Implementación de una estrategia ​in-silico para la identificación de péptidos candidatos a vacuna terapéutica individualizada en tumor de paciente con PEComa

dc.contributor.advisorNiño Vásquez, Luis Fernandospa
dc.contributor.advisorParra López, Carlos Albertospa
dc.contributor.authorAmaya Ramírez, Diego Alfredospa
dc.contributor.researchgroupInmunología y Medicina Traslacional / Laboratorio de Investigación en Sistemas Inteligentes - LISIspa
dc.date.accessioned2020-08-19T21:27:17Zspa
dc.date.available2020-08-19T21:27:17Zspa
dc.date.issued2019-12-17spa
dc.description.abstractEn el presente trabajo se expone la implementación de una estrategia ​in-silico para la identificación y priorización de péptidos candidatos a vacuna personalizada en tumores de cáncer aplicado a un caso de estudio de una paciente con PEComa que expresa el alelo HLA-A*24:02. Dicha estrategia se compone de 2 grandes etapas. La primera etapa consiste en la identificación de péptidos candidatos a vacuna personalizada a través de análisis de datos genéticos (ADN y ARN) que permiten la identificación y cuantificación de expresión de mutaciones somáticas presentes en el tumor, a partir de las cuales se obtienen todos los posibles péptidos mutantes (de entre 9 y 21 aminoácidos de longitud) que podría expresar el tumor; estos péptidos son filtrados a través de algoritmos que evalúan la afinidad y estabilidad con el haplotipo HLA del paciente para obtener una lista reducida de péptidos candidatos a vacuna personaliza. En la segunda etapa se realizan simulaciones de docking molecular entre los péptidos cortos previamente identificados (de entre 9 y l0 aminoácidos de longitud) y la molécula HLA-A*24:02 con el fin de evaluar y caracterizar la interacción péptido-HLA de tal manera que proporcione información que apoye el proceso de priorización de péptidos a evaluar de manera ​in-vitro​. Para nuestro caso de estudio, se identificaron 12 péptidos candidatos a vacuna personalizada (6 de los cuales son péptidos largos que enmarcan una epítope tanto para moléculas HLA clase I como para clase II), de las cuales se simuló el d ​ ocking molecular de 5 péptidos cortos (tanto la versión mutada como la nativa) con la molécula HLA-A*24:02. Dichas simulaciones permitieron identificar los puentes de hidrógeno entre el péptido y la molécula HLA y realizar una estimación de la energía del complejo, lo cual llevó a priorizar 2 de los 5 péptidos evaluados. Aunque la estrategia permitió identificar y priorizar péptidos candidatos a vacunas personalizadas en un tumor de una paciente con PEComa, queda como perspectiva extender la estrategia del docking molecular a péptidos largos con moléculas HLA clase II y evaluar la estabilidad del complejo péptido-HLA a través de dinámica molecular.spa
dc.description.abstractIn the present work we present the implementation of an ​in-silico strategy for the identification and prioritization of peptide candidates for personalized vaccine in cancer tumors applied to a case study of a patient with PEComa expressing the allele HLA-A*24:02. This strategy consists of two major stages. The first stage consists of the identification of peptide candidates to personalized vaccine through the analysis of genetic data (DNA and RNA) that allow the identification and quantification of expression of somatic mutations present in the tumor, from which all possible mutant peptides (between 9 and 21 amino acids in length) that could express the tumor are obtained; these peptides are filtered through algorithms that evaluate the affinity and stability with the HLA haplotype of the patient to obtain a reduced list of peptide candidates for a personalized vaccine. In the second stage, molecular docking simulations are performed between the previously identified short peptides (between 9 and l0 amino acids in length) and the HLA-A*24:02 molecule in order to evaluate and characterize the HLA-peptide interaction in such a way as to provide information that supports the process of prioritization of peptides to be evaluated ​in-vitro​. For our case study, 12 peptides were identified as candidates for personalized vaccine (6 of which are long peptides that frame an epitope for both HLA class I and class II molecules), of which the molecular docking of 5 short peptides (both the mutated and wildtype versions) were simulated with the HLA-A*24:02 molecule. These simulations allowed to identify the hydrogen bridges between the peptide and the HLA molecule and to estimate the energy of the complex, which led to prioritizing 2 of the 5 peptides evaluated. Although the strategy allowed to identify and prioritize peptide candidates for personalized vaccines in a tumor of a patient with PEComa, it is possible to extend the molecular docking strategy to long peptides with HLA class II molecules and to evaluate the stability of the HLA-peptide complex through molecular dynamics.spa
dc.description.additionalLínea de Investigación: Diseño de Vacunas Terapéuticas para Cáncer Basadas en Péptidosspa
dc.description.degreelevelMaestríaspa
dc.format.extent113spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78094
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesJ. Hundal, B. M. Carreno, A. A. Petti, G. P. Linette, O. L. Griffith, E. R. Mardis, M. Griffith, pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8 (2016), doi:10.1186/s13073-016-0264-5.spa
dc.relation.referencesA. Rubinsteyn, J. Kodysh, I. Hodes, S. Mondet, B. A. Aksoy, J. P. Finnigan, N. Bhardwaj, J. Hammerbacher, Computational pipeline for the PGV-001 neoantigen vaccine trial. Front. Immunol. 8, 1807 (2018).spa
dc.relation.referencesM. Yadav, S. Jhunjhunwala, Q. T. Phung, P. Lupardus, J. Tanguay, S. Bumbaca, C. Franci, T. K. Cheung, J. Fritsche, T. Weinschenk, Z. Modrusan, I. Mellman, J. R. Lill, L. Delamarre, Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 515, 572–576 (2014).spa
dc.relation.referencesM. M. Gubin, X. Zhang, H. Schuster, E. Caron, J. P. Ward, T. Noguchi, Y. Ivanova, J. Hundal, C. D. Arthur, W.-J. Krebber, G. E. Mulder, M. Toebes, M. D. Vesely, S. S. K. Lam, A. J. Korman, J. P. Allison, G. J. Freeman, A. H. Sharpe, E. L. Pearce, T. N. Schumacher, R. Aebersold, H.-G. Rammensee, C. J. M. Melief, E. R. Mardis, W. E. Gillanders, M. N. Artyomov, R. D. Schreiber, Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 515, 577–581 (2014).spa
dc.relation.referencesC. Linnemann, M. M. van Buuren, L. Bies, E. M. E. Verdegaal, R. Schotte, J. J. A. Calis, S. Behjati, A. Velds, H. Hilkmann, D. el Atmioui, M. Visser, M. R. Stratton, J. B. A. G. Haanen, H. Spits, S. H. van der Burg, T. N. M. Schumacher, High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).spa
dc.relation.referencesB. M. Carreno, V. Magrini, M. Becker-Hapak, S. Kaabinejadian, J. Hundal, A. A. Petti, A. Ly, W.-R. Lie, W. H. Hildebrand, E. R. Mardis, G. P. Linette, A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 348, 803–808 (2015).spa
dc.relation.referencesN. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, W. Lee, J. Yuan, P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira, F. Ibrahim, C. Bruggeman, B. Gasmi, R. Zappasodi, Y. Maeda, C. Sander, E. B. Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher, T. A. Chan, Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 348, 124–128 (2015).spa
dc.relation.referencesX. Zhang, S. Kim, J. Hundal, J. M. Herndon, S. Li, A. A. Petti, S. D. Soysal, L. Li, M. D. McLellan, J. Hoog, T. Primeau, N. Myers, T. L. Vickery, M. Sturmoski, I. S. Hagemann, C. A. Miller, M. J. Ellis, E. R. Mardis, T. Hansen, T. P. Fleming, S. P. Goedegebuure, W. E. Gillanders, Breast Cancer Neoantigens Can Induce CD8+ T-Cell Responses and Antitumor Immunity. Cancer Immunol. Res. 5, 516–523 (2017).spa
dc.relation.referencesU. Sahin, Ö. Türeci, Personalized vaccines for cancer immunotherapy. Science. 359, 1355–1360 (2018).spa
dc.relation.referencesV. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters, M. Nielsen, NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 199, 3360–3368 (2017).spa
dc.relation.referencesT. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, J. Hammerbacher, MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 7, 129-132.e4 (2018).spa
dc.relation.referencesW. Zhao, X. Sher, Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLoS Comput. Biol. 14, e1006457 (2018).spa
dc.relation.referencesM. Harndahl, M. Rasmussen, G. Roder, I. Dalgaard Pedersen, M. Sørensen, M. Nielsen, S. Buus, Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42, 1405–1416 (2012).spa
dc.relation.referencesThe problem with neoantigen prediction. Nat. Biotechnol. 35, 97 (2017).spa
dc.relation.referencesGlobal Cancer Observatory, (available at http://gco.iarc.fr/).spa
dc.relation.referencesWorld Health Organization, World Health Statistics 2018: monitoring health for the SDGs : sustainable development goals. (2018).spa
dc.relation.referencesCancer today - Global Cancer Observatory, (available at http://gco.iarc.fr/today/home).spa
dc.relation.referencesM. H. Manjili, Revisiting cancer immunoediting by understanding cancer immune complexity. J. Pathol. 224, 5–9 (2011).spa
dc.relation.referencesS. H. Hassanpour, M. Dehghani, Review of cancer from perspective of molecular. J. Cancer Res. Pract. 4, 127–129 (2017).spa
dc.relation.referencesD. Mittal, M. M. Gubin, R. D. Schreiber, M. J. Smyth, New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).spa
dc.relation.referencesR. D. Wood, M. Mitchell, J. Sgouros, T. Lindahl, Human DNA Repair Genes. Science. 291, 1284–1289 (2001).spa
dc.relation.referencesG. Martignoni, M. Pea, D. Reghellin, G. Zamboni, F. Bonetti, PEComas: the past, the present and the future. Virchows Arch. 452, 119–132 (2008).spa
dc.relation.referencesApitz K, Die Geschwülste und Gewebsmissbildungen der Nierenrinde. Virchows Arch. 311, 306–327 (1944).spa
dc.relation.referencesM. Pea, F. Bonetti, G. Zamboni, G. Martignoni, L. Fiore-Donati, C. Doglioni, Clear cell tumor and angiomyolipoma. Am. J. Surg. Pathol. 15, 199–200 (1991).spa
dc.relation.referencesF. Bonetti, M. Pea, G. Martignoni, G. Zamboni, PEC and sugar. Am. J. Surg. Pathol. 16, 307 (1992).spa
dc.relation.referencesJ. S. Bleeker, J. F. Quevedo, A. L. Folpe, “Malignant” perivascular epithelioid cell neoplasm: risk stratification and treatment strategies. Sarcoma. 2012 (2012),spa
dc.relation.referencesA. Zimmermann, in Tumors and Tumor-Like Lesions of the Hepatobiliary Tract: General and Surgical Pathology (Springer, 2016; https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-26587-2_73-1).spa
dc.relation.referencesF. Bonetti, M. Pen, G. Martignoni, G. Zamboni, E. Manirin, R. Colombari, G. M. Mariuzzi, The perivascular epithelioid cell and related lesions. Adv. Anat. Pathol. 4, 343–358 (1997).spa
dc.relation.referencesA. K. Abbas, A. H. H. Lichtman, S. Pillai, Inmunología celular y molecular (Elsevier Health Sciences Spain, 2015).spa
dc.relation.referencesParra Lopez, Carlos, Curso: Fundamentos de Inmunología: Conceptos de Procesamiento y Presentación del Antígeno. Univ. Nac. Colomb. (2013).spa
dc.relation.referencesDelgado Murcia G., Curso “La nueva Inmunología Molecular, Generalidades del Procesamiento y Presentación del Antígeno.” Fund. Inst. Inmunol. Colomb. (2002).spa
dc.relation.referencesS. Tenzer, B. Peters, S. Bulik, O. Schoor, C. Lemmel, M. M. Schatz, P.-M. Kloetzel, H.-G. Rammensee, H. Schild, H.-G. Holzhütter, Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding. Cell. Mol. Life Sci. CMLS. 62, 1025–1037 (2005).spa
dc.relation.referencesS. El-Metwally, T. Hamza, M. Zakaria, M. Helmy, Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput. Biol. 9, e1003345 (2013).spa
dc.relation.referencesE. C. Hayden, Is the $1,000 genome for real? Nat. News (2014).spa
dc.relation.referencesD. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, Accurate whole human genome sequencing using reversible terminator chemistry. nature. 456, 53 (2008).spa
dc.relation.referencesS. W. Kowalczyk, D. B. Wells, A. Aksimentiev, C. Dekker, Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 12, 1038–1044 (2012).spa
dc.relation.referencesH. Esfandyarpour, Genapsys 100X Solution: Label-free Fully-integrated “Personal Genomixer.” J. Biomol. Tech. JBT. 23, S9 (2012).spa
dc.relation.referencesK. Paszkiewicz, D. J. Studholme, De novo assembly of short sequence reads. Brief. Bioinform. 11, 457–472 (2010).spa
dc.relation.referencesG. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del Angel, A. Levy‐Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, Curr. Protoc. Bioinforma., in press.spa
dc.relation.referencesA. N. Houghton, J. A. Guevara-Patiño, Immune recognition of self in immunity against cancer. J. Clin. Invest. 114, 468–471 (2004).spa
dc.relation.referencesH. Zhang, O. Lund, M. Nielsen, The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics. 25, 1293–1299 (2009).spa
dc.relation.referencesM. Andreatta, M. Nielsen, Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 32, 511–517 (2015).spa
dc.relation.referencesE. Karosiene, C. Lundegaard, O. Lund, M. Nielsen, NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 64, 177–186 (2012).spa
dc.relation.referencesM. Nielsen, C. Lundegaard, O. Lund, C. Keşmir, The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. 57, 33–41 (2005).spa
dc.relation.referencesK. W. Jørgensen, M. Rasmussen, S. Buus, M. Nielsen, Net MHC stab–predicting stability of peptide–MHC‐I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology. 141, 18–26 (2014).spa
dc.relation.referencesW. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. S. Ritchie, A. Thormann, P. Flicek, F. Cunningham, The Ensembl Variant Effect Predictor. Genome Biol. 17 (2016), doi:10.1186/s13059-016-0974-4.spa
dc.relation.referencesA. Szolek, B. Schubert, C. Mohr, M. Sturm, M. Feldhahn, O. Kohlbacher, OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 30, 3310–3316 (2014).spa
dc.relation.referencesS. Boegel, M. Löwer, M. Schäfer, T. Bukur, J. de Graaf, V. Boisguérin, Ö. Türeci, M. Diken, J. C. Castle, U. Sahin, HLA typing from RNA-Seq sequence reads. Genome Med. 4, 102 (2012).spa
dc.relation.referencesK. K. Jensen, M. Andreatta, P. Marcatili, S. Buus, J. A. Greenbaum, Z. Yan, A. Sette, B. Peters, M. Nielsen, Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 154, 394–406 (2018).spa
dc.relation.referencesY. Kim, J. Sidney, C. Pinilla, A. Sette, B. Peters, Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinformatics. 10, 394 (2009).spa
dc.relation.referencesR. Bhattacharya, C. Tokheim, A. Sivakumar, V. B. Guthrie, V. Anagnostou, V. E. Velculescu, R. Karchin, Prediction of peptide binding to MHC Class I proteins in the age of deep learning. bioRxiv, 154757 (2017).spa
dc.relation.referencesX. M. Shao, R. Bhattacharya, J. Huang, I. A. Sivakumar, C. Tokheim, L. Zheng, D. HIrsch, B. Kaminow, A. Omdahl, M. Bonsack, High-throughput prediction of MHC Class I and Class II neoantigens with MHCnuggets. bioRxiv, 752469 (2019).spa
dc.relation.referencesM. Nielsen, C. Lundegaard, O. Lund, Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics. 8, 238 (2007).spa
dc.relation.referencesM. Fermeglia, S. Pricl, G. Longo, Molecular modeling and process simulation: Real possibilities and challenges. Chem. Biochem. Eng. Q. 17, 19–30 (2003).spa
dc.relation.referencesH. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).spa
dc.relation.referencesY. Zhang, I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9, 40 (2008).spa
dc.relation.referencesW. J. Hehre, A guide to molecular mechanics and quantum chemical calculations (Wavefunction Irvine, CA, 2003), vol. 2.spa
dc.relation.referencesSchrodinger, The PyMOL Molecular Graphics System, Version 1.8 (2015).spa
dc.relation.referencesU. Chimera, a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 25, 1605–12 (2004).spa
dc.relation.referencesX.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 7, 146–157 (2011).spa
dc.relation.referencesO. Schueler-Furman, N. London, Schueler-Furman, Modeling peptide-protein interactions (Springer, 2017).spa
dc.relation.referencesB. Raveh, N. London, L. Zimmerman, O. Schueler-Furman, Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PloS One. 6, e18934 (2011).spa
dc.relation.referencesB. Raveh, N. London, O. Schueler‐Furman, Sub‐angstrom modeling of complexes between flexible peptides and globular proteins. Proteins Struct. Funct. Bioinforma. 78, 2029–2040 (2010).spa
dc.relation.referencesA. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson, R. Jacak, K. W. Kaufman, P. D. Renfrew, C. A. Smith, W. Sheffler, in Methods in enzymology (Elsevier, 2011), vol. 487, pp. 545–574.spa
dc.relation.referencesR. Das, D. Baker, Macromolecular modeling with rosetta. Annu. Rev. Biochem. 77,. 363 (2008).spa
dc.relation.referencesK. W. Kaufmann, G. H. Lemmon, S. L. DeLuca, J. H. Sheehan, J. Meiler, Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry. 49, 2987–2998 (2010).spa
dc.relation.referencesF. Poy, M. B. Yaffe, J. Sayos, K. Saxena, M. Morra, J. Sumegi, L. C. Cantley, C. Terhorst, M. J. Eck, Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell. 4, 555–561 (1999).spa
dc.relation.referencesY. Li, K. Suino, J. Daugherty, H. E. Xu, Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol. Cell. 19, 367–380 (2005).spa
dc.relation.referencesS. Andrews, FastQC: a quality control tool for high throughput sequence data (Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom, 2010).spa
dc.relation.referencesH. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The sequence alignment/map format and SAMtools. Bioinformatics. 25, 2078–2079 (2009).spa
dc.relation.referencesT. Picard, Broad Institute, GitHub repository (2018).spa
dc.relation.referencesP. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, The variant call format and VCFtools. Bioinformatics. 27, 2156–2158 (2011).spa
dc.relation.referencesO. Tange, Gnu parallel-the command-line power tool. USENIX Mag. 36, 42–47 (2011).spa
dc.relation.referencesH. Li, R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 25, 1754–1760 (2009).spa
dc.relation.referencesD. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S. L. Salzberg, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).spa
dc.relation.referencesA. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).spa
dc.relation.referencesC. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.proposalpersonalized vaccineseng
dc.subject.proposalvacunas personalizadasspa
dc.subject.proposalcáncerspa
dc.subject.proposalcancereng
dc.subject.proposaldocking molecularspa
dc.subject.proposalmolecular dockingeng
dc.titleImplementación de una estrategia ​in-silico para la identificación de péptidos candidatos a vacuna terapéutica individualizada en tumor de paciente con PEComaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de maestría Diego Amaya 14_04_2020.pdf
Tamaño:
11.9 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: