Estudio del Transporte de Péptidos a Través de Membranas con Permeabilidad Selectiva

dc.contributor.advisorBarragán Ramírez, Daniel Albertospa
dc.contributor.authorJaramillo Ramírez, Sandra Natalyspa
dc.date.accessioned2020-02-10T17:04:03Zspa
dc.date.available2020-02-10T17:04:03Zspa
dc.date.issued2019spa
dc.description.abstractEn este trabajo se estudió el transporte de tres péptidos a través de una membrana sintética tipo piel (Strat-M® SKBM02560). Los péptidos utilizados en este estudio (DM 1.14, DM1.16 y DM 1.18) son modificaciones de dos péptidos derivados de la Dermaseptina (DM 1.4 y DM 1.6) y se sintetizaron con la metodología en fase sólida (SPPS). El análisis de la estructura secundaria y el de algunas propiedades fisicoquímicas de los péptidos se hizo con herramientas de la bioinformática. Para el estudio del transporte a través de membrana se diseñaron celdas verticales de difusión tipo Franz. El transporte se llevó a cabo en presencia de solución amortiguadora de fosfato, a concentración isotónica con la sangre humana y a 37ºC. La caracterización del montaje experimental de las celdas de Franz y la implementación de la técnica analítica (RP-HPLC) para la cuantificación se hizo utilizando cafeína como sustancia testigo del transporte a través de membrana. Los datos experimentales del transporte se registraron como cantidad acumulada de sustancia transportada por unidad de área en función del tiempo. Después de someter a un análisis estadístico los datos experimentales, para tener confianza de que hay diferencias significativas en el transporte de las sustancias estudiadas, se estimaron los parámetros difusivos de la cafeína y de los péptidos mediante ajuste a la solución de un modelo tipo Fick, bajo la aproximación de dosis infinita. Los resultados obtenidos muestran que los parámetros difusivos hallados para cada sustancia tienen un valor característico, y que el péptido DM 1.14 propuesto en este trabajo es el que se transporta en mayor cantidad a través de la membrana sintética tipo piel. Estos resultados son promisorios hacia el desarrollo de nuevos productos farmacéuticos basados en biomoléculas sintéticas y de administración tópica para ser usados en el tratamiento, o como coadyuvante del tratamiento de enfermedades de origen parasitario.spa
dc.description.abstractIn this work, the transport of three different peptides through a synthetic membrane skin-type (Strat-M® SKBM02560) was studied. The peptides used in this work (DM 1.14, DM1.16 y DM 1.18) were derived from the Dermaseptin (DM 1.4 y DM 1.6) and were synthetized with the solid phase peptide synthesis methodology (SPPS). The secondary structure and some of the physicochemical properties of the peptides were analyzed with tools of bioinformatics. To study the transport through the membrane some Franz type diffusion vertical cells were designed. The transport occurred in presence of a phosphate buffer solution, an isotonic concentration with the human blood at 37°C. The characterization of the experimental assembly of the Franz’ cells and the execution of the analytical technique (RP-HPLC) to quantify, was made using the caffeine as the reference substance of the transport through the membrane. The experimental data was recorded as an accumulate quantity of the substance transport by unit of area as a function of time. After performing a statistical analysis on experimental data, to stablish an confident result between the significant differences in the transport among the studied substances, some parameters of diffusion were estimated for caffeine and peptides by adjusting the solution of a type-Fick model under the approximation to the infinite doses. The results obtained show that the substances of this study have characteristically diffusive parameter values and the peptide DM 1.14, proposed in this work, has the highest quantity of transport through the synthetic skin type membrane. The results obtained in this work are promising to the development of new pharmaceutical products based on synthetic biomolecules and with a topic administration can be used as treatment or coadjutant of the treatment in conditions caused by parasitesspa
dc.description.degreelevelMaestríaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75572
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de químicaspa
dc.relation.referencesE. Heinz, “Transport through biological membranes.,” Annu. Rev. Physiol., vol. 29, no. May, pp. 21–58, Mar. 1967spa
dc.relation.referencesY. Gofman, T. Haliloglu, and N. Ben-Tal, “Monte Carlo simulations of peptide-membrane interactions with the MCPep web server,” Nucleic Acids Res., vol. 40, pp. 358–363, 2012.spa
dc.relation.referencesB. Agoram, W. S. Woltosz, and M. B. Bolger, “Predicting the impact of physiological and biochemical processes on oral drug bioavailability,” Adv. Drug Deliv. Rev., vol. 50, pp. S41–S67, Oct. 2001.spa
dc.relation.referencesK. Rajarathnam and J. Rösgen, “Isothermal titration calorimetry of membrane proteins — Progress and challenges,” Biochim. Biophys. Acta - Biomembr., vol. 1838, no. 1, pp. 69–77, Jan. 2014.spa
dc.relation.referencesB. Sinkó et al., “Skin-PAMPA: A new method for fast prediction of skin penetration,” Eur. J. Pharm. Sci., vol. 45, no. 5, pp. 698–707, 2012.spa
dc.relation.referencesT. Uchida, W. R. Kadhum, S. Kanai, H. Todo, T. Oshizaka, and K. Sugibayashi, “Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M,” Eur. J. Pharm. Sci., vol. 67, pp. 113–118, 2015.spa
dc.relation.referencesG. Ottaviani, S. Martel, and P. A. Carrupt, “Parallel artificial membrane permeability assay: A new membrane for the fast prediction of passive human skin permeability,” J. Med. Chem., vol. 49, no. 13, pp. 3948–3954, 2006.spa
dc.relation.referencesM. R. Prausnitz and R. Langer, “Transdermal drug delivery,” Nat. Biotechnol., vol. 26, no. 11, pp. 1261–1268, 2009spa
dc.relation.referencesA. Nair et al., “Basic considerations in the dermatokinetics of topical formulations,” Brazilian J. Pharm. Sci., vol. 49, no. 3, pp. 423–434, 2013.spa
dc.relation.referencesM. . Lane, P. Santos, A. . Watkinson, and J. Hadgraft, Passive Skin Permeation Enhancement. 2012.spa
dc.relation.referencesM. Prausnitz, S. Mitragotri, and R. Langer, “Current status and future potential of transdermal drug delivery,” Nat. Rev. Discov., vol. 3, no. 2, pp. 115–124, 2004spa
dc.relation.referencesR. J. Scheuplein, “Percutaneous absorption after twenty-five years: or ‘old wine in new wineskins,” Journal of Investigative Dermatology, vol. 67. pp. 31–38, 1976.spa
dc.relation.referencesJ. E. Riviere,J.D. Brooks, W. T: Collard, J. Deng, G. De Rose, S. P. Mahabir, D. A. Merritt, A. A. Marchiondo, “Prediction of formulation effects on dermal absorption of topically applied ectoparasiticides dosed in vitro on canine and porcine skin using a mixture-adjusted quantitative structure permeability relationship,” J Vet Pharmacol Ther,vol. 5. pp. 435–444, 2014.spa
dc.relation.referencesJ. A. Bouwstra, P. L. Honeywell-Nguyen, G. S. Gooris, and M. Ponec, Structure of the skin barrier and its modulation by vesicular formulations, Prog Lipid Res vol. 42, no. 1. 2003.spa
dc.relation.referencesS. K. Li and K. D. Peck, “Passive and iontophoretic transport through the skin polar pathway,” Skin Pharmacol. Physiol., vol. 26, no. 4–6, pp. 243–253, 2013.spa
dc.relation.referencesP. Desai, P. Shah, P. Hayden, and M. Singh, “Investigation of follicular and non-follicular pathways for polyarginine and oleic acid-modified nanoparticles.,” Pharm. Res., vol. 30, no. 4, pp. 1037–49, 2013.spa
dc.relation.referencesN. Kanikkannan and J. Babu, “Structure Activity Relationship of Chemical Penetration Enhancers,” in Percutaneous Penetration Enhancers, vol. 19, 2015, pp. 39–54spa
dc.relation.referencesP. Desai, R. R. Patlolla, and M. Singh, “Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery.,” Mol. Membr. Biol., vol. 27, no. 7, pp. 247–259, 2010.spa
dc.relation.referencesM. Chen, M. Zakrewsky, V. Gupta, AC: Anselmo, DH. Slee, JA. Muraski, S. Mitragotri, “Topical delivery of siRNA into skin using SPACE-peptide carriers.,” J. Control. Release, vol. 179, pp. 33–41, 2014spa
dc.relation.referencesS. Kumar, M. Zakrewsky, M. Chen, S. Menegatti, J. a Muraski, and S. Mitragotri, “Peptides as skin penetration enhancers: Mechanisms of action,” J. Control. Release, vol. 199, pp. 168–178, 2014.spa
dc.relation.referencesY. Chen, P. Quan, X. Liu, M. Wang, and L. Fang, “Novel chemical permeation enhancers for transdermal drug delivery,” Asian J. Pharm. Sci., vol. 9, no. 2, pp. 51–64, 2014.spa
dc.relation.referencesS. Kumar, M. Chen, A. C. Anselmo, J. a. Muraski, and S. S. Mitragotri, “Enhanced epidermal localization of topically applied steroids using SPACETM peptide.,” Drug Deliv. Transl. Res., pp. 523–530, 2015.spa
dc.relation.referencesR. R. Patlolla, P. R. Desai, K. Belay, and M. S. Singh, “Translocation of cell penetrating peptide engrafted nanoparticles across skin layers,” Biomaterials, vol. 31, no. 21, pp. 5598–5607, 2010.spa
dc.relation.referencesL. Lopes et al., “Enhanced skin penetration of P20 phosphopeptide using protein transduction domains.,” Eur. J. Pharm. Biopharm., vol. 68, no. 2, pp. 441–5, 2008.spa
dc.relation.referencesE. L. Snyder and S. F. Dowdy, “Cell penetrating peptides in drug delivery,” Pharm. Res., vol. 21, no. 3, pp. 389–393, 2004.spa
dc.relation.referencesS. Kumar, P. Sahdev, O. Perumal, and H. Tummala, “Identification of a novel skin penetration enhancement peptide by phage display peptide library screening,” Mol. Pharm., vol. 9, no. 5, pp. 1320–1330, 2012.spa
dc.relation.referencesW. Guanshun and G. Wang, Antimicrobial peptides: discovery, design and novel therapeutic strategies. 2010spa
dc.relation.referencesM. Chen, V. Gupta, A. C. Anselmo, J. A. Muraski, and S. Mitragotri, “Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers,” J. Control. Release, vol. 173, pp. 67–74, 2014.spa
dc.relation.referencesM.-P. M. Schutze-Redelmeier, S. Kong, M. B. Bally, and J. P. Dutz, “Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes.,” Vaccine, vol. 22, no. 15–16, pp. 1985–91, 2004.spa
dc.relation.referencesM. Cohen-Avrahami, A. Aserin, and N. Garti, “HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac,” Colloids Surfaces B Biointerfaces, vol. 77, no. 2, pp. 131–138, 2010.spa
dc.relation.referencesM. Cohen-Avrahami, D. Libster, A. Aserin, and N. Garti, “Penetratin-induced transdermal delivery from HII mesophases of sodium diclofenac,” J. Control. Release, vol. 159, no. 3, pp. 419–428, 2012.spa
dc.relation.referencesT. Ogiso and A. Yono, “In Vitro Skin Penetration and Degradation of Peptides and Their Analysis Using a Kinetic Model,” Pharm. Soc. Japan, vol. 23, no. 11, pp. 1346–1351, 2000.spa
dc.relation.referencesJ. J. Rouse, S.-F. Ng, F. D. Sanderson, V. Meidan, and G. M. Eccleston, “Validation of a Static Franz Diffusion Cell System for In Vitro Permeation Studies,” AAPS PharmSciTech, vol. 11, no. 3, pp. 1432–1441, 2010spa
dc.relation.referencesM. Debandi and N. François, “Evaluación de distintas membranas para la libreración de principios activos anticelulíticos,” Av. en Ciencias e Ing., vol. 2, no. 2, pp. 97–105, 2011.spa
dc.relation.referencesS. F. Ng, J. Rouse, D. Sanderson, and G. Eccleston, “A Comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using franz diffusion cells,” Pharmaceutics, vol. 2, no. 2, pp. 209–223, 2010.spa
dc.relation.referencesV. Shah, J. Elkins, S. Y. Lam, and J. Skelly, “Determination of in vitro drug release from hydrocortisone creams,” Int. J. Pharm., vol. 53, no. 1, pp. 53–59, 1989spa
dc.relation.referencesS. T. Wu, G. K. Shiu, J. E. Simmons, R. L. Bronaugh, and J. P. Skelly, “In vitro release of nitroglycerin from topical products by use of artificial membranes,” J. Pharm. Sci., vol. 81, no. 12, pp. 1153–1156, 1992spa
dc.relation.referencesD. Karadzovska and J. E. Riviere, “Assessing vehicle effects on skin absorption using artificial membrane assays,” Eur. J. Pharm. Sci., vol. 50, no. 5, pp. 569–576, 2013.spa
dc.relation.referencesY. G. Anissimov, O. G. Jepps, Y. Dancik, and M. S. Roberts, “Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes,” Adv. Drug Deliv. Rev., vol. 65, no. 2, pp. 169–190, 2013spa
dc.relation.referencesF. Yamashita and M. Hashida, “Mechanistic and empirical modeling of skin permeation of drugs,” Adv. Drug Deliv. Rev., vol. 55, no. 9, pp. 1185–1199, 2003.spa
dc.relation.referencesS. Mitragotri et al., “Mathematical models of skin permeability: An overview,” Int. J. Pharm., vol. 418, no. 1, pp. 115–129, 2011spa
dc.relation.referencesB. Godin and E. Touitou, “Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models.,” Adv. Drug Deliv. Rev., vol. 59, no. 11, pp. 1152–61, 2007.spa
dc.relation.referencesB. Godin and E. Touitou, “Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models.,” Adv. Drug Deliv. Rev., vol. 59, no. 11, pp. 1152–61, 2007.spa
dc.relation.referencesY. Tang, M. Horikoshi, and W. Li, “ggfortify: Unified Interface to Visualize Statistical Results of Popular R Packages,” R J., vol. 8, no. December, pp. 474–485, 2016.spa
dc.relation.referencesN. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Department of Neurosciencie and Cell Biology, New Jersey, 2007.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddcQuímica y ciencias afinesspa
dc.titleEstudio del Transporte de Péptidos a Través de Membranas con Permeabilidad Selectivaspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
32297928.2019.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: