of complex structural systems. This work not only consolidates knowledge about the Bouc-Wen model but also offers a critical perspective on the potential and limitations of data-driven methodologies for advancing structural dynamics research (Texto tomado de la fuente)eng
dc.description.abstractEsta tesis presenta un estudio exhaustivo del modelo de Bouc-Wen para la histéresis, centrándose en su evolución histórica, formulaciones matemáticas y capacidad para representar comportamientos complejos como la asimetría, la degradación, el pinzamiento y fenómenos emergentes reconocidos, como las respuestas en forma de s y de bandera. Se realizó un análisis detallado de las variaciones del modelo, abarcando más de dos décadas de investigación, para identificar tendencias, desafíos y brechas en las implementaciones actuales. Sobre esta base, se desarrolló una biblioteca de funciones candidatas para representar el comportamiento histerético mediante el algoritmo de identificación dispersa de dinámicas no lineales (SINDy, por sus siglas en inglés). Experimentos revelaron que, aunque el algoritmo básico de SINDy puede aproximar ciertos aspectos de la histéresis, tiene dificultades para capturar completamente la dinámica de sistemas estructurales complejos. Este trabajo no solo consolida el conocimiento sobre el modelo de Bouc-Wen, sino que también ofrece una perspectiva crítica sobre el potencial y las limitaciones de las metodologías basadas en datos para avanzar en la investigación de dinámica estructural.spa
dc.description.curricularareaIngeniería Civil.Sede Manizales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Estructuras
dc.description.researchareaModelación de dinámica no lineal
dc.format.extentxiv, 231 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89006
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras
dc.relation.referencesAdam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., and Vrahatis, M. N. (2019). No free lunch theorem: A review. Approximation and optimization: Algorithms, complexity and applications, pages 57–82.
dc.relation.referencesAguirre, L. A. (2019). A bird’s eye view of nonlinear system identification. arXiv preprint arXiv:1907.06803.
dc.relation.referencesAhmadi, G., Fan, F.-G., and Noori, M. (1997). A thermodynamically consistent model for hysteretic materials. Iranian Journal of Science and Technology, 21(3):257–278
dc.relation.referencesAhmadi, G., Fan, FG., and Noori, MN. (1991). A thermodynamically consistent quasi-linear model for hysteretic materials. Technical Report MAE-223, Clarkson University, Potsdam, N.Y.
dc.relation.referencesAjavakom, N., Ng, C., and Ma, F. (2008). Performance of nonlinear degrading struc- tures: Identification, validation, and prediction. Computers & Structures, 86(7-8):652–662.
dc.relation.referencesAkaike, H. (1998). Information theory and an extension of the maximum likelihood prin- ciple. In Parzen, E., Tanabe, K., and Kitagawa, G., editors, Selected Papers of Hirotugu Akaike, pages 199–213. Springer, New York, NY. http://link.springer.com/10.1007/ 978-1-4612-1694-0_15.
dc.relation.referencesAl-Bender, F., Lampaert, V., and Swevers, J. (2005). The generalized Maxwell-slip model: A novel model for friction simulation and compensation. IEEE Transactions on Automatic Control, 50(11):1883–1887.
dc.relation.referencesAl Janaideh, M., Krejčí, P., and Monteiro, G. A. (2024). Memory reduction of rate-dependent Prandtl–Ishlinskii compensators in applications on high-precision motion systems. Physica B: Condensed Matter, 677:415595.
dc.relation.referencesAl Majid, A. and Dufour, R. (2002). Formulation of a hysteretic restoring force model. Application to vibration isolation. Nonlinear Dynamics, 27:69–85.
dc.relation.referencesAlessandri, S., Giannini, R., Paolacci, F., and Malena, M. (2015). Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: Preliminary tests and analyses. Engineering Structures, 98:251–262.
dc.relation.referencesAloisio, A., Alaggio, R., Köhler, J., and Fragiacomo, M. (2020). Extension of generalized Bouc-Wen hysteresis modeling of wood joints and structural systems. Journal of Engi- neering Mechanics, 146(3):04020001.
dc.relation.referencesAloisio, A. and Fragiacomo, M. (2021). Reliability-based overstrength factors of cross- laminated timber shear walls for seismic design. Engineering Structures, 228:111547.
dc.relation.referencesAloisio, A., Rosso, M. M., Iqbal, A., and Fragiacomo, M. (2022). Hysteresis modeling of timber-based structural systems using a combined data and model-driven approach. Computers & Structures, 269:106830.
dc.relation.referencesAloisio, A., Sejkot, P., Iqbal, A., and Fragiacomo, M. (2021). An empirical transcenden- tal hysteresis model for structural systems with pinching and degradation. Earthquake Engineering & Structural Dynamics, 50(9):2277–2293.
dc.relation.referencesAlvarez, D. A. (2023). Teoría de la elasticidad usando Matlab y Maxima. Volumen 1: fun- damentos. Universidad Nacional de Colombia.
dc.relation.referencesAngelis, D., Sofos, F., and Karakasidis, T. E. (2023). Artificial intelligence in physical sciences: Symbolic regression trends and perspectives. Archives of Computational Methods in Engineering, 30(6):3845–3865.
dc.relation.referencesAria, M. and Cuccurullo, C. (2017). Bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4):959–975.
dc.relation.referencesAshrafi, S. A. and Smyth, A. W. (2007). Generalized Masing approach to modeling hysteretic deteriorating behavior. Journal of Engineering Mechanics, 133(5):495–505.
dc.relation.referencesAwrejcewicz, J. and Dzyubak, L. (2005). Influence of hysteretic dissipation on chaotic re- sponses. Journal of Sound and Vibration, 284(1-2):513–519.
dc.relation.referencesAwrejcewicz, J., Dzyubak, L., and Lamarque, C.-H. (2008). Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses. Com- munications in Nonlinear Science and Numerical Simulation, 13(5):939–958.
dc.relation.referencesBaber, T. T. and Noori, M. N. (1985). Random vibration of degrading, pinching systems. Journal of Engineering Mechanics, 111(8):1010–1026. https://ascelibrary.org/doi/ 10.1061/%28ASCE%290733-9399%281985%29111%3A8%281010%29.
dc.relation.referencesBaber, T. T. and Noori, M. N. (1986). Modeling general hysteresis behavior and random vibration application. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 108(4):411–420.
dc.relation.referencesBaber, T. T. and Wen, Y.-K. (1981). Random vibration of hysteretic, degrading systems. Journal of the Engineering Mechanics Division, 107(6):1069–1087.
dc.relation.referencesBabuška, I. (1959). Die nichtlineare Theorie der innere Reibung. Aplikace matematiky, 4(4):303–321.
dc.relation.referencesBanks, HT. and Smith, R. C. (2000). Hysteresis modeling in smart material systems. Applied Mechanics and Engineering, 5(1):31–45.
dc.relation.referencesBasili, M. and De Angelis, M. (2007). Optimal passive control of adjacent structures in- terconnected with nonlinear hysteretic devices. Journal of Sound and Vibration, 301(1- 2):106–125.
dc.relation.referencesBastien, J., Michon, G., Manin, L., and Dufour, R. (2007). An analysis of the modified Dahl and Masing models: Application to a belt tensioner. Journal of Sound and Vibration, 302(4-5):841–864.
dc.relation.referencesBedoya-Ruiz, D., Ortiz, G., Álvarez, D., and Hurtado, J. (2015). Modelo dinámico no lineal para evaluar el comportamiento sísmico de viviendas de ferrocemento. Revista Interna- cional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 31(3):139–145.
dc.relation.referencesBeisner, B., Haydon, D., and Cuddington, K. (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1(7):376–382.
dc.relation.referencesBelz, J., Münker, T., Heinz, T. O., Kampmann, G., and Nelles, O. (2017). Automatic model- ing with local model networks for benchmark processes. IFAC-PapersOnLine, 50(1):470– 475.
dc.relation.referencesBhattacharjee, A. and Chatterjee, A. (2013). Dissipation in the Bouc–Wen model: Small amplitude, large amplitude and two-frequency forcing. Journal of Sound and Vibration, 332(7):1807–1819.
dc.relation.referencesBhatti, M. A. (2005). Fundamental finite element analysis and applications: With Mathe- matica and MATLAB Computations. John Wiley.
dc.relation.referencesBouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. Proc. of the Fourth Conference on Nonlinear Oscillations, Prague, 1967.
dc.relation.referencesBouc, R. (1971). Modèle mathèmatique d’hystérésis. Acustica, 21:16–25.
dc.relation.referencesBrunton, S. L. and Kutz, J. N. (2022). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2nd edition.
dc.relation.referencesBrunton, S. L., Proctor, J. L., and Kutz, J. N. (2016a). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937.
dc.relation.referencesBrunton, S. L., Proctor, J. L., and Kutz, J. N. (2016b). Sparse identification of nonlinear dy- namics with control (SINDYc). IFAC-PapersOnLine, 49(18):710–715.
dc.relation.referencesBursi, O. S., Basone, F., and Wenzel, M. (2021). Stochastic analysis of locally resonant linear and hysteretic metamaterials for seismic isolation of process equipment. Journal of Sound and Vibration, 510:116263.
dc.relation.referencesCalabrese, A., Spizzuoco, M., Strano, S., and Terzo, M. (2019). Hysteresis models for response history analyses of recycled rubber–fiber reinforced bearings (RR-FRBs) base isolated buildings. Engineering Structures, 178:635–644.
dc.relation.referencesCandès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3):1–37.
dc.relation.referencesCapecchi, D. and Felice, G. D. (2001). Hysteretic systems with internal variables. Journal of Engineering Mechanics, 127(9):891–898
dc.relation.referencesCapuano, R., Pellecchia, D., Coppola, T., and Vaiana, N. (2023). On the inadequacy of rate-dependent models in simulating asymmetric rate-independent hysteretic phenomena. European Journal of Mechanics - A/Solids, 102:105105.
dc.relation.referencesCapuano, R., Vaiana, N., Pellecchia, D., and Rosati, L. (2022). A solution algorithm for a modified bouc-wen model capable of simulating cyclic softening and pinching phenomena. IFAC-PapersOnLine, 55(20):319–324.
dc.relation.referencesCarboni, B. and Lacarbonara, W. (2016). Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations. Nonlinear Dynamics, 83(1-2):23–39.
dc.relation.referencesCarboni, B., Lacarbonara, W., and Auricchio, F. (2015). Hysteresis of multiconfiguration assemblies of Nitinol and steel strands: Experiments and phenomenological identifica- tion. Journal of Engineering Mechanics, 141(3):04014135.
dc.relation.referencesCasalotti, A. and Lacarbonara, W. (2017). Tailoring of pinched hysteresis for nonlinear vibra- tion absorption via asymptotic analysis. International Journal of Non-Linear Mechanics, 94:59–71.
dc.relation.referencesCasciati, F. (1989). Stochastic dynamics of hysteretic media. Structural Safety, 6(2-4):259– 269.
dc.relation.referencesCasciati, F. and Faravelli, L. (1988). Stochastic equivalent linearization for 3-d frames. Journal of engineering mechanics, 114(10):1760–1771.
dc.relation.referencesCaughey, T. K. (1960). Random excitation of a system with bilinear hysteresis. Journal of Applied Mechanics, 27(4):649–652.
dc.relation.referencesÇeşmeci, Ş. and Engin, T. (2010). Modeling and testing of a field-controllable magnetorheological fluid damper. International Journal of Mechanical Sciences, 52(8):1036–1046.
dc.relation.referencesChacón, M. and Guindos, P. (2023). ASPID: An asymmetric pinching damaged hysteresis model for timber structures. Construction and Building Materials, 404:133106.
dc.relation.referencesChakraborty, G. (2019). Equivalent linearization of Bouc–Wen hysteretic model with har- monic input. Journal of The Institution of Engineers (India): Series C, 100(6):907–918.
dc.relation.referencesChandra, A., Curti, M., Tiels, K., Lomonova, E. A., and Tartakovsky, D. M. (2022). Data- driven sparse discovery of hysteresis models for piezoelectric actuators. In 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), pages 1–2. IEEE.
dc.relation.referencesChandra, A., Daniels, B., Curti, M., Tiels, K., Lomonova, E. A., and Tartakovsky, D. M. (2023). Discovery of sparse hysteresis models for piezoelectric materials. Applied Physics Letters, 122(21):214101.
dc.relation.referencesCharalampakis, A. and Dimou, C. (2010). Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Computers & Structures, 88(21-22):1197–1205.
dc.relation.referencesCharalampakis, A. and Koumousis, V. (2008a). Identification of Bouc–Wen hysteretic sys- tems by a hybrid evolutionary algorithm. Journal of Sound and Vibration, 314(3-5):571– 585.
dc.relation.referencesCharalampakis, A. and Koumousis, V. (2008b). On the response and dissipated energy of Bouc–Wen hysteretic model. Journal of Sound and Vibration, 309(3-5):887–895.
dc.relation.referencesCharalampakis, A. and Koumousis, V. (2009). A Bouc–Wen model compatible with plasticity postulates. Journal of Sound and Vibration, 322(4-5):954–968.
dc.relation.referencesCharalampakis, A. E. (2010). Parameters of Bouc-Wen hysteretic model revisited. In Pro- ceedings of the 9h HSTAM International Congress on Mechanics. (
dc.relation.referencesCharalampakis, A. E. and Dimou, C. K. (2015). Comparison of evolutionary algorithms for the identification of Bouc-Wen hysteretic systems. Journal of Computing in Civil Engineering, 29(3):04014053.
dc.relation.referencesCharalampakis, A. E. and Tsiatas, G. C. (2018). A simple rate-independent uniaxial shape memory alloy (SMA) model. Frontiers in Built Environment, 4:46.
dc.relation.referencesChartrand, R. (2011). Numerical differentiation of noisy, nonsmooth data. ISRN Applied Mathematics, 2011:1–11.
dc.relation.referencesChatterjee, T., Shaw, A. D., Friswell, M. I., and Khodaparast, H. H. (2023). Sparse Bayesian machine learning for the interpretable identification of nonlinear structural dynamics: Towards the experimental data-driven discovery of a quasi zero stiffness device. Mechanical Systems and Signal Processing, 205:110858.
dc.relation.referencesChaturantabut, S. and Sorensen, D. C. (2010). Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764.
dc.relation.referencesChatzi, E. N. and Smyth, A. W. (2009). The unscented kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Structural Control and Health Monitoring: The Official Journal of the Interna- tional Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 16(1):99–123.
dc.relation.referencesChen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3):359–377.
dc.relation.referencesChen, C.-T. (1999). Linear system theory and design. The Oxford Series in Electrical and Computer Engineering. Oxford University Press, New York, 3rd edition.
dc.relation.referencesChen, P., Wang, B., Karavasilis, T. L., and Dai, K. (2023a). A compatible uniaxial Bouc–Wen model for accurate estimation of residual deformation of seismically isolated structures. Engineering Structures, 297:117021.
dc.relation.referencesChen, P., Wang, B., Zhang, Z., Li, T., and Dai, K. (2023b). A generalized model of lead rubber bearing considering large strain stiffening and degradation. Engineering Structures, 275:115264.
dc.relation.referencesChen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations. Advances in Neural Information Processing Systems, 31.
dc.relation.referencesChen, T., Fox, E., and Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo. In Proceedings of the 31st International Conference on Machine Learning, volume 32 of Pro- ceedings of Machine Learning Research, pages 1683–1691, Bejing, China. PMLR.
dc.relation.referencesChen, Y. and Ahmadi, G. (1992). Wind effects on base-isolated structures. Journal of Engineering Mechanics, 118(8):1708–1727.
dc.relation.referencesCheng, F. Y. (2001). Matrix analysis of structural dynamics: Applications and earthquake engineering. Marcel Dekker, New York.
dc.relation.referencesChing, J. and Chen, Y.-C. (2007). Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. Journal of Engi- neering Mechanics, 133(7):816–832.
dc.relation.referencesChopra, A. K. (2012). Dynamics of structures: Theory and applications to earthquake engi- neering. Prentice Hall, Upper Saddle River, N.J, 4th edition.
dc.relation.referencesClark, P. W., Aiken, I. D., and Kelly, J. M. (1997). Experimental studies of the ultimate behavior of seismically-isolated structures. Earthquake Engineering Research Center, Uni- versity of California.
dc.relation.referencesClough, R. (1966). Effect of stiffness degradation on earthquake ductility requirements. UC Berkeley: Structural Engineering, Mechanics, and Materials. https://escholarship. org/uc/item/21f175hg.
dc.relation.referencesClough, R. W., Benuska, KL., and Wilson, EL. (1965). Inelastic earthquake response of tall buildings. In Proceedings, Third World Conference on Earthquake Engineering, New Zealand, volume 11, page 79.
dc.relation.referencesClough, R. W. and Penzien, J. (2015). Dynamics of structures. CBS Publishers & Distrib- utors, 2nd edition.
dc.relation.referencesColangelo, F. (2017). Interaction of axial force and bending moment by using Bouc-Wen hysteresis and stochastic linearization. Structural Safety, 67:39–53.
dc.relation.referencesColangelo, F. (2022). Bouc–Wen-like hysteresis model with asymmetry and versatile pinching for deteriorating reinforced-concrete elements. Structure and Infrastructure Engineering, pages 1–16.
dc.relation.referencesColangelo, F. (2024). Differential model of biaxial hysteresis with coupled principal strengths and cyclic deterioration for reinforced-concrete elements. Engineering Struc- tures, 302:117363.
dc.relation.referencesConn, A. R., Gould, N. I. M., and Toint, P. (1991). A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds. SIAM Journal on Numerical Analysis, 28(2):545–572.
dc.relation.referencesConstantinou, M., Mokha, A., and Reinhorn, A. (1990). Teflon bearings in base isolation II: Modeling. Journal of Structural Engineering, 116(2):455–474.
dc.relation.referencesConstantinou, M. C. and Adnane, MA. (1987). Dynamics of soil-base-isolated-structure systems: Evaluation of two models for yielding systems. Report 4. Department of Civil Engineering, Drexel University.
dc.relation.referencesCoussy, O. (1995). Mechanics of porous continua. Wiley, New York.
dc.relation.referencesCranmer, M. (2023). Interpretable machine learning for science with PySR and Symboli- cRegression.jl. arXiv preprint arXiv:2305.01582.
dc.relation.referencesCunha, Á. A. (1994). The role of the stochastic equivalent linearization method in the analysis of the non-linear seismic response of building structures. Earthquake engineering & structural dynamics, 23(8):837–857.
dc.relation.referencesDafalias, Y. F. (1977). Il’iushin’s postulate and resulting thermodynamic conditions on elasto-plastic coupling. International Journal of Solids and Structures, 13(3):239–251.
dc.relation.referencesDahl, P. (1968). A solid friction model, Aerospace Corp. El Segundo, CA, Tech. Rep. TOR-0158 (3107-18)-1.
dc.relation.referencesDai, K., Yang, Y., Li, T., Ge, Q., Wang, J., Wang, B., Chen, P., and Huang, Z. (2022). Seismic analysis of a base-isolated reinforced concrete frame using high damping rubber bearings considering hardening characteristics and bidirectional coupling effect. Structures, 46:698–712.
dc.relation.referencesDai, K.-Y., Yu, X.-H., and Lu, D.-G. (2020). Phenomenological hysteretic model for corroded RC columns. Engineering Structures, 210:110315.
dc.relation.referencesDe Domenico, D., Quaranta, G., Ricciardi, G., and Lacarbonara, W. (2022). Optimum design of tuned mass damper with pinched hysteresis under nonstationary stochastic seis- mic ground motion. Mechanical Systems and Signal Processing, 170:108745.
dc.relation.referencesde Silva, B. M., Champion, K., Quade, M., Loiseau, J.-C., Kutz, J. N., and Brunton, S. L. (2020). PySINDy: A Python package for the sparse identification of nonlinear dynamics from data.
dc.relation.referencesDe Wit, C. C., Olsson, H., Astrom, K., and Lischinsky, P. (1993). Dynamic friction models and control design. In 1993 American Control Conference, pages 1920–1926, San Francisco, CA, USA. IEEE.
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182– 197.
dc.relation.referencesDelgado Trujillo, J. S. (2022). Modeling of hysteretic structural systems using multilayer perceptrons and physics-guiding techniques. Master’s thesis, Universidad Nacional de Colombia.
dc.relation.referencesDelgado-Trujillo, S., Alvarez, D. A., and Bedoya-Ruíz, D. (2023). Hysteresis modeling of structural systems using physics-guided universal ordinary differential equations. Com- puters & Structures, 280:106988.
dc.relation.referencesDemetriades, G., Constantinou, M., and Reinhorn, A. (1993). Study of wire rope systems for seismic protection of equipment in buildings. Engineering Structures, 15(5):321–334.
dc.relation.referencesDer Kiureghian, A., Hong, K.-J., and Sackman, J. L. (2000). Further studies on seismic inter- action in interconnected electrical substation equipment. Techincal PEER Report 2000-01, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
dc.relation.referencesDi Gangi, G., Demartino, C., Quaranta, G., and Monti, G. (2020). Dissipation in sheathing-to-framing connections of light-frame timber shear walls under seismic loads. Engineering Structures, 208:110246.
dc.relation.referencesDiao, S., Sun, W., Su, S.-F., and Xia, J. (2022). Adaptive asymptotic tracking control for multi-input and multi-output nonlinear systems with unknown hysteresis inputs. Infor- mation Sciences, 612:241–256.
dc.relation.referencesDing, C., Cao, J., and Chen, Y. (2019). Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators. Nonlinear Dynamics, 98(4):3143–3153.
dc.relation.referencesDing, Z., Li, J., and Hao, H. (2020). Structural damage identification by sparse deep belief network using uncertain and limited data. Structural Control and Health Monitoring, 27(5):e2522.
dc.relation.referencesDobson, S. (1984). Hysteresis Models with Application in Structural Mechanics. PhD thesis, Worcester Polytechnic Institue.
dc.relation.referencesDobson, S., Noori, M., Hou, Z., Dimentberg, M., and Baber, T. (1997). Modeling and random vibration analysis of SDOF systems with asymmetric hysteresis. International Journal of Non-Linear Mechanics, 32(4):669–680.
dc.relation.referencesDong, H., He, M., Wang, X., Christopoulos, C., Li, Z., and Shu, Z. (2021). Development of a uniaxial hysteretic model for dowel-type timber joints in OpenSees. Construction and Building Materials, 288:123112.
dc.relation.referencesDong, H., Li, C., Wen, J., Han, Q., and Du, X. (2023). Seismic performance of self-centering rocking bents considering soil-structure interaction. Soil Dynamics and Earthquake Engi- neering, 168:107845.
dc.relation.referencesDong, H., Wang, C., Han, Q., and Du, X. (2024). Re-centering capability of partially self- centering structures with flag-shaped hysteretic behavior subjected to near-fault pulsed ground motion. Soil Dynamics and Earthquake Engineering, 186:108892.
dc.relation.referencesDonthu, N., Kumar, S., Mukherjee, D., Pandey, N., and Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133:285–296.
dc.relation.referencesDormand, J. and Prince, P. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1):19–26.
dc.relation.referencesDowell, OK., Seible, F., and Wilson, E. L. (1998). Pivot hysteresis model for reinforced concrete members. ACI structural journal, 95:607–617.
dc.relation.referencesDowrick, D. J. (1986). Hysteresis loops for timber structures. Bulletin of the New Zealand Society for Earthquake Engineering, 19(2):143–152.
dc.relation.referencesDreesen, P., Ishteva, M., and Schoukens, J. (2015). Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM Journal on Matrix Analysis and Applications, 36(2):864–879.
dc.relation.referencesDrucker, D. C. (1950). Some implications of work hardening and ideal plasticity. Quarterly of Applied Mathematics, 7(4):411–418.
dc.relation.referencesDuffing, G. (1918). Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Number 41-42. Vieweg.
dc.relation.referencesDuhem, P. (1897). Die dauernden Änderungen und die Thermodynamik. I. Zeitschrift für Physikalische Chemie, 22U(1):545–589.
dc.relation.referencesDzyubak, L., Dzyubak, O., and Awrejcewicz, J. (2023). Nonlinear multiscale diffusion cancer invasion model with memory of states. Chaos, Solitons & Fractals, 168:113091.
dc.relation.referencesEfron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2).
dc.relation.referencesEmiliano, P. C., Vivanco, M. J., and De Menezes, F. S. (2014). Information criteria: How do they behave in different models? Computational Statistics & Data Analysis, 69:141–153.
dc.relation.referencesErlicher, S. and Bursi, O. S. (2008). Bouc–Wen-Type models with stiffness degrada- tion: Thermodynamic analysis and applications. Journal of Engineering Mechanics, 134(10):843–855.
dc.relation.referencesErlicher, S. and Point, N. (2003). Thermodynamic admissibility of Bouc–Wen type hysteresis models. Comptes Rendus. Mécanique, 332(1):51–57.
dc.relation.referencesEsfahani, A., Dreesen, P., Tiels, K., Noël, J.-P., and Schoukens, J. (2016). Using a polyno- mial decoupling algorithm for state-space identification of a Bouc-Wen system. Brussels, Belgium. Workshop on Nonlinear System Identification Benchmarks.
dc.relation.referencesEsfahani, A. F., Dreesen, P., Tiels, K., Noël, J.-P., and Schoukens, J. (2018). Parameter reduction in nonlinear state-space identification of hysteresis. Mechanical Systems and Signal Processing, 104:884–895.
dc.relation.referencesEskinat, E., Johnson, S. H., and Luyben, W. L. (1991). Use of Hammerstein models in identification of nonlinear systems. AIChE Journal, 37(2):255–268.
dc.relation.referencesEsteghamati, M. Z. and Flint, M. M. (2023). Do all roads lead to rome? a comparison of knowledge-based, data-driven, and physics-based surrogate models for performance-based early design. Engineering Structures, 286:116098.
dc.relation.referencesEtemadi, A. and Balkaya, C. (2024). The role of masonry infills on the interstory drift demand of reinforced concrete frames. Soil Dynamics and Earthquake Engineering, 180:108599.
dc.relation.referencesEwing, J. A. (1883). On the production of transient electric currents in iron and steel conductors by twisting them when magnetised, or by magnetising them when twisted. Proceedings of the Royal Society of London, 36(228-231):117–135.
dc.relation.referencesFan, G., Li, J., Hao, H., and Xin, Y. (2021). Data driven structural dynamic response recon- struction using segment based generative adversarial networks. Engineering Structures, 234:111970.
dc.relation.referencesFantetti, A., Tamatam, L., Volvert, M., Lawal, I., Liu, L., Salles, L., Brake, M., Schwing- shackl, C., and Nowell, D. (2019). The impact of fretting wear on structural dynamics: Experiment and simulation. Tribology International, 138:111–124.
dc.relation.referencesFoliente, G. C. (1993). Stochastic dynamic response of wood structural systems. PhD thesis, Virginia Polytechnic Institute and State University.
dc.relation.referencesFoliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6):1013–1022.
dc.relation.referencesFoliente, G. C., Singh, M. P., and Noori, M. N. (1996). Equivalent linearization of generally pinching hysteretic, degrading systems. Earthquake engineering & structural dynamics, 25(6):611–629.
dc.relation.referencesFolz, B. and Filiatrault, A. (2001). Cyclic analysis of wood shear walls. Journal of Structural Engineering, 127(4):433–441.
dc.relation.referencesFolz, B. and Filiatrault, A. (2004). Seismic analysis of woodframe structures. I: Model formulation. Journal of Structural Engineering, 130(9):1353–1360.
dc.relation.referencesFoschi, R. O. (1974). Load-slip characteristics of nails. Wood Science, 7(1):69–76.
dc.relation.referencesFu, Z., Shen, Y., Wang, S., Jiang, W., Li, J., Bin, G., and Hu, B. (2022). Asymmetric Bouc-Wen hysteresis modeling for MFC actuator via hybrid APSO-TRR identification al- gorithm. Sensors and Actuators A: Physical, 346:113830.
dc.relation.referencesGan, J. and Zhang, X. (2019). A review of nonlinear hysteresis modeling and control of piezoelectric actuators. AIP Advances, 9(4):040702.
dc.relation.referencesGavioli, C. and Krejčí, P. (2024). Diffusion in porous media with hysteresis and bounded speed of propagation. arXiv preprint arXiv:2410.06622.
dc.relation.referencesGavric, I., Fragiacomo, M., and Ceccotti, A. (2015). Cyclic behavior of CLT wall systems: Experimental tests and analytical prediction models. Journal of Structural Engineering, 141(11):04015034.
dc.relation.referencesGéradin, M. and Rixen, D. (2015). Mechanical vibrations: Theory and application to structural dynamics. Wiley, Chichester, West Sussex, United Kingdom, 3rd edition.
dc.relation.referencesGerolymos, N. and Gazetas, G. (2005). Constitutive model for 1-D cyclic soil behaviour applied to seismic analysis of layered deposits. Soils and Foundations, 45(3):147–159.
dc.relation.referencesGidaris, I. and Taflanidis, A. A. (2013). Parsimonious modeling of hysteretic structural response in earthquake engineering: Calibration/validation and implementation in proba- bilistic risk assessment. Engineering Structures, 49:1017–1033.
dc.relation.referencesGiouvanidis, A. I. and Dimitrakopoulos, E. G. (2017). Seismic performance of rocking frames with flag-shaped hysteretic behavior. Journal of Engineering Mechanics, 143(5):04017008.
dc.relation.referencesGoda, K., Hong, H. P., and Lee, C. S. (2009). Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior. Journal of Earthquake Engineering, 13(5):600–622.
dc.relation.referencesGodage, I. S., Branson, D. T., Guglielmino, E., and Caldwell, D. G. (2012). Pneumatic muscle actuated continuum arms: Modelling and experimental assessment. In 2012 IEEE International Conference on Robotics and Automation, pages 4980–4985, St Paul, MN, USA. IEEE.
dc.relation.referencesGoodwin, G. C. and Sin, K. S. (1984). Adaptive Filtering Prediction and Control. Prentice- Hall, Englewood Cliffs, NJ.
dc.relation.referencesGraesser, E. J. and Cozzarelli, F. A. (1991). Shape-memory alloys as new materials for seis- mic isolation. Journal of Engineering Mechanics, 117(11):2590–2608.
dc.relation.referencesGu, G.-Y., Zhu, L.-M., and Su, C.-Y. (2014). Modeling and compensation of asymmet- ric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE Transactions on Industrial Electronics, 61(3):1583–1595.
dc.relation.referencesGu, Y., Lu, X., and Xu, Y. (2023). A deep ensemble learning-driven method for the intelligent construction of structural hysteresis models. Computers & Structures, 286:107106.
dc.relation.referencesGuan, X., Burton, H., Shokrabadi, M., and Yi, Z. (2021). Seismic drift demand estimation for steel moment frame buildings: From mechanics-based to data-driven models. Journal of Structural Engineering, 147(6):04021058.
dc.relation.referencesGuo, D. and Hu, H. (2005). Nonlinear stiffness of a magneto-rheological damper. Nonlinear Dynamics, 40(3):241–249.
dc.relation.referencesGuo, K., Zhang, X., Li, H., Hua, H., and Meng, G. (2008). A new dynamical friction model. International Journal of Modern Physics B, 22(08):967–980.
dc.relation.referencesGuo, Z., Tian, Y., Liu, X., Shirinzadeh, B., Wang, F., and Zhang, D. (2015). An inverse Prandtl–Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism. Sensors and Actuators A: Physical, 230:52–62.
dc.relation.referencesGutiérrez, R. E., Rosário, J. M., and Tenreiro Machado, J. (2010). Fractional order calcu- lus: Basic concepts and engineering applications. Mathematical Problems in Engineering, 2010(1):375858.
dc.relation.referencesHaque, A., Issa, A., and Shahria Alam, M. (2019). Superelastic shape memory alloy flag- shaped hysteresis model with sliding response from residual deformation: Experimental and numerical study. Journal of Intelligent Material Systems and Structures, 30(12):1823– 1849.
dc.relation.referencesHassani, V., Tjahjowidodo, T., and Do, T. N. (2014). A survey on hysteresis modeling, identification and control. Mechanical Systems and Signal Processing, 49(1-2):209–233.
dc.relation.referencesHaukaas, T. (2004). Finite element reliability and sensitivity methods for performance- based earthquake engineering. Pacific Earthquake Engineering Research Center, College of Engineering.
dc.relation.referencesHeo, G., Pyo, K.-h., Lee, D. H., Kim, Y., and Kim, J.-W. (2016). Critical role of Diels–Adler adducts to realise stretchable transparent electrodes based on silver nanowires and silicone elastomer. Scientific Reports, 6(1):25358.
dc.relation.referencesHeo, G., Seo, S., Jeon, S., and Kim, C. (2021). Development of a hybrid control algorithm for effective reduction of drift in multispan isolated bridges. Soil Dynamics and Earthquake Engineering, 143:106659.
dc.relation.referencesHerrera, J. P., Bedoya-Ruiz, D., and Hurtado, J. E. (2018). Seismic behavior of recycled plastic lumber walls: An experimental and analytical research. Engineering Structures, 177:566–578.
dc.relation.referencesHerrera, J. P., Bedoya-Ruiz, D., and Hurtado, J. E. (2020). Performance-based seismic assessment of precast ferrocement walls for one and two-storey housing. Engineering Structures, 214:110589.
dc.relation.referencesHodgdon, M. (1988). Mathematical theory and calculations of magnetic hysteresis curves. IEEE Transactions on Magnetics, 24(6):3120–3122.
dc.relation.referencesHolland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Anal- ysis with Applications to Biology, Control, and Artificial Intelligence. MIT press.
dc.relation.referencesHu, S., Alam, M. S., Zhang, Y., Ding, Z., and He, X. (2024a). Partially self-centering braces with NiTi- and Fe-SMA U-shaped dampers. Thin-Walled Structures, 197:111605.
dc.relation.referencesHu, X., Dong, H., Su, C., Han, Q., and Du, X. (2024b). Experimental and numerical studies on hysteresis performance of U-shaped SMA-steel plates damper. Journal of Construc- tional Steel Research, 219:108802.
dc.relation.referencesHu, Y., Guo, W., Long, Y., Li, S., and Xu, Z. (2022). Physics-informed deep neural networks for simulating s-shaped steel dampers. Computers & Structures, 267:106798.
dc.relation.referencesHultmann Ayala, H. V., Rakotondrabe, M., and Dos Santos Coelho, L. (2020). Piezoelectric micromanipulator dataset for hysteresis identification. Data in Brief, 29:105175.
dc.relation.referencesHunt, K. H. and Crossley, F. R. E. (1975). Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics, 42(2):440–445.
dc.relation.referencesHurtado, J. E. (1998). Stochastic dynamics of hysteretic structures. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE).
dc.relation.referencesHurtado, J. E. and Barbat, A. H. (1996). Improved stochastic linearization method using mixed distributions. Structural Safety, 18(1):49–62.
dc.relation.referencesHurtado, J. E. and Barbat, A. H. (2000). Equivalent linearization of the Bouc–Wen hysteretic model. Engineering Structures, 22(9):1121–1132.
dc.relation.referencesIbarra, L. F., Medina, R. A., and Krawinkler, H. (2005). Hysteretic models that incorpo- rate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12):1489–1511.
dc.relation.referencesIkhouane, F. (2021). On Babuška’s model for asymmetric hysteresis. Communications in Nonlinear Science and Numerical Simulation, 95:105650.
dc.relation.referencesIkhouane, F. (2022). A data-driven hysteresis model. Structural Control and Health Moni- toring, 29(9).
dc.relation.referencesIkhouane, F., Hurtado, J. E., and Rodellar, J. (2007a). Variation of the hysteresis loop with the Bouc–Wen model parameters. Nonlinear Dynamics, 48(4):361–380.
dc.relation.referencesIkhouane, F., Mañosa, V., and Rodellar, J. (2005). Adaptive control of a hysteretic structural system. Automatica, 41(2):225–231.
dc.relation.referencesIkhouane, F., Mañosa, V., and Rodellar, J. (2007b). Dynamic properties of the hysteretic Bouc-Wen model. Systems & Control Letters, 56(3):197–205.
dc.relation.referencesIkhouane, F., Pozo, F., and Acho, L. (2008). Discussion of “generalized bouc–wen model for highly asymmetric hysteresis” by junho song and armen der kiureghian. Journal of Engineering Mechanics, 134(5):438–439.
dc.relation.referencesIkhouane, F. and Rodellar, J. (2005a). On the hysteretic Bouc–Wen model: Part I: Forced limit cycle characterization. Nonlinear Dynamics, 42(1):63–78.
dc.relation.referencesIkhouane, F. and Rodellar, J. (2005b). Physical consistency of the Bouc-Wen model. IFAC Proceedings Volumes, 38(1):874–879.
dc.relation.referencesIkhouane, F. and Rodellar, J. (2007). Systems with hysteresis: Analysis, identification and control using the Bouc-Wen Model. Wiley, Chichester, England.
dc.relation.referencesIkhouane, F., Rodellar, J., and Hurtado, J. E. (2006). Analytical characterization of hys- teresis loops described by the Bouc-Wen model. Mechanics of Advanced Materials and Structures, 13(6):463–472.
dc.relation.referencesIl’iushin, A. (1961). On the postulate of plasticity. Journal of Applied Mathematics and Mechanics, 25(3):746–752.
dc.relation.referencesIqbal, A., Fragiacomo, M., Pampanin, S., and Buchanan, A. (2018). Seismic resilience of plywood-coupled LVL wall panels. Engineering Structures, 167:750–759.
dc.relation.referencesIsac, M. D., Cîmpean, C., and Manea, D. L. (2025). The current status of structural monitoring: A bibliometric literature review. Buildings, 15(5).
dc.relation.referencesIshlinskii, A. Y. (1944). Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser, 9:583–590.
dc.relation.referencesIsmail, M. (2019). An elastoplastic bracing system for structural vibration control. Engi- neering Structures, 200:109671.
dc.relation.referencesIsmail, M., Ikhouane, F., and Rodellar, J. (2009). The hysteresis Bouc-Wen model, a survey. Archives of Computational Methods in Engineering, 16(2):161–188.
dc.relation.referencesIwan, W. D. (1973). A generalization of the concept of equivalent linearization. International Journal of Non-Linear Mechanics, 8(3):279–287.
dc.relation.referencesJain, M., Singh, V., and Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation, 44:148–175.
dc.relation.referencesJalali, H., Jamia, N., Friswell, M. I., Haddad Khodaparast, H., and Taghipour, J. (2022). A generalization of the Valanis model for friction modelling. Mechanical Systems and Signal Processing, 179:109339.
dc.relation.referencesJanaideh, M. A., Su, C.-Y., and Rakheja, S. (2008). Development of the rate- dependent Prandtl–Ishlinskii model for smart actuators. Smart Materials and Structures, 17(3):035026.
dc.relation.referencesJiles, D. and Atherton, D. (1983). Ferromagnetic hysteresis. IEEE Transactions on Mag- netics, 19(5):2183–2185.
dc.relation.referencesJin, J., Sun, X., and Chen, Z. (2023a). Modeling and inverse compensation of dynamic hysteresis in voice coil motors using an extended rate-dependent Prandtl-Ishlinskii model. Journal of Magnetism and Magnetic Materials, 588:171444.
dc.relation.referencesJin, S., Yang, J., Sun, S., Deng, L., Chen, Z., Gong, L., Du, H., and Li, W. (2023b). Magnetorheological elastomer base isolation in civil engineering: A review. Journal of Infrastructure Intelligence and Resilience, 2(2):100039.
dc.relation.referencesJohanastrom, K. and Canudas-de-Wit, C. (2008). Revisiting the LuGre friction model. IEEE Control Systems, 28(6):101–114.
dc.relation.referencesJudd, J. P. and Fonseca, F. S. (2005). Analytical model for sheathing-to-framing connections in wood shear walls and diaphragms. Journal of Structural Engineering, 131(2):345–352.
dc.relation.referencesKalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45.
dc.relation.referencesKalmár-Nagy, T., Bernardini, D., Carboni, B., and Lacarbonara, W. (2017). Quantifying rate dependence of hysteretic systems. Procedia Engineering, 199:1447–1453.
dc.relation.referencesKang, S., Wu, H., Li, Y., Yang, X., and Yao, J. (2022). A fractional-order normalized Bouc–Wen model for piezoelectric hysteresis nonlinearity. IEEE/ASME Transactions on Mechatronics, 27(1):126–136.
dc.relation.referencesKaptanoglu, A. A., de Silva, B. M., Fasel, U., Kaheman, K., Goldschmidt, A. J., Callaham, J. L., Delahunt, C. B., Nicolaou, Z. G., Champion, K., Loiseau, J.-C., Kutz, J. N., and Brunton, S. L. (2021). PySINDy: A comprehensive Python package for robust sparse system identification.
dc.relation.referencesKarabutov, N. and Shmyrin, A. (2020). Parameters adaptive identification of Bouc-Wen hysteresis. IFAC-PapersOnLine, 53(2):1225–1230.
dc.relation.referencesKarpatne, A., Kannan, R., and Kumar, V., editors (2022). Knowledge Guided Machine Learning: Accelerating Discovery Using Scientific Knowledge and Data. Chapman & Hal- l/CRC Data Mining and Knowledge Discovery Series. CRC Press, Boca Raton, first edition edition.
dc.relation.referencesKarpov, E. A. (2024). Dynamics of the Euler-Bernoully beam with distributed hysteresis properties. Vestnik of Samara University. Natural Science Series, 30(3):35–62.
dc.relation.referencesKarray, MA. and Bouc, R. (1989). Étude dynamique d’un systeme d’isolation antisismique. Annales ENIT, 3(1):43–60.
dc.relation.referencesKato, H. (2012). A new hysteresis model based on an integral type deformation-history for elastomeric seismic isolation bearings. In 15th World Conference on Earthquake Engineer- ing.
dc.relation.referencesKaveh, A. and Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3-4):267–289.
dc.relation.referencesKennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–1948, Perth, WA, Australia. IEEE.
dc.relation.referencesKerschen, G., Worden, K., Vakakis, A. F., and Golinval, J.-C. (2006). Past, present and future of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing, 20(3):505–592.
dc.relation.referencesKhandelwal, D. (2020). Automating Data-Driven Modelling of Dynamical Systems: An Evo- lutionary Computation Approach. PhD thesis, Technische Universiteit Eindhoven.
dc.relation.referencesKhodarahmi, M. and Maihami, V. (2023). A review on kalman filter models. Archives of Computational Methods in Engineering, 30(1):727–747.
dc.relation.referencesKhoei, A. R. (2005). 7 - advanced plasticity models. In Khoei, A. R., editor, Computa- tional Plasticity in Powder Forming Processes, pages 210–245. Elsevier, Oxford.
dc.relation.referencesKikuchi, M. and Aiken, I. D. (1997). An analytical hysteresis model for elastomeric seismic isolation bearings. Earthquake engineering & structural dynamics, 26(2):215–231.
dc.relation.referencesKim, D.-Y., Gombosuren, M., Han, O., and Kim, S.-H. (2020). Hysteretic model of Y- type perfobond rib connectors with large number of ribs. Journal of Constructional Steel Research, 166:105818.
dc.relation.referencesKim, S.-H., Choi, K.-T., Park, S.-J., Park, S.-M., and Jung, C.-Y. (2013). Experimental shear resistance evaluation of Y-type perfobond rib shear connector. Journal of Constructional Steel Research, 82:1–18.
dc.relation.referencesKim, S.-Y. and Lee, C.-H. (2019). Description of asymmetric hysteretic behavior based on the Bouc-Wen model and piecewise linear strength-degradation functions. Engineering Structures, 181:181–191.
dc.relation.referencesKim, S.-Y. and Lee, C.-H. (2021). Nondimensionalized Bouc–Wen model with struc- tural degradation for Kalman filter–based real-time monitoring. Engineering Structures, 244:112674.
dc.relation.referencesKim, T., Kwon, O.-S., and Song, J. (2023). Deep learning based seismic response predic- tion of hysteretic systems having degradation and pinching. Earthquake Engineering & Structural Dynamics, 52(8):2384–2406.
dc.relation.referencesKitahara, M., Kakiuchi, Y., Yang, Y., and Nagayama, T. (2024). Adaptive Bayesian filter with data-driven sparse state space model for seismic response estimation. Mechanical Systems and Signal Processing, 208:111048.
dc.relation.referencesKonda, R. and Zhang, J. (2022). Hysteresis with lonely stroke in artificial muscles: Charac- terization, modeling, and inverse compensation. Mechanical Systems and Signal Process- ing, 164:108240.
dc.relation.referencesKottari, A., Charalampakis, A., and Koumousis, V. (2014). A consistent degrading Bouc– Wen model. Engineering Structures, 60:235–240.
dc.relation.referencesKovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anand- kumar, A. (2023). Neural operator: Learning maps between function spaces with applica- tions to pdes. Journal of Machine Learning Research, 24(89):1–97.
dc.relation.referencesKrasnosel’skiǐ, M. A. and Pokrovskiǐ, A. V. (1989). Identification theorem, pages 59–93. Springer, Berlin, Heidelberg.
dc.relation.referencesKrejčí, P. (1988). On Ishlinskij’s model for non-perfectly elastic bodies. Aplikace matematiky, 33(2):133–144.
dc.relation.referencesKrikelis, K., Pei, J.-S., Van Berkel, K., and Schoukens, M. (2024). Identification of struc- tured nonlinear state–space models for hysteretic systems using neural network hysteresis operators. Measurement, 224:113966.
dc.relation.referencesKrishnakumar, K. (1990). Micro-genetic algorithms for stationary and non-stationary func- tion optimization. In Rodriguez, G., editor, Intelligent Control and Adaptive Systems, vol- ume 1196, pages 289–296. SPIE / International Society for Optics and Photonics.
dc.relation.referencesKrylov, N. M. and Bogoliubov, N. N. (1950). Introduction to non-linear mechanics. Num- ber 11. Princeton university press.
dc.relation.referencesKumbhar, S., Puneet, N., and Kumar, H. (2022). Characterization and quarter car analysis with magnetorheological fluid damper using modified algebraic model (mAlg). Materials Today: Proceedings, 56:749–754.
dc.relation.referencesKundu, P. K., Cohen, I. M., Dowling, D. R., and Tryggvason, G. (2016). Fluid Mechanics. Elsevier, Amsterdam, Boston, 6th edition.
dc.relation.referencesKunnath, S. K. and Reinhorn, A. M. (1990). Model for inelastic biaxial bending interaction of reinforced concrete beam-columns. ACI Structural Journal, 87(3).
dc.relation.referencesKurtzweil, J. (1961). On a system of the third order describing the motion of a mass point where the inner friction is taken in consideration. In Symposium on nonlinear oscillations, Kiev, pages 220–222.
dc.relation.referencesKwok, N., Ha, Q., Nguyen, M., Li, J., and Samali, B. (2007). Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Transactions, 46(2):167–179.
dc.relation.referencesLacarbonara, W. (2013). Nonlinear structural mechanics: Theory, dynamical phenomena and modeling. Springer US, Boston, MA.
dc.relation.referencesLacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, JA., and Stepan, G. (2020). Nonlinear dynamics of structures, systems and devices. In Proceedings of the First Inter- national Nonlinear Dynamics Conference (NODYCON 2019), volume 1. Springer.
dc.relation.referencesLacarbonara, W. and Vestroni, F. (2003). Nonclassical responses of oscillators with hystere- sis. Nonlinear Dynamics, 32(3):235–258.
dc.relation.referencesLai, K., Fan, W., Chen, Z., Yang, C., Liu, Z., and Li, S. (2023). Performance of wire rope damper in vibration reduction of stay cable. Engineering Structures, 278:115527.
dc.relation.referencesLai, W. M., Rubin, D., and Krempl, E. (2010). Introduction to continuum mechanics. Elsevier, 4th edition.
dc.relation.referencesLai, Z. and Nagarajaiah, S. (2019). Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behavior. Mechanical Systems and Signal Processing, 117:813–842.
dc.relation.referencesLaudani, A., Fulginei, F. R., and Salvini, A. (2014). Comparative analysis of Bouc-Wen and Jiles-Atherton models under symmetric excitations. Physica B: Condensed Matter, 435:134–137.
dc.relation.referencesLazan, B. J. (1968). Damping of materials and members in structural mechanics. Pergamon Press, Oxford, New York.
dc.relation.referencesLeblouba, M., Balaji, P., and Muhammad, E. (2022a). Quasi-static cyclic behavior of wire rope isolators: Comprehensive experimental study and improved mathematical modeling. Heliyon, 8(10):e10944.
dc.relation.referencesLeblouba, M., Fageeri, A., and Al-Sadoon, Z. A. (2022b). A novel seismic energy dissipation device: Laboratory tests, mathematical modeling, and numerical analysis. Soil Dynamics and Earthquake Engineering, 162:107493.
dc.relation.referencesLeblouba, M., Rahman, M., and Barakat, S. (2019). Behavior of polycal wire rope isolators subjected to large lateral deformations. Engineering Structures, 191:117–128.
dc.relation.referencesLeenen, R. (2002). The modelling and identification of an hysteretic system: The wire as a nonlinear shock vibration isolator. Technische Universiteit Eindhoven.
dc.relation.referencesLeng, D., Wang, R., Yang, Y., Li, Y., and Liu, G. (2023). Study on a three-dimensional variable-stiffness TMD for mitigating bi-directional vibration of monopile offshore wind turbines. Ocean Engineering, 281:114791.
dc.relation.referencesLeng, D., Yang, Y., Xu, K., Li, Y., Liu, G., Tian, X., and Xie, Y. (2021). Vibration control of offshore wind turbine under multiple hazards using single variable-stiffness tuned mass damper. Ocean Engineering, 236:109473.
dc.relation.referencesLi, H., Zhang, J., and Wen, B. (2002). Chaotic behaviors of a bilinear hysteretic oscillator. Mechanics Research Communications, 29(5):283–289.
dc.relation.referencesLi, H.-g. and Meng, G. (2007). Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis. Chaos, Solitons & Fractals, 34(2):337–343.
dc.relation.referencesLi, Z., Albermani, F., Chan, R. W., and Kitipornchai, S. (2011). Pinching hysteretic response of yielding shear panel device. Engineering Structures, 33(3):993–1000.
dc.relation.referencesLi, Z., Chen, X., Huang, G., Yang, Q., Zhou, X., and Pang, H. (2023). Coupled dynamic analysis of tall buildings isolated with friction pendulum bearings under three-dimensional wind loads. Journal of Wind Engineering and Industrial Aerodynamics, 234:105332.
dc.relation.referencesLi, Z., Wang, F., and Zhu, R. (2021). Finite-time adaptive neural control of nonlinear systems with unknown output hysteresis. Applied Mathematics and Computation, 403:126175.
dc.relation.referencesLi, Z., Zhang, X., and Ma, L. (2020). Development of a combined Prandtl Ishlinskii-Preisach model. Sensors and Actuators A: Physical, 304:111797.
dc.relation.referencesLiang, B., Zhang, J., and Liu, X. (2021). Nonlinear hysteretic modeling and parameter iden- tification of steel strip winding reinforced composite pipe. Ocean Engineering, 235:108704.
dc.relation.referencesLiberatore, D., Addessi, D., and Paoloni, A. (2024). Hysteretic models with damage and flexibility increase. European Journal of Mechanics - A/Solids, 106:105340.
dc.relation.referencesLiberatore, D., Addessi, D., and Sangirardi, M. (2019). An enriched Bouc-Wen model with damage. European Journal of Mechanics - A/Solids, 77:103771.
dc.relation.referencesLie, W., Wu, C., Luo, W., Wu, C., Li, C., Li, D., and Wu, C. (2022). Cyclic behaviour of a novel torsional steel-tube damper. Journal of Constructional Steel Research, 188:107010.
dc.relation.referencesLin, M., Cheng, C., Zhang, G., Zhao, B., Peng, Z., and Meng, G. (2022a). Identification of Bouc-Wen hysteretic systems based on a joint optimization approach. Mechanical Systems and Signal Processing, 180:109404.
dc.relation.referencesLin, M., Sun, B., Cheng, C., Zhao, B., Peng, Z., and Meng, G. (2022b). Alternating state-parameter identification of Bouc-Wen hysteretic systems from steady-state harmonic response. Journal of Sound and Vibration, 538:117242.
dc.relation.referencesLiu, G., Sun, N., Yang, T., Liu, Z., and Fang, Y. (2023). Equivalent-input-disturbance rejection-based adaptive motion control for pneumatic artificial muscle arms via hysteresis compensation models. Control Engineering Practice, 138:105609.
dc.relation.referencesLiu, S. and Li, A. (2018). Hysteretic friction behavior of aluminum foam/polyurethane interpenetrating phase composites. Composite Structures, 203:18–29.
dc.relation.referencesLiu, S., Li, A., He, S., and Xuan, P. (2015). Cyclic compression behavior and energy dis- sipation of aluminum foam–polyurethane interpenetrating phase composites. Composites Part A: Applied Science and Manufacturing, 78:35–41.
dc.relation.referencesLiu, Y., Zhang, X., Li, Z., Chen, X., and Su, C.-Y. (2024). Adaptive intelligent control for nonlinear systems considering butterfly-like hysteresis and its application on dielectric elastomer actuated motion system.
dc.relation.referencesLove, J., Tait, M., and Toopchi-Nezhad, H. (2011). A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure. Engineering Structures, 33(3):738–746.
dc.relation.referencesLowes, L. N., Mitra, N., and Altoontash, A. (2004). A beam-column joint model for simulat- ing the earthquake response of reinforced concrete frames. PEER Report 2003/10, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
dc.relation.referencesLu, L.-Y., Chung, L.-L., Wu, L.-Y., and Lin, G.-L. (2006). Dynamic analysis of structures with friction devices using discrete-time state-space formulation. Computers & Structures, 84(15-16):1049–1071.
dc.relation.referencesLu, Y., Xiong, F., and Ge, Q. (2021). Dynamic rocking response of a rigid planar block on a nonlinear hysteretic Winkler foundation. Earthquake Engineering & Structural Dynamics, 50(10):2754–2773.
dc.relation.referencesLu, Y., Xiong, F., and Zhong, J. (2022). Uniaxial hysteretic spring models for static and dynamic analyses of self-centering rocking shallow foundations. Engineering Structures, 272:114995.
dc.relation.referencesLuo, W., Li, H., Zhou, Y., and Zhou, H. (2020). Seismic performance of lead-filled steel tube damper: Laboratory test, parameter identification and application. Engineering Structures, 219:110764.
dc.relation.referencesMa, F., Ng, C. H., and Ajavakom, N. (2006). On system identification and response pre- diction of degrading structures. Structural Control and Health Monitoring, 13(1):347–364.
dc.relation.referencesMa, F., Zhang, H., Bockstedte, A., Foliente, G. C., and Paevere, P. (2004). Parameter analysis of the differential model of hysteresis. Journal of Applied Mechanics, 71(3):342– 349.
dc.relation.referencesMa, Y., Wu, Z., Cheng, X., Sun, Z., and Chen, X. (2023). Parameter identification of hystere- sis model of reinforced concrete columns considering shear action. Structures, 47:93–104.
dc.relation.referencesMacki, J. W., Nistri, P., and Zecca, P. (1993). Mathematical models for hysteresis. SIAM Review, 35(1):94–123
dc.relation.referencesMakke, N. and Chawla, S. (2024). Interpretable scientific discovery with symbolic regression: a review. Artificial Intelligence Review, 57(1):2.
dc.relation.referencesMaleki, M., Ahmadian, H., and Rajabi, M. (2023). A modified Bouc-Wen model to simulate asymmetric hysteresis loop and stochastic model updating in frictional contacts. Interna- tional Journal of Solids and Structures, 269:112212.
dc.relation.referencesMangan, N. M., Kutz, J. N., Brunton, S. L., and Proctor, J. L. (2017). Model selection for dynamical systems via sparse regression and information criteria. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2204):20170009.
dc.relation.referencesManzoori, A. and Toopchi-Nezhad, H. (2017). Application of an extended Bouc-Wen model in seismic response prediction of unbonded fiber-reinforced isolators. Journal of Earthquake Engineering, 21(1):87–104.
dc.relation.referencesMarques, F., Woliński, Ł., Wojtyra, M., Flores, P., and Lankarani, H. M. (2021). An investigation of a novel LuGre-based friction force model. Mechanism and Machine Theory, 166:104493.
dc.relation.referencesMartins, S. A. M. and Aguirre, L. A. (2016). Sufficient conditions for rate-independent hysteresis in autoregressive identified models. Mechanical Systems and Signal Processing, 75:607–617.
dc.relation.referencesMasing, G. (1926). Eigenspannungen und Verfestigung beim Messing. In Proceedings, Second International Congress of Applied Mechanics, pages 332–335.
dc.relation.referencesMaxwell, J. C. (1867). IV. On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157:49–88.
dc.relation.referencesMayergoyz, I. (2003). Mathematical models of hysteresis and their applications. Electromag- netism. Elsevier Science, New York.
dc.relation.referencesMayergoyz, I. and Friedman, G. (1988). Generalized Preisach model of hysteresis. IEEE Transactions on Magnetics, 24(1):212–217.
dc.relation.referencesMcKenna, F., Fenves, G. L., Scott, M. H., et al. (2000). Open system for earthquake engineering simulation. University of California, Berkeley, CA, 40.
dc.relation.referencesMeibodi, A. and Alexander, N. A. (2020). Exploring a generalized nonlinear multi-span bridge system subject to multi-support excitation using a Bouc-Wen hysteretic model. Soil Dynamics and Earthquake Engineering, 135:106160.
dc.relation.referencesMenegotto, M. and Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. In Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, volume 13, pages 15–22, Lisbon, Portugal. IABSE.
dc.relation.referencesMiao, Y., Rui, X., Wang, P., Zhu, H., Zhang, J., and Wang, J. (2024). Nonlinear dynamic
dc.relation.referencesmodeling and analysis of magnetorheological semi-active suspension for tracked vehicles. Applied Mathematical Modelling, 125:311–333.
dc.relation.referencesMishra, M. K., Samantaray, A. K., and Chakraborty, G. (2022). Fractional-order Bouc- Wen hysteresis model for pneumatically actuated continuum manipulator. Mechanism and Machine Theory, 173:104841.
dc.relation.referencesMishra, V., Crawford, C., and Buckham, B. (2023). Predicting hydrodynamic forces on heave plates using a data-driven modelling architecture. Journal of Fluids and Structures, 116:103812.
dc.relation.referencesMoghadam, M. G. E., Shahmardan, M. M., and Norouzi, M. (2019). Dissipative particle dynamics modeling of a mini-MR damper focus on magnetic fluid. Journal of Molecular Liquids, 283:736–747.
dc.relation.referencesMohajer Rahbari, N., Veladi, H., Azizi, M., Sareh, P., and Talatahari, S. (2023). Design and evaluation of hysteresis models for structural systems using a fuzzy adaptive charged system search. Decision Analytics Journal, 6:100147.
dc.relation.referencesMokha, A., Constantinou, M., and Reinhorn, A. (1990). Teflon bearings in base isolation I: Testing. Journal of Structural Engineering, 116(2):438–454.
dc.relation.referencesMokhtari, F. and Imanpour, A. (2022). A recursive model updating algorithm for multi- element hybrid simulation of structures. In The Fourteenth International Conference on Computational Structures Technology.
dc.relation.referencesMokhtari, F. and Imanpour, A. (2024). Hybrid data-driven and physics-based simula- tion technique for seismic analysis of steel structural systems. Computers & Structures, 295:107286.
dc.relation.referencesMorante-Carballo, F., Bravo-Montero, L., Montalván-Burbano, N., and Carrión-Mero, P. (2023). Bibliometric analysis of earthquake research in america: A comparative study using web of science and scopus databases. International Journal of Safety & Security Engineering, 13(5).
dc.relation.referencesMörée, G. and Leijon, M. (2023). Review of Play and Preisach models for hysteresis in magnetic materials. Materials, 16(6):2422.
dc.relation.referencesMostaghel, N. (1999). Analytical description of pinching, degrading hysteretic systems. Journal of Engineering Mechanics, 125(2):216–224.
dc.relation.referencesNaser, M. F. M. and Ikhouane, F. (2013). Characterization of the hysteresis duhem model. IFAC Proceedings Volumes, 46(12):29–34.
dc.relation.referencesNayfeh, A. H. and Mook, D. T. (2008). Nonlinear oscillations. Wiley.
dc.relation.referencesNechita, Ş.-C., Tóth, R., Khandelwal, D., and Schoukens, M. (2021). Toolbox for discovering dynamic system relations via TAG guided genetic programming. IFAC-PapersOnLine, 54(7):379–384.
dc.relation.referencesNelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4):308–313.
dc.relation.referencesNguyen, X. A. and Chauhan, S. (2021). Characterization of flexible and stretchable sensors using neural networks. Measurement Science and Technology, 32(7):075004.
dc.relation.referencesNguyen, X. B., Komatsuzaki, T., and Truong, H. T. (2022). Adaptive parameter identi- fication of Bouc-Wen hysteresis model for a vibration system using magnetorheological elastomer. International Journal of Mechanical Sciences, 213:106848.
dc.relation.referencesNi, Y., Ko, J., and Wong, C. (1998). Identification of nonlinear hysteretic isolators from periodic vibration tests. Journal of Sound and Vibration, 217(4):737–756.
dc.relation.referencesNi, Y. Q., Ko, J. M., Wong, C. W., and Zhan, S. (1999). Modelling and identification of a wire-cable vibration isolator via a cyclic loading test. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 213(3):163– 172.
dc.relation.referencesNing, C.-L., Wang, S., and Cheng, Y. (2022). An explicit solution for the effect of earthquake incidence angles on seismic ductility demand of structures using Bouc-Wen model. Soil Dynamics and Earthquake Engineering, 153:107085.
dc.relation.referencesNiola, V., Palli, G., Strano, S., and Terzo, M. (2019). Nonlinear estimation of the Bouc- Wen model with parameter boundaries: Application to seismic isolators. Computers & Structures, 222:1–9.
dc.relation.referencesNithyadharan, M. and Kalyanaraman, V. (2021). A new screw connection model and FEA of CFS shear wall panels. Journal of Constructional Steel Research, 176:106430.
dc.relation.referencesNoël, J., Esfahani, A., Kerschen, G., and Schoukens, J. (2017). A nonlinear state-space approach to hysteresis identification. Mechanical Systems and Signal Processing, 84:171– 184.
dc.relation.referencesNoël, J.-P. and Schoukens, M. (2016). Hysteretic benchmark with a dynamic nonlinearity. In Workshop on Nonlinear System Identification Benchmarks, pages 7–14.
dc.relation.referencesNogami, Y., Murono, Y., and Morikawa, H. (2012). Nonlinear hysteresis model taking into account S-shaped hysteresis loop and its standard parameters. In The 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
dc.relation.referencesNoori, H. R. (2014). Examples of Hysteresis Phenomena in Biology, pages 35–45. Springer, Berlin, Heidelberg.
dc.relation.referencesNoori, M. and Altabey, W. A. (2022). Hysteresis in engineering systems. Applied Sciences, 12(19):9428.
dc.relation.referencesNoori, M., Choi, J.-D., and Davoodl, H. (1986). Zero and nonzero mean random vibration analysis of a new general hysteresis model. Probabilistic Engineering Mechanics, 1(4):192– 201.
dc.relation.referencesOh, J. H. and Bernstein, D. (2005). Semilinear Duhem model for rate-independent and rate- dependent hysteresis. IEEE Transactions on Automatic Control, 50(5):631–645.
dc.relation.referencesOh, S., Kim, T., and Song, J. (2023). Bouc–Wen class models considering hysteresis mecha- nism of RC columns in nonlinear dynamic analysis. International Journal of Non-Linear Mechanics, 148:104263.
dc.relation.referencesOrtiz, G. A., Alvarez, D. A., and Bedoya-Ruíz, D. (2013). Identification of Bouc–Wen type models using multi-objective optimization algorithms. Computers & Structures, 114– 115:121–132.
dc.relation.referencesOrtiz, G. A., Alvarez, D. A., and Bedoya-Ruíz, D. (2015). Identification of Bouc–Wen type models using the transitional Markov chain Monte Carlo method. Computers & Structures, 146:252–269.
dc.relation.referencesOsgooei, P. M., Tait, M. J., and Konstantinidis, D. (2016). Seismic isolation of a shear wall structure using rectangular fiber-reinforced elastomeric isolators. Journal of Structural Engineering, 142(2):04015116.
dc.relation.referencesOtani, S. (1980). Nonlinear dynamic analysis of reinforced concrete building structures. Canadian Journal of Civil Engineering, 7(2):333–344.
dc.relation.referencesOuyang, R. and Jayawardhana, B. (2014). Absolute stability analysis of linear systems with Duhem hysteresis operator. Automatica, 50(7):1860–1866.
dc.relation.referencesOzdemir, H. (1976). Nonlinear transient dynamic analysis of yielding structures. University of California, Berkeley.
dc.relation.referencesPadthe, A., JinHyoung Oh, and Bernstein, D. (2006). On the LuGre model and friction- induced hysteresis. In 2006 American Control Conference, page 6 pp., Minneapolis, MN, USA. IEEE.
dc.relation.referencesPadthe, A. K., Drincic, B., Oh, J., Rizos, D., Fassois, S., and Bernstein, D. S. (2008). Duhem modeling of friction-induced hysteresis. IEEE Control Systems, 28(5):90–107.
dc.relation.referencesPanet, M. and Jezequel, L. (2000). Dissipative unimodal structural damping identification. International journal of non-linear mechanics, 35(5):794–815.
dc.relation.referencesPang, W. C., Rosowsky, D. V., Pei, S., and Van De Lindt, J. W. (2007). Evolutionary parameter hysteretic model for wood shear walls. Journal of Structural Engineering, 133(8):1118–1129.
dc.relation.referencesPaolacci, F. and Giannini, R. (2008). Study of the effectiveness of steel cable dampers for the seismic protection of electrical equipment. In Proceedings of 14th World Conference on Earthquake Engineering, pages 12–17.
dc.relation.referencesPark, Y. J., Reinhorn, A., and Kunnath, S. K. (1987). IDARC: Inelastic damage analysis of reinforced concrete frame-shear-wall structures. Technical Report NCEER-87-0008, State University of New York at Buffalo, Buffalo, N.Y.
dc.relation.referencesPark, Y. J., Wen, Y. K., and Ang, A. H.-S. (1986). Random vibration of hysteretic systems under bi-directional ground motions. Earthquake Engineering & Structural Dynamics, 14(4):543–557.
dc.relation.referencesPasparakis, G. D., Fragkoulis, V. C., and Kougioumtzoglou, I. A. (2025). On the efficacy of sparse representation approaches for determining nonlinear structural system equations of motion. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 11(3).
dc.relation.referencesPathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., and Wang, R. (2019). Development and application of a deep learning–based sparse autoencoder framework for structural damage identification. Structural Health Monitoring, 18(1):103–122.
dc.relation.referencesPellecchia, D. and Paradiso, M. (2021). A review of the class of Bouc-Wen differential models for simulating mechanical hysteresis phenomena. In Marmo, F., Sessa, S., Barchiesi, E., and Spagnuolo, M., editors, Mathematical Applications in Continuum and Structural Mechanics, volume 127, pages 127–148. Springer International Publishing, Cham.
dc.relation.referencesPelliciari, M., Marano, G. C., Cuoghi, T., Briseghella, B., Lavorato, D., and Tarantino, A. M. (2018). Parameter identification of degrading and pinched hysteretic systems using a modified Bouc–Wen model. Structure and Infrastructure Engineering, 14(12):1573–1585.
dc.relation.referencesPereira, V., Basilio, M. P., and Santos, C. H. T. (2025). PyBibX–a Python library for bibliometric and scientometric analysis powered with artificial intelligence tools. Data Technologies and Applications.
dc.relation.referencesPereira Miguel, L., Oliveira Teloli, R. D., and Silva, S. D. (2021). Harmonic balance of Bouc-Wen Model to identify hysteresis effects in bolted joints. In Balthazar, J. M., editor, Vibration Engineering and Technology of Machinery, volume 95, pages 65–79. Springer International Publishing, Cham.
dc.relation.referencesPereira Miguel, L., Teloli, R. D. O., and Da Silva, S. (2020). Some practical regards on the application of the harmonic balance method for hysteresis models. Mechanical Systems and Signal Processing, 143:106842. https://linkinghub.elsevier.com/retrieve/pii/ S0888327020302284.
dc.relation.referencesPhan, P. T., Welch, D., Spiggle, J., Thai, M. T., Hoang, T. T., Davies, J., Nguyen, C. C., Zhu, K., Phan, H.-P., Lovell, N. H., and Do, T. N. (2023). Fabrication, nonlinear modeling, and control of woven hydraulic artificial muscles for wearable applications. Sensors and Actuators A: Physical, 360:114555.
dc.relation.referencesPires, I., Ayala, H. V. H., and Weber, H. I. (2023). Nonlinear ensemble gray and black- box system identification of friction induced vibrations in slender rotating structures. Mechanical Systems and Signal Processing, 186:109815.
dc.relation.referencesPlett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB- based HEV battery packs. Journal of Power Sources, 134(2):262–276.
dc.relation.referencesPolensek, A. and Laursen, H. I. (1984). Seismic behavior of bending components and inter- component connections of light frame wood buildings. Final Report, NSF Grant No. CEE 8104626, Forest Research Laboratory, Oregon State University, Corvallis, Oregon.
dc.relation.referencesPopova, E. and Popov, V. L. (2015). The research works of Coulomb and Amontons and generalized laws of friction. Friction, 3(2):183–190.
dc.relation.referencesPozo, F. and Zapateiro, M. (2015). On the passivity of hysteretic systems with double hysteretic loops. Materials, 8(12):8414–8422.
dc.relation.referencesPrandtl, L. (1928). Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM- Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 8(2):85–106.
dc.relation.referencesPreisach, F. (1935). Über die magnetische Nachwirkung. Zeitschrift für Physik, 94(5-6):277– 302.
dc.relation.referencesPriyatharrshan, S., Pham, T.-P., and Sename, O. (2021). Identification and comparison of two nonlinear extended phenomenological models for an automotive ElectroRheological (ER) damper. IFAC-PapersOnLine, 54(7):439–444.
dc.relation.referencesQuan, C., Wang, W., and Li, Y. (2022). Hysteretic model and resilient application of corrugated shear panel dampers. Thin-Walled Structures, 178:109477.
dc.relation.referencesQuaranta, G., Lacarbonara, W., and Masri, S. F. (2020). A review on computational intelli- gence for identification of nonlinear dynamical systems. Nonlinear Dynamics, 99(2):1709– 1761.
dc.relation.referencesRackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A., and Edelman, A. (2020). Universal Differential Equations for Scientific Machine Learning.
dc.relation.referencesRamachandran, V. S. and Anstis, S. M. (1985). Perceptual organization in multistable apparent motion. Perception, 14(2):135–143.
dc.relation.referencesRamberg, W. and Osgood, W. R. (1943). Description of stress-strain curves by three pa- rameters. Technical Report No. NACA-TN-902.
dc.relation.referencesRao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, pages 19–34.
dc.relation.referencesRashidi, S. and Ziaei-Rad, S. (2017). Experimental and numerical vibration analysis of wire rope isolators under quasi-static and dynamic loadings. Engineering Structures, 148:328– 339.
dc.relation.referencesReinhorn, A. M., Madan, A., Valles, RE., Reichmann, Y., and Mander, J. B. (1995). Mod- eling of masonry infill panels for structural analysis. National Center for Earthquake Engineering Research, Technical Report NCEER-95-0018.
dc.relation.referencesReinhorn, A. M., Roh, H., Sivaselvan, M. V., Kunnath, S. K., Valles, RE., Madan, A., Li, C., Lobo, R., and Park, YJ. (2009). IDARC2D version 7.0: A program for the inelastic damage analysis of structures. Technical report, MCEER.
dc.relation.referencesReyes, S. I. and Almazán, J. L. (2020). A novel device for a vertical rocking isolation system with uplift allowed for industrial equipment and structures. Engineering Structures, 214:110595.
dc.relation.referencesRiddell, R. and Newmark, N. M. (1979). Force-deformation models for nonlinear analyses. Journal of the Structural Division, 105(12):2773–2778.
dc.relation.referencesRinaldin, G., Amadio, C., and Fragiacomo, M. (2013). A component approach for the hysteretic behaviour of connections in cross-laminated wooden structures. Earthquake Engineering & Structural Dynamics, 42(13):2023–2042.
dc.relation.referencesRobbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):400–407.
dc.relation.referencesRoberts, J. B. and Spanos, P. D. (1990). Random vibration and statistical linearization. John Wiley and Sons, Chichester, UK.
dc.relation.referencesRodrigues Da Silva, M., Marques, F., Tavares Da Silva, M., and Flores, P. (2022). A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work. Mechanism and Machine Theory, 167:104501.
dc.relation.referencesRodriguez-Fortun, J., Orus, J., Alfonso, J., Buil, F., and Castellanos, J. (2011). Hystere- sis in piezoelectric actuators: Modeling and compensation. IFAC Proceedings Volumes, 44(1):5237–5242.
dc.relation.referencesRu, H., Huang, J., Chen, W., and Xiong, C. (2023). Modeling and identification of rate- dependent and asymmetric hysteresis of soft bending pneumatic actuator based on evolu- tionary firefly algorithm. Mechanism and Machine Theory, 181:105169.
dc.relation.referencesSaiidi, M. (1982). Hysteresis models for reinforced concrete. Journal of the Structural Division, 108(5):1077–1087.
dc.relation.referencesSaiidi, M. and Sozen, M. A. (1979). Simple and complex models for nonlinear seismic re- sponse of reinforced concrete structures. Report to the National Science Foundation, Research Grant PFR-78-16318, University of Illinois at Urbana-Champaign, Urbana, Illinois.
dc.relation.referencesSchmitt, J., Horstkötter, I., and Bäker, B. (2024). A novel approach for modelling voltage hysteresis in lithium-ion batteries demonstrated for silicon graphite anodes: Compara- tive evaluation against established Preisach and Plett model. Journal of Power Sources Advances, 26:100139.
dc.relation.referencesSchoukens, M. and Noël, J. (2017). Three benchmarks addressing open challenges in non- linear system identification. IFAC-PapersOnLine, 50(1):446–451.
dc.relation.referencesSchwanen, W. (2004). Modelling and identification of the dynamic behavior of a wire rope spring. Technische Universiteit Eindhoven. ¿
dc.relation.referencesSchwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, pages 461–464.
dc.relation.referencesSchwingshackl, C. W. (2012). Measurement of friction contact parameters for nonlinear dynamic analysis. In Allemang, R., De Clerck, J., Niezrecki, C., and Blough, J., editors, Topics in Modal Analysis I, Volume 5, pages 167–177. Springer, New York, NY.
dc.relation.referencesSeleemah, AA. and Constantinou, M. C. (1997). Investigation of seismic response of build- ings with linear and nonlinear fluid viscous dampers. National Center for Earthquake Engineering Research Buffalo.
dc.relation.referencesSengupta, P. and Li, B. (2013). Modified Bouc–Wen model for hysteresis behavior of RC beam–column joints with limited transverse reinforcement. Engineering Structures, 46:392–406.
dc.relation.referencesSengupta, P. and Li, B. (2017). Hysteresis modeling of reinforced concrete structures : State of the art. ACI Structural Journal, 114(1):25–38.
dc.relation.referencesSessa, S. (2023). An inverse strategy for identifying the mechanical parameters of an asymmetric hysteretic constitutive model. Mechanical Systems and Signal Processing, 190:110144.
dc.relation.referencesSessa, S., Vaiana, N., Paradiso, M., and Rosati, L. (2020). An inverse identification strat- egy for the mechanical parameters of a phenomenological hysteretic constitutive model. Mechanical Systems and Signal Processing, 139:106622.
dc.relation.referencesSextro, W. (2007). Dynamical contact problems with friction: Models, methods, experiments and applications. Number 3 in Lecture Notes in Applied Mechanics. Springer Berlin Hei- delberg, Berlin, 2nd ed edition.
dc.relation.referencesShampine, L. F. and Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM Journal on Scientific Computing, 18(1):1–22.
dc.relation.referencesShan, G., Li, Y., Zhang, Y., Wang, Z., and Qian, J. (2016). Experimental characterization, modeling and compensation of rate-independent hysteresis of voice coil motors. Sensors and Actuators A: Physical, 251:10–19.
dc.relation.referencesShan, J., Zhang, H., Ouyang, Y., and Shi, W. (2020). Data-driven damage tracking and hysteresis evaluation of earthquake-excited structures with test validation. Engineering Structures, 207:110214.
dc.relation.referencesShaw, A., Gatti, G., Gonçalves, P., Tang, B., and Brennan, M. (2021). Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mechanical Systems and Signal Processing, 152:107354.
dc.relation.referencesShi, D., Chen, H., He, H., Li, Y., An, X., Jin, F., and Fan, H. (2023). Nonlinear analysis of vibration attenuation of ring-spring-resonator based meta-isolation system. Engineering Structures, 292:116526.
dc.relation.referencesShirgir, S., Azar, B. F., and Hadidi, A. (2020). Reliability-based simplification of Bouc-Wen model and parameter identification using a new hybrid algorithm. Structures, 27:297–308.
dc.relation.referencesSiczek, K. J. (2016). Valve train tribology. In Tribological Processes in the Valvetrain Systems with Lightweight Valves, pages 85–180. Elsevier.
dc.relation.referencesSimo, J. (1987). On a fully three-dimensional finite-strain viscoelastic damage model: For- mulation and computational aspects. Computer Methods in Applied Mechanics and Engi- neering, 60(2):153–173.
dc.relation.referencesSireteanu, T., Giuclea, M., and Mitu, A. M. (2010). Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices. Computational Mechanics, 45(5):431–441.
dc.relation.referencesSireteanu, T., Giuclea, M., Mitu, A.-M., and Ghita, G. (2012). A genetic algorithms method for fitting the generalized Bouc-Wen model to experimental asymmetric hysteretic loops. Journal of Vibration and Acoustics, 134(4):041007.
dc.relation.referencesSireteanu, T., Mitu, A.-M., Giuclea, M., and Solomon, O. (2014). A comparative study of the dynamic behavior of Ramberg–Osgood and Bouc–Wen hysteresis models with application to seismic protection devices. Engineering Structures, 76:255–269.
dc.relation.referencesSirotti, S., Pelliciari, M., Di Trapani, F., Briseghella, B., Carlo Marano, G., Nuti, C., and Tarantino, A. M. (2021). Development and validation of new Bouc–Wen data-driven hysteresis model for masonry infilled RC frames. Journal of Engineering Mechanics, 147(11):04021092.
dc.relation.referencesSivaselvan, M. V. and Reinhorn, A. M. (2000). Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics, 126(6):633–640.
dc.relation.referencesSkelton, R., Maier, H., and Christ, H.-J. (1997). The Bauschinger effect, Masing model and the Ramberg–Osgood relation for cyclic deformation in metals. Materials Science and Engineering: A, 238(2):377–390.
dc.relation.referencesSofla, M. S., Sadigh, M. J., and Zareinejad, M. (2021). Design and dynamic modeling of a continuum and compliant manipulator with large workspace. Mechanism and Machine Theory, 164:104413.
dc.relation.referencesSolovyov, A., Semenov, M., Meleshenko, P., and Barsukov, A. (2017). Bouc-Wen model of hysteretic damping. Procedia Engineering, 201:549–555.
dc.relation.referencesSong, J. and Der Kiureghian, A. (2006). Generalized Bouc–Wen model for highly asymmetric hysteresis. Journal of Engineering Mechanics, 132(6):610–618.
dc.relation.referencesSpencer, B. F., Dyke, S. J., Sain, M. K., and Carlson, J. D. (1997). Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 123(3):230– 238.
dc.relation.referencesStanway, R., Sproston, J., and Stevens, N. (1985). Non-linear identification of an electro- rheological vibration damper. IFAC Proceedings Volumes, 18(5):195–200.
dc.relation.referencesStanway, R., Sproston, J., and Stevens, N. (1987). Non-linear modelling of an electro- rheological vibration damper. Journal of Electrostatics, 20(2):167–184.
dc.relation.referencesStella, J. and Leici, I. (2023). Modelado semifísico de la histéresis respiratoria pulmonar con el modelo Bouc-Wen asimétrico. In XX Reunión de Trabajo en Procesamiento de la Información y Control (Oberá, Misiones, 1 al 3 de noviembre de 2023).
dc.relation.referencesStewart, W. (1987). The seismic design of plywood sheathed shear walls. University of Canterbury. Department of Civil Engineering.
dc.relation.referencesStorn, R. and Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341– 359.
dc.relation.referencesSu, C.-Y., Stepanenko, Y., Svoboda, J., and Leung, T. (2000). Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Transactions on Automatic Control, 45(12):2427–2432.
dc.relation.referencesSu, W., Bogdan, M., and Candès, E. (2017). False discoveries occur early on the Lasso path. The Annals of Statistics, 45(5).
dc.relation.referencesSucuoǧlu, H. and Erberik, A. (2004). Energy-based hysteresis and damage models for de- teriorating systems. Earthquake Engineering & Structural Dynamics, 33(1):69–88.
dc.relation.referencesSugiura, N. (1978). Further analysis of the data by akaike’s information criterion and the finite corrections: Further analysis of the data by akaike’s. Communications in Statistics- theory and Methods, 7(1):13–26.
dc.relation.referencesSzidarovszky, F. and Bahill, T. (1998). Linear systems theory. CRC Press, Boca Raton, 2nd edition.
dc.relation.referencesTaghizadeh, S. and Karamodin, A. (2021). Comparison of adaptive magnetorheological elastomer isolator and elastomeric isolator in near-field and far-field earthquakes. Scientia Iranica, 28(1):15–37.
dc.relation.referencesTakeda, T., Sozen, M. A., and Nielsen, N. N. (1970). Reinforced concrete response to simulated earthquakes. Journal of the Structural Division, 96(12):2557–2573.
dc.relation.referencesTalatahari, S., Azizi, M., and Toloo, M. (2021). Fuzzy adaptive charged system search for global optimization. Applied Soft Computing, 109:107518.
dc.relation.referencesTalatahari, S., Azizi, M., Toloo, M., and Baghalzadeh Shishehgarkhaneh, M. (2022). Op- timization of large-scale frame structures using fuzzy adaptive quantum inspired charged system search. International Journal of Steel Structures, 22(3):686–707.
dc.relation.referencesTasiopoulou, P. and Gerolymos, N. (2016). Constitutive modeling of sand: Formulation of a new plasticity approach. Soil Dynamics and Earthquake Engineering, 82:205–221.
dc.relation.referencesThornton, S. T. and Marion, J. B. (2004). Classical dynamics of particles and systems. Thomson Brooks/Cole.
dc.relation.referencesThyagarajan, R. S. and Iwan, W. D. (1990). Performance characteristics ofa widely used hysteretic model in structural dynamics. In Proceedings of Fourth US National Conference on Earthquake Engineering, volume 2, pages 177–186.
dc.relation.referencesTian, Q., Ren, H., Shao, D., Wang, T., Zhang, W., and Ning, C.-L. (2023). A hybrid approach for seismic fragility analysis of reinforced concrete structural walls independent of failure pattern. Structures, 56:104984.
dc.relation.referencesTibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1):267–288.
dc.relation.referencesTinker, M. and Cutchins, M. (1992). Damping phenomena in a wire rope vibration isolation system. Journal of Sound and Vibration, 157(1):7–18.
dc.relation.referencesTremblay, R., Lacerte, M., and Christopoulos, C. (2008). Seismic response of multistory buildings with self-centering energy dissipative steel braces. Journal of Structural Engi- neering, 134(1):108–120.
dc.relation.referencesTsiavos, A., Schlatter, D., Markic, T., and Stojadinovic, B. (2017). Experimental and ana- lytical investigation of the inelastic behavior of structures isolated using friction pendulum bearings. Procedia Engineering, 199:465–470.
dc.relation.referencesVaiana, N., Capuano, R., and Rosati, L. (2023). Evaluation of path-dependent work and internal energy change for hysteretic mechanical systems. Mechanical Systems and Signal Processing, 186:109862.
dc.relation.referencesVaiana, N. and Rosati, L. (2023a). Analytical and differential reformulations of the Vaiana– Rosati model for complex rate-independent mechanical hysteresis phenomena. Mechanical Systems and Signal Processing, 199:110448.
dc.relation.referencesVaiana, N. and Rosati, L. (2023b). Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing, 182:109539.
dc.relation.referencesVaiana, N., Sessa, S., Marmo, F., and Rosati, L. (2018). A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dynamics, 93(3):1647–1669.
dc.relation.referencesVaiana, N., Sessa, S., Marmo, F., and Rosati, L. (2019a). An accurate and computation- ally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Composite Structures, 211:196–212.
dc.relation.referencesVaiana, N., Sessa, S., Marmo, F., and Rosati, L. (2019b). Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an ex- plicit time integration method. Nonlinear Dynamics, 98(4):2879–2901.
dc.relation.referencesVaiana, N., Sessa, S., and Rosati, L. (2021). A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mechanical Systems and Signal Processing, 146:106984.
dc.relation.referencesValanis, K. C. et al. (1978). Fundamental consequences of a new intrinsic time measure: Plasticity as a limit of the endochronic theory. University of Iowa.
dc.relation.referencesValanis, KC. (1971). A theory of visco-plasticity with out a yield surface, part I: General theory. Archives of Mechanics, (23):517–533.
dc.relation.referencesVan Houdt, G., Mosquera, C., and Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8):5929–5955.
dc.relation.referencesVeletsos, A. S. and Newmark, N. M. (1960). Effect of inelastic behavior on the response of simple systems to earthquake motions. Department of Civil Engineering, University of Illinois.
dc.relation.referencesVestroni, F. and Noori, M. (2002). Hysteresis in mechanical systems—modeling and dynamic response. International Journal of Non-Linear Mechanics, 37(8):1261–1262.
dc.relation.referencesVisintin, A. (1994a). Differential models of hysteresis, volume 111 of Applied Mathematical Sciences. Springer, Berlin, Heidelberg.
dc.relation.referencesVisintin, A. (1994b). Plays, stops and Prandtl-Ishlinskiı̆ models, volume 1, pages 59–96. Springer, Berlin, Heidelberg.
dc.relation.referencesVokoun, D., Kafka, V., and Hu, C. T. (2003). Recovery stresses generated by NiTi shape memory wires under different constraint conditions. Smart Materials and Structures, 12(5):680.
dc.relation.referencesWang, B., Karavasilis, T. L., Chen, P., and Dai, K. (2024a). Seismic modeling and per- formance evaluation of seismically isolated building considering large strain effects under near-fault earthquakes. Journal of Building Engineering, 90:109339.
dc.relation.referencesWang, C.-H. and Chang, S.-Y. (2007). Development and validation of a generalized biaxial hysteresis model. Journal of Engineering Mechanics, 133(2):141–152.
dc.relation.referencesWang, C.-H., Foliente, G. C., Sivaselvan, M. V., and Reinhorn, A. M. (2001). Hysteretic mod- els for deteriorating inelastic structures. Journal of Engineering Mechanics, 127(11):1200– 1202.
dc.relation.referencesWang, C.-H. and Wen, Y. K. (1998). Reliability and redundancy of pre-Northridge low-rise steel building under seismic excitation, rep. No. Technical report, UILU-ENG-99-2002, Univ. Illinois at Urbana-Champaign, Champaign, Ill.
dc.relation.referencesWang, C.-H. and Wen, Y.-K. (2000). Evaluation of pre-Northridge low-rise steel buildings. I: Modeling. Journal of Structural Engineering, 126(10):1160–1168.
dc.relation.referencesWang, H.-X., Gong, X.-S., Pan, F., and Dang, X.-J. (2015). Experimental investigations on the dynamic behaviour of O-type wire-cable vibration isolators. Shock and Vibration, 2015:1–12.
dc.relation.referencesWang, Q., Wu, H., Handroos, H., Song, Y., Li, M., Yin, J., and Cheng, Y. (2024b). Hysteresis identification of joint with harmonic drive transmission based on Monte Carlo method. Mechatronics, 99:103166.
dc.relation.referencesWang, T., Noori, M., Altabey, W. A., Wu, Z., Ghiasi, R., Kuok, S.-C., Silik, A., Farhan, N. S., Sarhosis, V., and Farsangi, E. N. (2023a). From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems. Mechanical Systems and Signal Processing, 204:110785.
dc.relation.referencesWang, T., Noori, M., Wang, G., and Wu, Z. (2025). Symbolic deep learning-based method for modeling complex rate-independent hysteresis. Computers & Structures, 311:107702.
dc.relation.referencesWang, Z. (2024). Optimized equivalent linearization for random vibration. Structural Safety, 106:102402.
dc.relation.referencesWang, Z., Liu, J., Guo, J., Sun, X., and Xu, L. (2017). The study of thermal, mechanical and shape memory properties of chopped carbon fiber-reinforced TPI shape memory polymer composites. Polymers, 9(11).
dc.relation.referencesWang, Z., Lou, J., Yang, H., Chen, T., Wei, Y., Xu, C., and Cui, Y. (2023b). Underwater dynamic hysteresis modeling and feedforward control of flexible caudal fin actuated by macro fiber composites. Journal of Sound and Vibration, 556:117717.
dc.relation.referencesWang, Z., Zhang, Z., Mao, J., and Kemin Zhou (2012). A Hammerstein-based model for rate- dependent hysteresis in piezoelectric actuator. In 2012 24th Chinese Control and Decision Conference (CCDC), pages 1391–1396, Taiyuan, China. IEEE.
dc.relation.referencesWang, Z.-J., Zang, J., Zhang, Z., Song, X.-Y., Zhang, Y.-W., and Chen, L.-Q. (2024c). Nonlinear broadband vibration reduction of nitinol-steel wire rope: Mechanical parameters determination and theoretical-experimental validation. Mechanical Systems and Signal Processing, 213:111345.
dc.relation.referencesWei, K. and Xu, Y. (2022). Hysteretic model and parameter identification of RC bridge piers based on a new modified Bouc-Wen model. Structures, 43:1766–1777.
dc.relation.referencesWei, Y., Wang, B., Han, B., Wu, J., and Huo, G. (2024). Hysteretic model and numerical simulation method of T-shaped SRC column–steel beam joints. Journal of Constructional Steel Research, 219:108754.
dc.relation.referencesWen, Y.-K. (1976). Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division, 102(2):249–263.
dc.relation.referencesWeng, J. S., Hu, H., and Zhang, M. (2000). Experimental modeling of magnetorheologi- cal damper. Journal of Vibration Engineering, 13(4):616–621.
dc.relation.referencesWiechert, E. (1893). Gesetze der elastischen Nachwirkung für constante Temperatur. An- nalen der Physik, 286(11):546–570.
dc.relation.referencesWilde, K., Gardoni, P., and Fujino, Y. (2000). Base isolation system with shape memory alloy device for elevated highway bridges. Engineering Structures, 22(3):222–229.
dc.relation.referencesWolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1):67–82.
dc.relation.referencesWorden, K. and Tomlinson, G. R. (2001). Nonlinearity in structural dynamics: Detection, identification, and modelling. Institute of Physics, Bristol, England.
dc.relation.referencesWright, J., Yang, A., Ganesh, A., Sastry, S., and Yi Ma (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):210–227.
dc.relation.referencesWu, D., Xiong, Y., and Yang, Z. (2022). Numerical and experimental study of mechani- cal behaviors of the steel-confined rubber bearing. Construction and Building Materials, 352:128900.
dc.relation.referencesXia, X., Zheng, M., Liu, P., Zhang, N., Ning, D., and Du, H. (2021). Friction observer- based hybrid controller for a seat suspension with semi-active electromagnetic damper. Mechatronics, 76:102568.
dc.relation.referencesXie, S., Ren, G., and Wang, B. (2020a). A modified asymmetric generalized Prandtl– Ishlinskii model for characterizing the irregular asymmetric hysteresis of self-made pneu- matic muscle actuators. Mechanism and Machine Theory, 149:103836.
dc.relation.referencesXie, S., Zhong, H., Li, Y., and Xu, S. (2024). An improved generalized Prandtl–Ishlinskii model for the hysteresis modeling of pneumatic artificial muscles. Journal of Intelligent Material Systems and Structures, page 1045389X241273011.
dc.relation.referencesXie, X., Xu, L., and Li, Z. (2020b). Hysteretic model and experimental validation of a vari- able damping self-centering brace. Journal of Constructional Steel Research, 167:105965.
dc.relation.referencesXu, L.-H., Xie, X.-S., and Li, Z.-X. (2018). Development and experimental study of a self- centering variable damping energy dissipation brace. Engineering Structures, 160:270–280.
dc.relation.referencesXu, X., Yuan, Y., Wang, S., Zhang, D., and Zhu, H. (2023). Effects of structural symmetry of introduced polyether diol on low temperature tolerance of laminated polyurethane bearings in bridges. Construction and Building Materials, 400:132688.
dc.relation.referencesXue, J.-R., Zhang, Y.-W., Niu, M.-Q., Lacarbonara, W., and Chen, L.-Q. (2024). Passive control of a composite laminated truncated conical shell via embedded NiTiNOL-steel wire ropes. Mechanical Systems and Signal Processing, 215:111282.
dc.relation.referencesYan, S., Wang, Q., and Wang, W. (2010). Design and experimental investigation on a new type of SMA-fluid viscous damper. In Earth and Space 2010, pages 3198–3206, Honolulu, Hawaii, United States. American Society of Civil Engineers.
dc.relation.referencesYang, Z., Xie, Q., He, C., and Xue, S. (2021). Numerical investigation of the seismic response of a UHV composite bypass switch retrofitted with wire rope isolators. Earthquake Engineering and Engineering Vibration, 20(1):275–290.
dc.relation.referencesYin, Q., Zhou, L., and Wang, X. (2010). Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation. Earthquake Engi- neering and Engineering Vibration, 9(3):375–383.
dc.relation.referencesYuan, Z., Chen, L., Sun, J.-Q., and Ye, W. (2023). Transient response of Bouc–Wen hys- teretic system under random excitation via RBFNN method. Probabilistic Engineering Mechanics, 71:103409.
dc.relation.referencesZaman, M. A. and Sikder, U. (2015). Bouc–Wen hysteresis model identification using modi- fied firefly algorithm. Journal of Magnetism and Magnetic Materials, 395:229–233.
dc.relation.referencesZhan, P., Lou, J., Chen, T., Li, G., Xu, C., and Wei, Y. (2024). Dynamic hysteresis compensation and iterative learning control for underwater flexible structures actuated by macro fiber composites. Ocean Engineering, 298:117242.
dc.relation.referencesZhang, G., Chen, J., Zhang, Z., Sun, M., Yu, Y., Wang, J., and Cai, S. (2023a). A novel parametric model for nonlinear hysteretic behaviours with strain-stiffening of magnetorhe- ological gel composite. Composite Structures, 318:117082.
dc.relation.referencesZhang, G., Hou, J., Wan, C., Xie, L., and Xue, S. (2022). Structural system identification and damage detection using adaptive hybrid Jaya and differential evolution algorithm with mutation pool strategy. Structures, 46:1313–1326.
dc.relation.referencesZhang, G. and Wang, J. (2020). A novel phenomenological model for predicting the nonlinear hysteresis response of magnetorheological gel. Materials & Design, 196:109074.
dc.relation.referencesZhang, J., Merced, E., Sepúlveda, N., and Tan, X. (2015). Optimal compression of general- ized Prandtl–Ishlinskii hysteresis models. Automatica, 57:170–179.
dc.relation.referencesZhang, Y. and Zhu, S. (2007). A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation. Smart Materials and Structures, 16(5):1603–1613.
dc.relation.referencesZhang, Y.-W., Wang, Z.-J., Cao, M., Song, X.-Y., Zang, J., Lacarbonara, W., and Chen, L.- Q. (2023b). Vibration control of composite laminate via NiTiNOL-steel wire ropes: Mod- eling, analysis, and experiment. Mechanical Systems and Signal Processing, 204:110775.
dc.relation.referencesZheng, L.-H., Zhang, Y.-W., Ding, H., and Chen, L.-Q. (2021). Nonlinear vibration suppres- sion of composite laminated beam embedded with NiTiNOL-steel wire ropes. Nonlinear Dynamics, 103(3):2391–2407.
dc.relation.referencesZheng, P., Askham, T., Brunton, S. L., Kutz, J. N., and Aravkin, A. Y. (2019). A unified framework for sparse relaxed regularized regression: SR3. IEEE Access, 7:1404–1423.
dc.relation.referencesZheng, T. and Luo, W. (2019). An improved squirrel search algorithm for optimization. Complexity, 2019(1):6291968.
dc.relation.referencesZhou, Y., Chen, W., Wang, D., Chen, K., and Zhu, R. (2024). Modeling and identification of hysteresis of marine damper considering shock environment based on evolutionary sparrow search algorithm. Ocean Engineering, 311(2).
dc.relation.referencesZhu, G., Zhou, M., Song, J., Wang, J., and Zhao, X. (2023). Parameter identification of hysteretic model of UHPC-connected precast segmental columns under cyclic loading. Structures, 58:105614.
dc.relation.referencesZhu, H., Rui, X., Yang, F., Zhu, W., and Gu, J. (2020). Semi-active scissors-seat suspension with magneto-rheological damper. Frontiers in Materials, 7:591283.
dc.relation.referencesZhu, H., Rui, X., Yang, F., Zhu, W., and Wei, M. (2019). An efficient parameters identi- fication method of normalized Bouc-Wen model for MR damper. Journal of Sound and Vibration, 448:146–158.
dc.relation.referencesZhu, W. and Rui, X.-T. (2016). Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model. Precision Engineering, 43:299–307.
dc.relation.referencesZhu, W. and Wang, D.-h. (2012). Non-symmetrical Bouc–Wen model for piezoelectric ce- ramic actuators. Sensors and Actuators A: Physical, 181:51–60.
dc.relation.referencesZhu, X. and Lu, X. (2011). Parametric identification of Bouc-Wen model and its application in mild steel damper modeling. Procedia Engineering, 14:318–324.
dc.relation.referencesZhu, Z., To, S., Li, Y., Zhu, W.-L., and Bian, L. (2018). External force estimation of a piezo- actuated compliant mechanism based on a fractional order hysteresis model. Mechanical Systems and Signal Processing, 110:296–306.
dc.relation.referencesZuñiga Aguilar, C., Gómez-Aguilar, J., Alvarado-Martínez, V., and Romero-Ugalde, H. (2020). Fractional order neural networks for system identification. Chaos, Solitons & Fractals, 130:109444.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.proposalHysteresiseng
dc.subject.proposalBouc-Weneng
dc.subject.proposalState-of-the-art revieweng
dc.subject.proposalSINDy algorithmeng
dc.subject.proposalSparse regressioneng
dc.subject.proposalData-driven modelingeng
dc.subject.proposalHistéresisspa
dc.subject.proposalRevisión del estado del artespa
dc.subject.proposalAlgoritmo SINDyspa
dc.subject.proposalRegresión dispersaspa
dc.subject.proposalModelado basado en datosspa
dc.subject.unescoModelo matemático
dc.subject.unescoMathematical models
dc.subject.unescoDiseño estructural
dc.subject.unescoStructural design
dc.subject.unescoMecánica de los suelos
dc.subject.unescoSoil mechanics
dc.titleA state-of-the-art review of the Bouc-Wen model and hysteresis characterization through sparse regression techniqueseng
dc.title.translatedUna revisión del estado del arte del modelo de Bouc-Wen y caracterización de histéresis mediante técnicas de regresión dispersaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Estructuras.pdf
Tamaño:
2.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: