Implementación de una estrategia in-silico para la identificación de péptidos candidatos a vacuna terapéutica individualizada en tumor de paciente con PEComa
dc.contributor.advisor | Niño Vásquez, Luis Fernando | spa |
dc.contributor.advisor | Parra López, Carlos Alberto | spa |
dc.contributor.author | Amaya Ramírez, Diego Alfredo | spa |
dc.contributor.researchgroup | Inmunología y Medicina Traslacional / Laboratorio de Investigación en Sistemas Inteligentes - LISI | spa |
dc.date.accessioned | 2020-08-19T21:27:17Z | spa |
dc.date.available | 2020-08-19T21:27:17Z | spa |
dc.date.issued | 2019-12-17 | spa |
dc.description.abstract | En el presente trabajo se expone la implementación de una estrategia in-silico para la identificación y priorización de péptidos candidatos a vacuna personalizada en tumores de cáncer aplicado a un caso de estudio de una paciente con PEComa que expresa el alelo HLA-A*24:02. Dicha estrategia se compone de 2 grandes etapas. La primera etapa consiste en la identificación de péptidos candidatos a vacuna personalizada a través de análisis de datos genéticos (ADN y ARN) que permiten la identificación y cuantificación de expresión de mutaciones somáticas presentes en el tumor, a partir de las cuales se obtienen todos los posibles péptidos mutantes (de entre 9 y 21 aminoácidos de longitud) que podría expresar el tumor; estos péptidos son filtrados a través de algoritmos que evalúan la afinidad y estabilidad con el haplotipo HLA del paciente para obtener una lista reducida de péptidos candidatos a vacuna personaliza. En la segunda etapa se realizan simulaciones de docking molecular entre los péptidos cortos previamente identificados (de entre 9 y l0 aminoácidos de longitud) y la molécula HLA-A*24:02 con el fin de evaluar y caracterizar la interacción péptido-HLA de tal manera que proporcione información que apoye el proceso de priorización de péptidos a evaluar de manera in-vitro. Para nuestro caso de estudio, se identificaron 12 péptidos candidatos a vacuna personalizada (6 de los cuales son péptidos largos que enmarcan una epítope tanto para moléculas HLA clase I como para clase II), de las cuales se simuló el d ocking molecular de 5 péptidos cortos (tanto la versión mutada como la nativa) con la molécula HLA-A*24:02. Dichas simulaciones permitieron identificar los puentes de hidrógeno entre el péptido y la molécula HLA y realizar una estimación de la energía del complejo, lo cual llevó a priorizar 2 de los 5 péptidos evaluados. Aunque la estrategia permitió identificar y priorizar péptidos candidatos a vacunas personalizadas en un tumor de una paciente con PEComa, queda como perspectiva extender la estrategia del docking molecular a péptidos largos con moléculas HLA clase II y evaluar la estabilidad del complejo péptido-HLA a través de dinámica molecular. | spa |
dc.description.abstract | In the present work we present the implementation of an in-silico strategy for the identification and prioritization of peptide candidates for personalized vaccine in cancer tumors applied to a case study of a patient with PEComa expressing the allele HLA-A*24:02. This strategy consists of two major stages. The first stage consists of the identification of peptide candidates to personalized vaccine through the analysis of genetic data (DNA and RNA) that allow the identification and quantification of expression of somatic mutations present in the tumor, from which all possible mutant peptides (between 9 and 21 amino acids in length) that could express the tumor are obtained; these peptides are filtered through algorithms that evaluate the affinity and stability with the HLA haplotype of the patient to obtain a reduced list of peptide candidates for a personalized vaccine. In the second stage, molecular docking simulations are performed between the previously identified short peptides (between 9 and l0 amino acids in length) and the HLA-A*24:02 molecule in order to evaluate and characterize the HLA-peptide interaction in such a way as to provide information that supports the process of prioritization of peptides to be evaluated in-vitro. For our case study, 12 peptides were identified as candidates for personalized vaccine (6 of which are long peptides that frame an epitope for both HLA class I and class II molecules), of which the molecular docking of 5 short peptides (both the mutated and wildtype versions) were simulated with the HLA-A*24:02 molecule. These simulations allowed to identify the hydrogen bridges between the peptide and the HLA molecule and to estimate the energy of the complex, which led to prioritizing 2 of the 5 peptides evaluated. Although the strategy allowed to identify and prioritize peptide candidates for personalized vaccines in a tumor of a patient with PEComa, it is possible to extend the molecular docking strategy to long peptides with HLA class II molecules and to evaluate the stability of the HLA-peptide complex through molecular dynamics. | spa |
dc.description.additional | Línea de Investigación: Diseño de Vacunas Terapéuticas para Cáncer Basadas en Péptidos | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 113 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78094 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Ingeniería Biomédica | spa |
dc.relation.references | J. Hundal, B. M. Carreno, A. A. Petti, G. P. Linette, O. L. Griffith, E. R. Mardis, M. Griffith, pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8 (2016), doi:10.1186/s13073-016-0264-5. | spa |
dc.relation.references | A. Rubinsteyn, J. Kodysh, I. Hodes, S. Mondet, B. A. Aksoy, J. P. Finnigan, N. Bhardwaj, J. Hammerbacher, Computational pipeline for the PGV-001 neoantigen vaccine trial. Front. Immunol. 8, 1807 (2018). | spa |
dc.relation.references | M. Yadav, S. Jhunjhunwala, Q. T. Phung, P. Lupardus, J. Tanguay, S. Bumbaca, C. Franci, T. K. Cheung, J. Fritsche, T. Weinschenk, Z. Modrusan, I. Mellman, J. R. Lill, L. Delamarre, Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 515, 572–576 (2014). | spa |
dc.relation.references | M. M. Gubin, X. Zhang, H. Schuster, E. Caron, J. P. Ward, T. Noguchi, Y. Ivanova, J. Hundal, C. D. Arthur, W.-J. Krebber, G. E. Mulder, M. Toebes, M. D. Vesely, S. S. K. Lam, A. J. Korman, J. P. Allison, G. J. Freeman, A. H. Sharpe, E. L. Pearce, T. N. Schumacher, R. Aebersold, H.-G. Rammensee, C. J. M. Melief, E. R. Mardis, W. E. Gillanders, M. N. Artyomov, R. D. Schreiber, Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 515, 577–581 (2014). | spa |
dc.relation.references | C. Linnemann, M. M. van Buuren, L. Bies, E. M. E. Verdegaal, R. Schotte, J. J. A. Calis, S. Behjati, A. Velds, H. Hilkmann, D. el Atmioui, M. Visser, M. R. Stratton, J. B. A. G. Haanen, H. Spits, S. H. van der Burg, T. N. M. Schumacher, High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015). | spa |
dc.relation.references | B. M. Carreno, V. Magrini, M. Becker-Hapak, S. Kaabinejadian, J. Hundal, A. A. Petti, A. Ly, W.-R. Lie, W. H. Hildebrand, E. R. Mardis, G. P. Linette, A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 348, 803–808 (2015). | spa |
dc.relation.references | N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, W. Lee, J. Yuan, P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira, F. Ibrahim, C. Bruggeman, B. Gasmi, R. Zappasodi, Y. Maeda, C. Sander, E. B. Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher, T. A. Chan, Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 348, 124–128 (2015). | spa |
dc.relation.references | X. Zhang, S. Kim, J. Hundal, J. M. Herndon, S. Li, A. A. Petti, S. D. Soysal, L. Li, M. D. McLellan, J. Hoog, T. Primeau, N. Myers, T. L. Vickery, M. Sturmoski, I. S. Hagemann, C. A. Miller, M. J. Ellis, E. R. Mardis, T. Hansen, T. P. Fleming, S. P. Goedegebuure, W. E. Gillanders, Breast Cancer Neoantigens Can Induce CD8+ T-Cell Responses and Antitumor Immunity. Cancer Immunol. Res. 5, 516–523 (2017). | spa |
dc.relation.references | U. Sahin, Ö. Türeci, Personalized vaccines for cancer immunotherapy. Science. 359, 1355–1360 (2018). | spa |
dc.relation.references | V. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters, M. Nielsen, NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 199, 3360–3368 (2017). | spa |
dc.relation.references | T. J. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, J. Hammerbacher, MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell Syst. 7, 129-132.e4 (2018). | spa |
dc.relation.references | W. Zhao, X. Sher, Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLoS Comput. Biol. 14, e1006457 (2018). | spa |
dc.relation.references | M. Harndahl, M. Rasmussen, G. Roder, I. Dalgaard Pedersen, M. Sørensen, M. Nielsen, S. Buus, Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42, 1405–1416 (2012). | spa |
dc.relation.references | The problem with neoantigen prediction. Nat. Biotechnol. 35, 97 (2017). | spa |
dc.relation.references | Global Cancer Observatory, (available at http://gco.iarc.fr/). | spa |
dc.relation.references | World Health Organization, World Health Statistics 2018: monitoring health for the SDGs : sustainable development goals. (2018). | spa |
dc.relation.references | Cancer today - Global Cancer Observatory, (available at http://gco.iarc.fr/today/home). | spa |
dc.relation.references | M. H. Manjili, Revisiting cancer immunoediting by understanding cancer immune complexity. J. Pathol. 224, 5–9 (2011). | spa |
dc.relation.references | S. H. Hassanpour, M. Dehghani, Review of cancer from perspective of molecular. J. Cancer Res. Pract. 4, 127–129 (2017). | spa |
dc.relation.references | D. Mittal, M. M. Gubin, R. D. Schreiber, M. J. Smyth, New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014). | spa |
dc.relation.references | R. D. Wood, M. Mitchell, J. Sgouros, T. Lindahl, Human DNA Repair Genes. Science. 291, 1284–1289 (2001). | spa |
dc.relation.references | G. Martignoni, M. Pea, D. Reghellin, G. Zamboni, F. Bonetti, PEComas: the past, the present and the future. Virchows Arch. 452, 119–132 (2008). | spa |
dc.relation.references | Apitz K, Die Geschwülste und Gewebsmissbildungen der Nierenrinde. Virchows Arch. 311, 306–327 (1944). | spa |
dc.relation.references | M. Pea, F. Bonetti, G. Zamboni, G. Martignoni, L. Fiore-Donati, C. Doglioni, Clear cell tumor and angiomyolipoma. Am. J. Surg. Pathol. 15, 199–200 (1991). | spa |
dc.relation.references | F. Bonetti, M. Pea, G. Martignoni, G. Zamboni, PEC and sugar. Am. J. Surg. Pathol. 16, 307 (1992). | spa |
dc.relation.references | J. S. Bleeker, J. F. Quevedo, A. L. Folpe, “Malignant” perivascular epithelioid cell neoplasm: risk stratification and treatment strategies. Sarcoma. 2012 (2012), | spa |
dc.relation.references | A. Zimmermann, in Tumors and Tumor-Like Lesions of the Hepatobiliary Tract: General and Surgical Pathology (Springer, 2016; https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-26587-2_73-1). | spa |
dc.relation.references | F. Bonetti, M. Pen, G. Martignoni, G. Zamboni, E. Manirin, R. Colombari, G. M. Mariuzzi, The perivascular epithelioid cell and related lesions. Adv. Anat. Pathol. 4, 343–358 (1997). | spa |
dc.relation.references | A. K. Abbas, A. H. H. Lichtman, S. Pillai, Inmunología celular y molecular (Elsevier Health Sciences Spain, 2015). | spa |
dc.relation.references | Parra Lopez, Carlos, Curso: Fundamentos de Inmunología: Conceptos de Procesamiento y Presentación del Antígeno. Univ. Nac. Colomb. (2013). | spa |
dc.relation.references | Delgado Murcia G., Curso “La nueva Inmunología Molecular, Generalidades del Procesamiento y Presentación del Antígeno.” Fund. Inst. Inmunol. Colomb. (2002). | spa |
dc.relation.references | S. Tenzer, B. Peters, S. Bulik, O. Schoor, C. Lemmel, M. M. Schatz, P.-M. Kloetzel, H.-G. Rammensee, H. Schild, H.-G. Holzhütter, Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding. Cell. Mol. Life Sci. CMLS. 62, 1025–1037 (2005). | spa |
dc.relation.references | S. El-Metwally, T. Hamza, M. Zakaria, M. Helmy, Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput. Biol. 9, e1003345 (2013). | spa |
dc.relation.references | E. C. Hayden, Is the $1,000 genome for real? Nat. News (2014). | spa |
dc.relation.references | D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, Accurate whole human genome sequencing using reversible terminator chemistry. nature. 456, 53 (2008). | spa |
dc.relation.references | S. W. Kowalczyk, D. B. Wells, A. Aksimentiev, C. Dekker, Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 12, 1038–1044 (2012). | spa |
dc.relation.references | H. Esfandyarpour, Genapsys 100X Solution: Label-free Fully-integrated “Personal Genomixer.” J. Biomol. Tech. JBT. 23, S9 (2012). | spa |
dc.relation.references | K. Paszkiewicz, D. J. Studholme, De novo assembly of short sequence reads. Brief. Bioinform. 11, 457–472 (2010). | spa |
dc.relation.references | G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del Angel, A. Levy‐Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, Curr. Protoc. Bioinforma., in press. | spa |
dc.relation.references | A. N. Houghton, J. A. Guevara-Patiño, Immune recognition of self in immunity against cancer. J. Clin. Invest. 114, 468–471 (2004). | spa |
dc.relation.references | H. Zhang, O. Lund, M. Nielsen, The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics. 25, 1293–1299 (2009). | spa |
dc.relation.references | M. Andreatta, M. Nielsen, Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 32, 511–517 (2015). | spa |
dc.relation.references | E. Karosiene, C. Lundegaard, O. Lund, M. Nielsen, NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 64, 177–186 (2012). | spa |
dc.relation.references | M. Nielsen, C. Lundegaard, O. Lund, C. Keşmir, The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. 57, 33–41 (2005). | spa |
dc.relation.references | K. W. Jørgensen, M. Rasmussen, S. Buus, M. Nielsen, Net MHC stab–predicting stability of peptide–MHC‐I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology. 141, 18–26 (2014). | spa |
dc.relation.references | W. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. S. Ritchie, A. Thormann, P. Flicek, F. Cunningham, The Ensembl Variant Effect Predictor. Genome Biol. 17 (2016), doi:10.1186/s13059-016-0974-4. | spa |
dc.relation.references | A. Szolek, B. Schubert, C. Mohr, M. Sturm, M. Feldhahn, O. Kohlbacher, OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 30, 3310–3316 (2014). | spa |
dc.relation.references | S. Boegel, M. Löwer, M. Schäfer, T. Bukur, J. de Graaf, V. Boisguérin, Ö. Türeci, M. Diken, J. C. Castle, U. Sahin, HLA typing from RNA-Seq sequence reads. Genome Med. 4, 102 (2012). | spa |
dc.relation.references | K. K. Jensen, M. Andreatta, P. Marcatili, S. Buus, J. A. Greenbaum, Z. Yan, A. Sette, B. Peters, M. Nielsen, Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 154, 394–406 (2018). | spa |
dc.relation.references | Y. Kim, J. Sidney, C. Pinilla, A. Sette, B. Peters, Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinformatics. 10, 394 (2009). | spa |
dc.relation.references | R. Bhattacharya, C. Tokheim, A. Sivakumar, V. B. Guthrie, V. Anagnostou, V. E. Velculescu, R. Karchin, Prediction of peptide binding to MHC Class I proteins in the age of deep learning. bioRxiv, 154757 (2017). | spa |
dc.relation.references | X. M. Shao, R. Bhattacharya, J. Huang, I. A. Sivakumar, C. Tokheim, L. Zheng, D. HIrsch, B. Kaminow, A. Omdahl, M. Bonsack, High-throughput prediction of MHC Class I and Class II neoantigens with MHCnuggets. bioRxiv, 752469 (2019). | spa |
dc.relation.references | M. Nielsen, C. Lundegaard, O. Lund, Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics. 8, 238 (2007). | spa |
dc.relation.references | M. Fermeglia, S. Pricl, G. Longo, Molecular modeling and process simulation: Real possibilities and challenges. Chem. Biochem. Eng. Q. 17, 19–30 (2003). | spa |
dc.relation.references | H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). | spa |
dc.relation.references | Y. Zhang, I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9, 40 (2008). | spa |
dc.relation.references | W. J. Hehre, A guide to molecular mechanics and quantum chemical calculations (Wavefunction Irvine, CA, 2003), vol. 2. | spa |
dc.relation.references | Schrodinger, The PyMOL Molecular Graphics System, Version 1.8 (2015). | spa |
dc.relation.references | U. Chimera, a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 25, 1605–12 (2004). | spa |
dc.relation.references | X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 7, 146–157 (2011). | spa |
dc.relation.references | O. Schueler-Furman, N. London, Schueler-Furman, Modeling peptide-protein interactions (Springer, 2017). | spa |
dc.relation.references | B. Raveh, N. London, L. Zimmerman, O. Schueler-Furman, Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PloS One. 6, e18934 (2011). | spa |
dc.relation.references | B. Raveh, N. London, O. Schueler‐Furman, Sub‐angstrom modeling of complexes between flexible peptides and globular proteins. Proteins Struct. Funct. Bioinforma. 78, 2029–2040 (2010). | spa |
dc.relation.references | A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson, R. Jacak, K. W. Kaufman, P. D. Renfrew, C. A. Smith, W. Sheffler, in Methods in enzymology (Elsevier, 2011), vol. 487, pp. 545–574. | spa |
dc.relation.references | R. Das, D. Baker, Macromolecular modeling with rosetta. Annu. Rev. Biochem. 77,. 363 (2008). | spa |
dc.relation.references | K. W. Kaufmann, G. H. Lemmon, S. L. DeLuca, J. H. Sheehan, J. Meiler, Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry. 49, 2987–2998 (2010). | spa |
dc.relation.references | F. Poy, M. B. Yaffe, J. Sayos, K. Saxena, M. Morra, J. Sumegi, L. C. Cantley, C. Terhorst, M. J. Eck, Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell. 4, 555–561 (1999). | spa |
dc.relation.references | Y. Li, K. Suino, J. Daugherty, H. E. Xu, Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol. Cell. 19, 367–380 (2005). | spa |
dc.relation.references | S. Andrews, FastQC: a quality control tool for high throughput sequence data (Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom, 2010). | spa |
dc.relation.references | H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The sequence alignment/map format and SAMtools. Bioinformatics. 25, 2078–2079 (2009). | spa |
dc.relation.references | T. Picard, Broad Institute, GitHub repository (2018). | spa |
dc.relation.references | P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, The variant call format and VCFtools. Bioinformatics. 27, 2156–2158 (2011). | spa |
dc.relation.references | O. Tange, Gnu parallel-the command-line power tool. USENIX Mag. 36, 42–47 (2011). | spa |
dc.relation.references | H. Li, R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 25, 1754–1760 (2009). | spa |
dc.relation.references | D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S. L. Salzberg, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013). | spa |
dc.relation.references | A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). | spa |
dc.relation.references | C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.proposal | personalized vaccines | eng |
dc.subject.proposal | vacunas personalizadas | spa |
dc.subject.proposal | cáncer | spa |
dc.subject.proposal | cancer | eng |
dc.subject.proposal | docking molecular | spa |
dc.subject.proposal | molecular docking | eng |
dc.title | Implementación de una estrategia in-silico para la identificación de péptidos candidatos a vacuna terapéutica individualizada en tumor de paciente con PEComa | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de maestría Diego Amaya 14_04_2020.pdf
- Tamaño:
- 11.9 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: