Dependencia entre las series de tiempo de log-retorno de precio con las series de tiempo de log-retorno de volumen en mercados bursátiles

dc.contributor.advisorQuimbay Herrera, Carlos José
dc.contributor.authorPáez Moreno, John Jairo
dc.contributor.researchgroupEconofisica y Sociofisicaspa
dc.date.accessioned2023-02-07T13:30:28Z
dc.date.available2023-02-07T13:30:28Z
dc.date.issued2023-02-06
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn esta tesis se realiza una investigación basada en el estudio de datos empı́ricos sobre la existencia de relaciones entre la serie de tiempo de volúmenes de transacción diarios de acciones y la serie de tiempo de precios diarios de acciones para diferentes mercados bursáti- les internacionales. Para ello, primero se ajustan los datos de logretornos diarios de precios de 230 acciones de 23 ı́ndices distintos a distribuciones de probabilidad de Levy estables, y se muestra que la varianza de estas series se relaciona con la fracción de los parámetros de ajuste de escala y forma de la distribución, mediante una ley de potencias. A continuación se encuentra que los datos de logretornos diarios de volumen de 460 acciones de los mismos 23 ı́ndices ajustan a la distribución loglogistic, se muestra también la existencia de una ley de potencias entre la varianza y la fracción de los parámetros de ajuste de escala y forma de la distribucı́ón. Una vez que se encuentran los patrones de distribución que ajustan las series de tiempo logretornos diarios de precios y logretornos diarios de volúmenes, se determinan las correlaciónes que cuantifican que tanto los volúmenes inciden en los precios. Posterior- mente, se ajustan los precios normalizados a la distribución loglogistic, se halla la relación en forma de ley de potencias entre la varianza y la fracción entre los parámetros de ajuste de escala y forma, y se comparan los exponentes de esta ley con los exponentes que se hallaron previamente para los logretorno de volumenes. Finalmente, se calculan los promedios de los volúmenes y los promedios de los precios de las acciones asociadas a un ı́ndice cada dı́a, ası́ también se calculan las desviaciones de los volúmenes y las desviaciones de los precios de las acciones asociadas a un ı́ndice cada dı́a. Se obtienen altas correlaciones entre las series de tiempo de volúmenes y las series de tiempo de precios, y nuevos patrones o regularidades que pueden caracterizar los mercados. Se hallan también altas correlaciones entre los promedios de los precios entre diferentes ı́ndices lo que significa que lo que pueda ocurrir en un mercado afecta a otros mercados en diferentes partes del mundo. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, an investigation is carried out based on the study of empirical data on the existence of relationships between the time series of daily stock trading volumes and the time series of daily stock prices for different international stock markets. To do this, first, the daily price logreturns data of 230 shares of 23 different indices are fitted to stable Levy probability distributions, and it is shown that the variance of these series is related to the fraction of the scaling parameters and form of the distribution, by means of a power law. Next, it is found that the data of daily volume logreturns of 460 shares of the same 23 index fit the loglogistic distribution, it also shows the existence of a power law between the variance and the frac- tion of the scale adjustment parameters and shape of the distribution. Once the distribution patterns that adjust the daily price logreturns and volume daily logreturns time series are found, the connections that quantify how much volumes affect prices are determined. Later, the normalized prices are fitted to the loglogistic distribution, the relationship is found in the form of a power law between the variance and the fraction between the scale and shape adjustment parameters, and the exponents of this law are compared with the exponents that were previously found for logreturn volumes. Finally, the averages of the volumes and the averages of the prices of the shares associated with an index are calculated each day, as well as the deviations of the volumes and the deviations of the prices of the shares associated with an index each day. High correlations were obtained between the volume time series and the price time series, and new patterns or regularities that can characterize the markets. There are also high correlations between the average prices between different indices, which means that what happens in one market affects other markets in different parts of the world.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaEconofísicaspa
dc.format.extent196 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83345
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesA. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Be- wegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik. 322, 549-560 (1905). https://doi.org/10.1002/andp.19053220806spa
dc.relation.referencesA. Einstein, Théorie de la spéculation, Annales scientifiques de l’École Normale Supérieure. 17, 21-86 (1900) http://www.numdam.org/item/ASENS_1900_3_17__21_0/spa
dc.relation.referencesN. G. van Kampen, Itô versus Stratonovich, Journal of Statistical Physics. 24, 175–187 (1981) https://doi.org/10.1007/BF01007642spa
dc.relation.referencesL. Blanco, V. Arunachalam Introduction to Probability and Stochastic Processes with Ap- plications, volume 1 of 1. John Wiley & Sons, Inc., 3 edition, 6 2012.spa
dc.relation.referencesK. Ito, H. P. Mckean Diffusion Processes and their Sample Paths, Springer Berlin, 1 edition, (1996)spa
dc.relation.referencesM. F. M. Osborne, Brownian Motion in the Stock Market, Operation Research. 7(2), 145- 173 (1959) https://doi.org/10.1287/opre.7.2.145spa
dc.relation.referencesP. Samuelson, Proof that properly anticipated price fluctuate randomly, IMR- INDUSTRIAL MANAGMENT REVIEW. 6(2), 41-49 (1965)spa
dc.relation.referencesF. Black, M. Scholes, The Pricing of Options and Corporate Liabilities , Journal of Political Economy. 81, 637-654 (1973) https://www.jstor.org/stable/1831029spa
dc.relation.referencesD. Duffie, Dynamic Asset Pricing Theory, volume 1. Princenton, N.J: Princenton Univer- sity Press, 1 editon, 1996. 24, 175–187 (1981)spa
dc.relation.referencesH. Follmer, A. Shied Stochastic Finance: An Introduction in Discrete Time 2, volume 1. Walter Gruyter, 2 edition, (2004)spa
dc.relation.referencesB. Mandelbrot, The pareto-levy law and the distribution of income., International Eco- nomic Review. 1(1), 79–106 (1960)spa
dc.relation.referencesS. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applica- tions to Bond and Currency Options, The Review of Financial Studies. 6, 327–343 (1993) https://doi.org/10.1093/rfs/6.2.327spa
dc.relation.referencesR. Cont, P. Tankot, Financial Modelling with Jump Processes, volume 1. London: Chapman & Hall /CRC, 1 edition, (2004)spa
dc.relation.referencesC. P. Kindleberger, R. Aliber, Manias, Panics and Crashes , A History of Financial Crises. volume 1. New York: Wiley, 5 edition, (2005) https://link.springer.com/book/ 10.1057/9780230628045spa
dc.relation.referencesH. E. Stanley, V. Afanasyev, Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics, Physica A. 224, 302-321 (1996) https://doi. org/10.1016/0378-4371(95)00409-2spa
dc.relation.referencesH. E. Stanley,V. Buldyrev, Correlated randomness and switching phenomena, Physica A: Statistical Mechanics and its Applications. 389, 2880-2893 (2010) https://doi.org/10. 1016/j.physa.2010.02.023spa
dc.relation.referencesV. Plerou, P. Gopikrishnan, Econophysics: financial time series from a statistical physics point of view, Physica A. 279, 443-456 (2000) https://doi.org/10.1016/ S0378-4371(00)00010-8spa
dc.relation.referencesB. Podobnik, D. Horvatic, The competitiveness versus the wealth of a country, Nature Scientific Reports. 678, 9 (2012).spa
dc.relation.referencesH. M. Gupta, J. R. Campanha, The gradually truncated Lévy flight for systems with power-law distributions, Physica A. 268, 231-239 (1999) https://doi.org/10.1016/ S0378-4371(99)00028-Xspa
dc.relation.referencesR. N. Mantegna, H. E. Stanley, Ultra-slow convergence to a Gaussian: The truncated Lévy flight, Springer, Berlin, Heidelberg. Lecture Notes in Physics, 450, (2005) https: //doi.org/10.1007/3-540-59222-9_42spa
dc.relation.referencesA. Dragulescu, V. M. Yakovenko Statistical mechanics of money, The European Physical Journal B. 17.4, 723-729 (2000). https://arxiv.org/abs/cond-mat/0001432spa
dc.relation.referencesA. Chakraborti, B. K. Chakrabarti Statistical mechanics of money, How saving propensity affects its distribution. The European Physical Journal B 17(1), 167-170 (2000)spa
dc.relation.referencesC. Silva, V. M. Yakovenko, Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes, Physica A 324, 303-310 (2003). https://arxiv.org/abs/cond-mat/0211050spa
dc.relation.referencesC. Silva, R. Prange, Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact,Physica A. 344, 227-235 (2004) https://doi.org/10.1016/j.physa. 2004.06.122spa
dc.relation.referencesH. Kleinert, X. J Chen, Boltzmann distribution and market temperature, Physica A. 383, 513-518 (2007) https://doi.org/10.1016/j.physa.2007.04.101spa
dc.relation.referencesJ. Bouchaud, Elements for a theory of financial risks, Physica A. 263, 415-426 (1999) https://doi.org/10.1016/S0378-4371(98)00486-5spa
dc.relation.referencesZ. Eisler, J. Kertész Fluctuation scaling in complex systems: Taylor’s law and beyond, Advances in Physics. 57, 89 (2008) https://doi.org/10.1080/00018730801893043spa
dc.relation.referencesA. Fronczak, P. Fronczak Origins of Taylor’s power law for fluctuation scaling in complex systems, Physical Review E. 81, 066112 (2010). https://doi.org/10.1103/PhysRevE. 81.066112spa
dc.relation.referencesF. S Abril, C. J. Quimbay, Temporal fluctuation scaling in nonstationary time series using the path integral formalism, Physical Review E. 103, 042126 (2021) https://doi. org/10.1103/PHYSREVE.103.042126spa
dc.relation.referencesI. Nourdin, Selected Aspects of Fractional Brownian Motion, Bocconi & Springer Series. New York (2012)spa
dc.relation.referencesJ. Voit, The Statistical Mechanics of Financial Markets, Springer Science & Business Media Berlin, Alemania, (2005)spa
dc.relation.referencesG. M. Viswanathan, M. G. da Luz, E. Raposo The physics of foraging: an introduction to random searches and biological encounters,Cambridge University Press, (2011)spa
dc.relation.referencesZ. Yang,Geometric brownian motion model in financial market University of California, Berkeley (2015)spa
dc.relation.referencesF. S Abril, Uso del formalismo de la integral de camino de Feynman para el estudio de las funciones de distribución de logretornos de precios de acciones y sus propiedades, Trabajo de Grado, Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá, (2019).spa
dc.relation.referencesC. J. Quimbay Complex system properties in the spreading of COVID-19 pandemic, Re- vista de la Academia Colombiana de Ciencias Exactas, Fı́sicas y Naturales. 45(177), 1039- 1052 (2021)spa
dc.relation.referencesM. I Ahmad, C. D. Sinclair Loglogistic flood frequency analysis, Journal of Hydrology, 98 205-224, (1988).spa
dc.relation.referencesA. G. Asuero, A. Sayago The Correlation Coefficient: An Overview,Critical Reviews in Analytical Chemistry, 36,41-59,(2006)spa
dc.relation.referencesC. W.Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2da ed. (Springer-Verlag 1990).spa
dc.relation.referencesA. Stephan and R.E.Whaley Intraday Price Change and Trading Volume Relations in the Stock and Stock Option Markets. (1990)spa
dc.relation.referencesB. Podobnik, B., Horvatic, D., Petersen,,Cross-Correlations between volume change and price change. Proceedings of the National Academy of Sciences. 106(52), 22079-22084 (2009)spa
dc.relation.referencesD. Wang and Yuan. Suo,Price-volume cross-correlations analysis of CSI300 index futu- res.Physica A. 392, 1172-1179 (2013)spa
dc.relation.referencesW. Fengshong, S. Havlin, H Stanley,Financial Factor influence on scaling and memory of trading volume in stock market. Physical Review E. 84, 46-112.(2011)spa
dc.relation.referencesY. Yuang, X. Zhuang, Z Liu,Price Volume multifractal analysis and its aplication in Chinese stock markets.Physica A. 391(12), 3484-3495 (2013)spa
dc.relation.referencesT. Coy Mondragón, Dependencia en el tiempo de las series de tiempo de log-retornos diarios en los mercádos bursátiles internacionales. Tesis de Maestrı́a, Facultad de Ciencias, Universidad Nacional de Colombia(2015)spa
dc.relation.referencesS. Ghashghaie and W.BreymannTurbulent cascades in foreign exchange markets. Nature, 381(6585), 767-770 (1996)spa
dc.relation.referencesShalizi, Cosma.An introduction to econophysics correlations and complexity in finance Quantitative Finance 1, 391 (2001)spa
dc.relation.referencesNegrea, Bogdan. A statistical measure of financial crises magnitude. Physica A. 397, 54-75 (2014)spa
dc.relation.referencesG. Zumbach, Gilles O.Measuring shocks in financial markets. International Journal of Theoretical and Applied Finance. 3, 347-355 (2000)spa
dc.relation.referencesI. Antoniou and Vi.V.Ivanov On the log-normal distribution of stock market data. Physica A. 331, 617-638 (2004)spa
dc.relation.referencesL.G. Moyano and J. de Souza Multi-fractal structure of traded volume in financial markes. Physica A. 371.1, 118-121 (2006)spa
dc.relation.referencesF. Selcuk and R. Gencay, Intraday dynamics of stock market returns and volatility. Phy- sica A. 367, 375-387 (2006)spa
dc.relation.referencesN. Balakrishnan and N.B. Nevzorov, A Primer on Statistical Distributions. Journal of the American Statistical Association. 99, 466-568 (2004)spa
dc.relation.referencesC.Schinckus, Is econophysics a new discipline? The neopositivist argument. Physica A. 389(18), 3814-3821 (2010)spa
dc.relation.referencesY. Gingras and C.Schinckus, The institutionalization of econophysics in the shadow of physics. Journal of the History of Economic Thought. 34(1), 109-130 (2012)spa
dc.relation.referencesB. Maillet, T Michel An index of market shocks based on multiscale analysis. Quantitative Finance. 3(2), 88. (2003)spa
dc.relation.referencesJ.P. Bouchaud, A Johansen Stock market crashes, precursors and replicas. Journal de Physique. 6.1, 167-175 (1996)spa
dc.relation.referencesF. Lillo, R.N Mantegna Power-law relaxation in a complex system: Omori law after a financial market crash. Physical Review E. 68.1, 016119 (2003)spa
dc.relation.referencesP. Levy, Monthly Notices of the Royal Astronomical Society. Priestley and Weale. Vol.13 (1853)spa
dc.relation.referencesH.E. Hurst, Transactions of the American Society of Civil Engineers. Long term storage capacity of reservoirs. 770-799 (1951)spa
dc.relation.referencesM.M. Garcı́a and M. Ruiz, A permutation entropy based test for causality: the volume- tock price relation. Physica A. 398, 280-288 (2014)spa
dc.relation.referencesA. Goldberger S. Havlin F., Mosaic organization of DNA nucleotides. Physical review. 49.2, 1685 (1992)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembINDICES DE FUTUROS DE ACCIONESspa
dc.subject.lembStock index futureseng
dc.subject.lembANALISIS DE INVERSIONESspa
dc.subject.lembInvestment analysiseng
dc.subject.proposalEconofı́sicaspa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalLogretorno de preciosspa
dc.subject.proposalLogretorno de volúmenesspa
dc.subject.proposalDistribución de vuelos de Levyspa
dc.subject.proposalDistribución loglogisticspa
dc.subject.proposalCorrelaciónspa
dc.subject.proposalMercados bursátilesspa
dc.subject.proposalEconophysicseng
dc.subject.proposalTime serieseng
dc.subject.proposalPrice logreturneng
dc.subject.proposalVolume logreturneng
dc.subject.proposalLevy flight distributioneng
dc.subject.proposalLoglogistic distributioneng
dc.subject.proposalCorrelationeng
dc.subject.proposalStock marketseng
dc.titleDependencia entre las series de tiempo de log-retorno de precio con las series de tiempo de log-retorno de volumen en mercados bursátilesspa
dc.title.translatedDependence between the time series of logreturn of price with the time series of logreturn of volume in stock marketseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80902267.2023.pdf
Tamaño:
2.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: