Estudio de parámetros que controlan el desempeño catalítico en el reformado de etanol con vapor oxidativo (OSRE), empleando óxidos mixtos de Ni y Co

dc.contributor.advisorMolina Gallego, Rafael Alberto
dc.contributor.authorRodríguez Monroy, César Andrés
dc.contributor.cvlacRODRÍGUEZ MONROY, CÉSAR ANDRÉSspa
dc.contributor.googlescholarCésar Andrés Rodríguez Monroyspa
dc.contributor.orcidhttps://orcid.org/0000-0003-0876-2045spa
dc.contributor.researchgateCésar Andrés Rodríguezspa
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.contributor.scopus56257148300spa
dc.date.accessioned2025-04-21T20:03:11Z
dc.date.available2025-04-21T20:03:11Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstract“Estudio de parámetros que controlan el desempeño catalítico en el reformado de etanol con vapor oxidativo (OSRE), empleando óxidos mixtos de Ni y Co” es el título asignado a esta tesis, la cual hace parte del proceso de consolidación de la línea de investigación sobre el hidrógeno que ha venido desarrollando el grupo Estado Sólido y Catálisis Ambiental -ESCA- desde hace más de 12 años. En particular, como lo sugiere el título, la presente investigación definió como foco de atención el estudio de diferentes parámetros que controlan las principales propiedades de un catalizador con las cuales se pretende gobernar el desempeño catalítico en la reacción de reformado de etanol con vapor oxidativo (OSRE). Con ese alcance, se investigó la implementación de fases activas de Ni y/o Co, la interacción metal-matriz oxídica, el uso de promotores redox y la estructuración del mejor catalizador obtenido, así como el efecto del oxígeno en la reacción catalítica para, finalmente, establecer las posibles correlaciones de las diferentes propiedades del catalizador con su desempeño en el proceso OSRE. Lo anterior implicó ajustes en distintas técnicas de caracterización incluyendo, entre otras, el diseño, montaje y puesta en funcionamiento de una configuración que permitiera el seguimiento operando por espectroscopía infrarroja en reflectancia difusa (DRIFT-MS) para comprender mejor los mecanismos de reacción y el papel específico de los diferentes sitios activos en los catalizadores. Esta aproximación permitió abordar la sinergia entre las propiedades redox, básicas y metálicas de los catalizadores para evaluar la producción de hidrógeno en el proceso. Los resultados permitieron establecer que los catalizadores corresponden a oxicarbonatos mixtos de NiCo obtenidos de hidrotalcitas en las cuales se modularon las diferentes propiedades optimizando la conversión completa de etanol (100 %) con la mayor producción de H2 (60 %) a 400 °C, ofreciendo una estabilidad de los sólidos promovidos con CePr durante 150 h. El mecanismo de la reacción bajo dichas condiciones fue estudiado. Finalmente, los resultados en su conjunto llevaron a plantear una aproximación a los procesos de estructuración en monolitos metálicos de FeCrAlloy que alcanzan un desempeño cercano al catalizador en polvo (texto tomado de la fuente).spa
dc.description.abstract“Study of parameters that control the catalytic performance in the oxidative steam reforming of ethanol (OSRE), using mixed oxides of Ni and Co” is the title assigned to this thesis, which is part of the consolidation process of the line of research on hydrogen that the Solid State and Environmental Catalysis group -ESCA- has been developing for more than 12 years. In particular, as the title suggests, the present research focuses on the study of different parameters that control the main properties of a catalyst with which it is intended to govern the catalytic performance in the ethanol reforming reaction with oxidative steam (OSRE). With this scope, the implementation of active phases of Ni and/or Co, metal-oxidic matrix interactions, use of redox promoters, structuring of the best catalyst obtained, and the effect of oxygen on the catalytic reaction were investigated. Finally, we established possible correlations between different properties of the catalyst and its performance in the OSRE process. The above involved adjustments in different characterization techniques, including among others, the design, assembly, and implementation of a configuration that would allow monitoring by diffuse reflectance infrared spectroscopy (DRIFT-MS) to better understand the reaction mechanisms and specific roles of the different active sites in the catalysts. This approach allowed us to address the synergy between the redox, basic, and metallic properties of the catalysts to study the production of hydrogen. The results allowed us to establish that the catalysts corresponded to mixed NiCo oxycarbonates obtained from hydrotalcites in which the different properties were modulated, optimizing the complete conversion of ethanol (100%) with the highest production of H2 (60%) at 400 °C, offering the stability of the solids promoted with CePr for 150 h. The reaction mechanisms were studied under these conditions. Finally, the results led to the proposal of an approach to the structuring processes in FeCrAlloy metal monoliths that achieves a performance close to that of the powder catalyst (texto tomado de la fuente).eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaCatálisis heterogénea y energíaspa
dc.format.extentxix, 55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88000
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesPutterill, H.C., Identifying Inefficiencies in the Food System: How to Feed 9.7 Billion People in 2050. 2023.spa
dc.relation.referencesZhang, L., et al., A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel, 2024. 355: p. 129455.spa
dc.relation.referencesWEF. Estos 4 países lideran la transición energética. 2024; Desaceleración de la transición energética:[Available from: https://es.weforum.org/agenda/2024/06/estos-4-paises-lideran-la-transicion-energetica/#:~:text=Los%20pa%C3%ADses%20en%20desarrollo%20que,%2C%20Tanzania%2C%20Zimbabue%20y%20Sud%C3%A1frica.spa
dc.relation.referencesChishti, M.Z., X. Xia, and E. Dogan, Understanding the effects of artificial intelligence on energy transition: The moderating role of Paris Agreement. Energy Economics, 2024. 131: p. 107388.spa
dc.relation.referencesData, E.Y.E., Ember-European Electricity Review (2022). Energy Institute-Statistical Review of World Energy (2023)–with major processing by Our World in Data, 2023.spa
dc.relation.referencesAnika, O.C., et al., Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 2022. 5: p. 100072.spa
dc.relation.referencesAdun, H., et al., Ambitious near-term decarbonization and direct air capture deployment in Latin America's net-zero goal. Energy for Sustainable Development, 2023. 77: p. 101338.spa
dc.relation.referencesKannah, R.Y., et al., Techno-economic assessment of various hydrogen production methods-A review. Bioresource Technology, 2020: p. 124175.spa
dc.relation.referencesVirah-Sawmy, D., F.J. Beck, and B. Sturmberg, Ignore variability, overestimate hydrogen production–Quantifying the effects of electrolyzer efficiency curves on hydrogen production from renewable energy sources. International Journal of Hydrogen Energy, 2024. 72: p. 49-59.spa
dc.relation.referencesMathew, M., Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy, 2022. 143: p. 104080.spa
dc.relation.referencesSadik-Zada, E.R., A. Gatto, and Y. Weißnicht, Back to the future: Revisiting the perspectives on nuclear fusion and juxtaposition to existing energy sources. Energy, 2023: p. 129150.spa
dc.relation.referencesGreluk, M., et al., Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel, 2016. 183: p. 518-530.spa
dc.relation.referencesHaneda, T., et al., Technological assessment of residential fuel cells using hydrogen supply systems for fuel cell vehicles. International Journal of Hydrogen Energy, 2017. 42(42): p. 26377-26388.spa
dc.relation.referencesMarchenko, O. and S. Solomin, The future energy: Hydrogen versus electricity. International Journal of Hydrogen Energy, 2015. 40(10): p. 3801-3805.spa
dc.relation.referencesSuleman, F., I. Dincer, and M. Agelin-Chaab, Environmental impact assessment and comparison of some hydrogen production options. International journal of hydrogen energy, 2015. 40(21): p. 6976-6987.spa
dc.relation.referencesKothari, R., D. Buddhi, and R. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews, 2008. 12(2): p. 553-563.spa
dc.relation.referencesMoharana, M.K., et al., Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges. Renewable and Sustainable Energy Reviews, 2011. 15(1): p. 524-533.spa
dc.relation.referencesNanda, S., et al., Insights on pathways for hydrogen generation from ethanol. Sustainable Energy & Fuels, 2017. 1(6): p. 1232-1245.spa
dc.relation.referencesSanchez, N., et al., Impact of bioethanol impurities on steam reforming for hydrogen production: A review. International Journal of Hydrogen Energy, 2020. 45(21): p. 11923-11942.spa
dc.relation.referencesRodríguez-Fontalvo, D., et al., Green hydrogen potential in tropical countries: The colombian case. International Journal of Hydrogen Energy, 2024. 54: p. 344-360.spa
dc.relation.referencesDamiri, A.P., et al., A Review of Alternative Processes for Green Hydrogen Production Focused on Generating Hydrogen from Biomass. Hydrogen, 2024. 5(2): p. 163-184.spa
dc.relation.referencesVarshney, R., Hydrogen Production from Biomass, in Climate Action and Hydrogen Economy: Technologies Shaping the Energy Transition. 2024, Springer. p. 161-174.spa
dc.relation.referencesCobo Ángel, M.I., et al., Recomendaciones para el desarrollo de la economía del hidrógeno en Colombia. 2022: p. 19-155.spa
dc.relation.referencesCifuentes, B., et al., Bioethanol steam reforming over monoliths washcoated with RhPt/CeO2–SiO2: The use of residual biomass to stably produce syngas. International Journal of Hydrogen Energy, 2021. 46(5): p. 4007-4018.spa
dc.relation.referencesQuevedo-Amador, R.A., et al., Application of waste biomass for the production of biofuels and catalysts: a review. Clean Technologies and Environmental Policy, 2024: p. 1-55.spa
dc.relation.referencesGallego, J., et al., Synthesis of MWCNTs and hydrogen from ethanol catalytic decomposition over a Ni/La2O3 catalyst produced by the reduction of LaNiO3. Applied Catalysis A: General, 2011. 397(1-2): p. 73-81.spa
dc.relation.referencesGallego, J., F. Mondragon, and C. Batiot-Dupeyrat, Simultaneous production of hydrogen and carbon nanostructured materials from ethanol over LaNiO3 and LaFeO3 perovskites as catalyst precursors. Applied Catalysis A: General, 2013. 450: p. 73-79.spa
dc.relation.referencesMuñoz, M., S. Moreno, and R. Molina, The effect of the absence of Ni, Co, and Ni–Co catalyst pretreatment on catalytic activity for hydrogen production via oxidative steam reforming of ethanol. International Journal of Hydrogen Energy, 2014. 39(19): p. 10074-10089.spa
dc.relation.referencesMuñoz, M., S. Moreno, and R. Molina, Promoter effect of Ce and Pr on the catalytic stability of the Ni-Co system for the oxidative steam reforming of ethanol. Applied Catalysis A: General, 2016. 526: p. 84-94.spa
dc.relation.referencesMuñoz, M., S. Moreno, and R. Molina, Oxidative steam reforming of ethanol (OSRE) over stable NiCo–MgAl catalysts by microwave or sonication assisted coprecipitation. International Journal of Hydrogen Energy, 2017. 42(17): p. 12284-12294.spa
dc.relation.referencesRodríguez, C., S. Moreno, and R. Molina, Oxygen mobility and its relationship with the oxidative steam reforming of ethanol (OSRE). Applied Surface Science, 2019. 485: p. 293-303.spa
dc.relation.referencesEspitia-Sibaja, M., et al., Effects of the cobalt content of catalysts prepared from hydrotalcites synthesized by ultrasound-assisted coprecipitation on hydrogen production by oxidative steam reforming of ethanol (OSRE). Fuel, 2017. 194: p. 7-16.spa
dc.relation.referencesFarhana, K., A.S.F. Mahamude, and K. Kadirgama, Comparing hydrogen fuel cost of production from various sources-a competitive analysis. Energy Conversion and Management, 2024. 302: p. 118088.spa
dc.relation.referencesSandrin, P., EU and Brazil in the international circuits of disavowal of the climate crisis. Climate Change in Regional Perspective, 2024: p. 169.spa
dc.relation.referencesGrimaldo Guerrero, J.W., et al., A review of history, production and storage of hydrogen. 2021.spa
dc.relation.referencesGuo, X., H. Zhu, and S. Zhang, Overview of electrolyser and hydrogen production power supply from industrial perspective. International Journal of Hydrogen Energy, 2023.spa
dc.relation.referencesPrinzhofer, A., C.S.T. Cissé, and A.B. Diallo, Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 2018. 43(42): p. 19315-19326.spa
dc.relation.referencesMaiga, O., et al., Trapping processes of large volumes of natural hydrogen in the subsurface: The emblematic case of the Bourakebougou H2 field in Mali. International Journal of Hydrogen Energy, 2024. 50: p. 640-647.spa
dc.relation.referencesWang, L., et al., The origin and occurrence of natural hydrogen. Energies, 2023. 16(5): p. 2400.spa
dc.relation.referencesCarrillo Ramirez, A., et al., Natural H2 Emissions in Colombian Ophiolites: First Findings. Geosciences, 2023. 13(12): p. 358.spa
dc.relation.referencesBlay-Roger, R., et al., Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas. Renewable and Sustainable Energy Reviews, 2024. 189: p. 113888.spa
dc.relation.referencesKumar, R., R. Singh, and S. Dutta, Review and Outlook of Hydrogen Production through Catalytic Processes. Energy & Fuels, 2024.spa
dc.relation.referencesGaudillere, C., et al., YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol. Applied Catalysis A: General, 2017. 538: p. 165-173.spa
dc.relation.referencesRuocco, C., et al., Experimental study of the oxidative steam reforming of fuel grade bioethanol over Pt–Ni metallic foam structured catalysts. International Journal of Hydrogen Energy, 2023. 48(32): p. 11943-11955.spa
dc.relation.referencesVelu, S., et al., Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production. Catalysis letters, 2002. 82(1-2): p. 145-152.spa
dc.relation.referencesVelu, S., et al., In situ XPS investigations of Cu1−xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental, 2005. 55(4): p. 287-299.spa
dc.relation.referencesFang, W., et al., Steam reforming and oxidative steam reforming for hydrogen production from bioethanol over Mg2AlNiXHZOY nano-oxyhydride catalysts. International Journal of Hydrogen Energy, 2018. 43(37): p. 17643-17655.spa
dc.relation.referencesBraga, A.H., et al., Effects of Co addition to supported Ni catalysts on hydrogen production from oxidative steam reforming of ethanol. Energy & Fuels, 2018. 32(12): p. 12814-12825.spa
dc.relation.referencesSharma, A., et al., Layered double hydroxides: an insight into the role of hydrotalcite-type anionic clays in energy and environmental applications with current progress and recent prospects. Materials Today Sustainability, 2023. 22: p. 100399.spa
dc.relation.referencesWurzler, G.T., et al., Steam reforming of ethanol for hydrogen production over MgO—supported Ni-based catalysts. Applied Catalysis A: General, 2016. 518: p. 115-128.spa
dc.relation.referencesBraga, A.H., et al., Effects of Co Addition to Supported Ni Catalysts on Hydrogen Production from Oxidative Steam Reforming of Ethanol. Energy & Fuels, 2018. 32(12): p. 12814-12825.spa
dc.relation.referencesForano, C., et al., Layered double hydroxides (LDH), in Developments in clay science. 2013, Elsevier. p. 745-782.spa
dc.relation.referencesKwon, D., et al., Tuning the base properties of Mg–Al hydrotalcite catalysts using their memory effect. Journal of Energy Chemistry, 2020. 46: p. 229-236.spa
dc.relation.referencesDaza, C.E., et al., CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides. Catalysis Today, 2008. 133: p. 357-366.spa
dc.relation.referencesOsorio–Zabala, M.A., E.A. Baquero, and C. Daza, Dry reforming of methane using cordierite monoliths with immobilized Ni–Ce catalysts. International Journal of Hydrogen Energy, 2024. 60: p. 1157-1169.spa
dc.relation.referencesDaza, C.E., S. Moreno, and R. Molina, Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane. international journal of hydrogen energy, 2011. 36(6): p. 3886-3894.spa
dc.relation.referencesCastaño, M.H., R. Molina, and S. Moreno, Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: Influence of the synthesis method. Applied Catalysis A: General, 2015. 492: p. 48-59.spa
dc.relation.referencesAguilera, D.A., et al., Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Applied Catalysis B: Environmental, 2011. 104(1-2): p. 144-150.spa
dc.relation.referencesPérez, A., et al., Catalytic activity of Co–Mg mixed oxides in the VOC oxidation: Effects of ultrasonic assisted in the synthesis. Catalysis Today, 2011. 176(1): p. 286-291.spa
dc.relation.referencesDaza, C.E., et al., High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel, 2010. 89(3): p. 592-603.spa
dc.relation.referencesMontañez, M.K., R. Molina, and S. Moreno, Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production. International Journal of Hydrogen Energy, 2014. 39(16): p. 8225-8237.spa
dc.relation.referencesAguilera, D., et al., Mn, Mn-Cu and Mn-Co mixed oxides as catalysts synthesized from hydrotalcite type precursors for the total oxidation of ethanol, in Studies in Surface Science and Catalysis. 2010, Elsevier. p. 513-516.spa
dc.relation.referencesMuñoz, M., S. Moreno, and R. Molina, Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method. International Journal of Hydrogen Energy, 2012. 37(24): p. 18827-18842.spa
dc.relation.referencesMuñoz, M., S. Moreno, and R. Molina, Promoting effect of Ce and Pr in Co catalysts for hydrogen production via oxidative steam reforming of ethanol. Catalysis Today, 2013. 213: p. 33-41.spa
dc.relation.referencesPérez, A., et al., Cooperative effect of Ce and Pr in the catalytic combustion of ethanol in mixed Cu/CoMgAl oxides obtained from hydrotalcites. Applied Catalysis A: General, 2011. 408(1-2): p. 96-104.spa
dc.relation.referencesSecond, C.R., et al., Handbook of heterogeneous catalysis. 2008.spa
dc.relation.referencesZhao, X. and G. Lu, Improving catalytic activity and stability by in-situ regeneration of Ni-based catalyst for hydrogen production from ethanol steam reforming via controlling of active species dispersion. International Journal of Hydrogen Energy, 2016. 41(32): p. 13993-14002.spa
dc.relation.referencesDuan, X. and D.G. Evans, Layered double hydroxides. Vol. 119. 2006: Springer Science & Business Media.spa
dc.relation.referencesJiang, T., et al., Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties. Applied Surface Science, 2016. 385: p. 88-98.spa
dc.relation.referencesFukushima, J. and H. Takizawa, Enhanced reduction of copper oxides via internal heating, selective heating, and cleavage of Cu–O bond by microwave magnetic-field irradiation. Materials Chemistry and Physics, 2016. 172: p. 47-53.spa
dc.relation.referencesMirzaei, A. and G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sensors and Actuators B: Chemical, 2016. 237: p. 749-775.spa
dc.relation.referencesWachs, I.E. and M.A. Bañares, Springer Handbook of Advanced Catalyst Characterization. 2023: Springer Nature.spa
dc.relation.referencesDavydov, A.A. and N. Sheppard, Molecular spectroscopy of oxide catalyst surfaces. Vol. 690. 2003: Wiley Chichester.spa
dc.relation.referencesGameel, K., First principles insights on CO adsorption on metal surfaces. 2019.spa
dc.relation.referencesMojet, B.L., S.D. Ebbesen, and L. Lefferts, Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chemical Society Reviews, 2010. 39(12): p. 4643-4655.spa
dc.relation.referencesPoncelet, G., M. Centeno, and R. Molina, Characterization of reduced α-alumina-supported nickel catalysts by spectroscopic and chemisorption measurements. Applied Catalysis A: General, 2005. 288(1-2): p. 232-242.spa
dc.relation.referencesDouaihy, R.Z., et al., Impact of the Si/Al ratio on the ethanol/water coadsorption on MFI zeolites revealed using original quantitative IR approaches. Physical Chemistry Chemical Physics, 2023. 25(16): p. 11555-11565.spa
dc.relation.referencesBazin, P., A. Alenda, and F. Thibault-Starzyk, Interaction of water and ammonium in NaHY zeolite as detected by combined IR and gravimetric analysis (AGIR). Dalton Transactions, 2010. 39(36): p. 8432-8436.spa
dc.relation.referencesStelmachowski, P., et al., Speciation of adsorbed CO2 on metal oxides by a new 2-dimensional approach: 2D infrared inversion spectroscopy (2D IRIS). Physical Chemistry Chemical Physics, 2013. 15(23): p. 9335-9342.spa
dc.relation.referencesGreco, F.A., On catalysis and equilibrium. Journal of Chemical Education, 1986. 63(5): p. 382.spa
dc.relation.referencesParmon, V., Catalysis and non-equilibrium thermodynamics: modern in situ studies and new theoretical approaches. Catalysis Today, 1999. 51(3-4): p. 435-456.spa
dc.relation.referencesMoraes, T.S., et al., Steam reforming of ethanol on Rh/SiCeO2 washcoated monolith catalyst: Stable catalyst performance. International Journal of Hydrogen Energy, 2018. 43(1): p. 115-126.spa
dc.relation.referencesPio, G., et al., Detailed kinetic mechanism for the hydrogen production via the oxidative reforming of ethanol. Chemical Engineering Science, 2021. 237: p. 116591.spa
dc.relation.referencesCifuentes, B., et al., Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si: Ce ratio on the catalyst performance. Applied Catalysis A: General, 2016. 523: p. 283-293.spa
dc.relation.referencesPeltzer, D., et al., Study of K-Li2ZrO3 based sorbents as potential precursors of hybrid materials for the sorption enhanced steam reforming of ethanol. Molecular Catalysis, 2024. 565: p. 114357.spa
dc.relation.referencesda Silva, A.M., et al., The effect of space time on Co/CeO2 catalyst deactivation during oxidative steam reforming of ethanol. Catalysis Communications, 2010. 11(8): p. 736-740.spa
dc.relation.referencesMondal, T., K.K. Pant, and A.K. Dalai, Mechanistic kinetic modeling of oxidative steam reforming of bioethanol for hydrogen production over Rh–Ni/CeO2–ZrO2 catalyst. Industrial & Engineering Chemistry Research, 2016. 55(1): p. 86-98.spa
dc.relation.referencesCai, W., et al., Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyst. Catalysis Communications, 2007. 8(11): p. 1588-1594.spa
dc.relation.referencesHou, T., et al., Hydrogen production from oxidative steam reforming of ethanol over Ir/CeO2 catalysts in a micro-channel reactor. Chemical Engineering Journal, 2014. 255: p. 149-155.spa
dc.relation.referencesKugai, J., S. Velu, and C. Song, Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters, 2005. 101(3-4): p. 255-264.spa
dc.relation.referencesPortela, R., et al., Engineering operando methodology: Understanding catalysis in time and space. Frontiers of Chemical Science and Engineering, 2018. 12: p. 509-536.spa
dc.relation.referencesMitchell, S., N.-L. Michels, and J. Pérez-Ramírez, From powder to technical body: the undervalued science of catalyst scale up. Chemical Society Reviews, 2013. 42(14): p. 6094-6112.spa
dc.relation.referencesHagen, J., Catalyst shapes and production of heterogeneous catalysts. Ind. Catal, 2015: p. 211-238.spa
dc.relation.referencesPauletto, G., et al., FeCrAl as a catalyst support. Chemical Reviews, 2020. 120(15): p. 7516-7550.spa
dc.relation.referencesMurzin, D.Y., Engineering catalysis. 2020: Walter de Gruyter GmbH & Co KG.spa
dc.relation.referencesVega, G., et al., 3D honeycomb monoliths with interconnected channels for the sustainable production of dihydroxybenzenes: towards the intensification of selective oxidation processes. Chemical Engineering and Processing-Process Intensification, 2021. 165: p. 108437.spa
dc.relation.referencesPérez-Cadenas, A.F., F. Kapteijn, and J.A. Moulijn, Tuning the morphology of monolith coatings. Applied Catalysis A: General, 2007. 319: p. 267-271.spa
dc.relation.referencesBaena-Moreno, F.M., et al., Stepping toward efficient microreactors for CO2 methanation: 3D-printed gyroid geometry. ACS Sustainable Chemistry & Engineering, 2021. 9(24): p. 8198-8206.spa
dc.relation.referencesMartínez, L., et al., Deposition of Al-Fe pillared bentonites and gold supported Al-Fe pillared bentonites on metallic monoliths for catalytic oxidation reactions. Applied Catalysis A: General, 2009. 364(1-2): p. 166-173.spa
dc.relation.referencesMartínez Tejada, L.M., et al., Au/CeO2 metallic monolith catalysts: influence of the metallic substrate. Gold Bulletin, 2013. 46: p. 221-231.spa
dc.relation.referencesGarcía-Moncada, N., et al., Enhanced catalytic activity and stability of nanoshaped Ni/CeO2 for CO2 methanation in micro-monoliths. Catalysis Today, 2022. 383: p. 205-215.spa
dc.relation.referencesSanz, O., et al., AISI 304 Austenitic stainless steels monoliths for catalytic applications. Chemical Engineering Journal, 2009. 148(1): p. 191-200.spa
dc.relation.referencesRodríguez, C., S. Moreno, and R. Molina, Operando DRIFT-MS study of oxidative steam reforming of ethanol (OSRE) on Ni-Co mixed oxides under non-equilibrium conditions. Chemical Engineering Journal, 2023. 480: p. 148243.spa
dc.relation.referencesAzancot, L., et al., Influence of the preparation method in the metal-support interaction and reducibility of Ni-Mg-Al based catalysts for methane steam reforming. International Journal of Hydrogen Energy, 2019. 44(36): p. 19827-19840.spa
dc.relation.referencesPérez-Ramırez, J., G. Mul, and J. Moulijn, In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites. Vibrational Spectroscopy, 2001. 27(1): p. 75-88.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembHidrógenospa
dc.subject.lembInhibidores químicosspa
dc.subject.lembCatalizadoresspa
dc.subject.proposalOSRE-H2spa
dc.subject.proposalOperando DRIFT-MSspa
dc.subject.proposalOxicarbonatos mixtosspa
dc.subject.proposalHidrotalcitasspa
dc.subject.proposalNiCospa
dc.subject.proposalNiCo-CePrspa
dc.titleEstudio de parámetros que controlan el desempeño catalítico en el reformado de etanol con vapor oxidativo (OSRE), empleando óxidos mixtos de Ni y Cospa
dc.title.translatedStudy of parameters that control the catalytic performance in the oxidative steam reforming of ethanol (OSRE), using mixed oxides of Ni and Coeng
dc.title.translatedÉtude des paramètres qui contrôlent les performances catalytiques dans le reformage oxydatif à la vapeur de l'éthanol (OSRE), en utilisant des oxydes mixtes de Ni et de Cofra
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyectos de investigación con código Hermes 48486, 50171, y 51233spa
oaire.fundernameConsejo de Facultad de Ciencias de la Universidad Nacional de Colombia.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019072429.2024.pdf
Tamaño:
54.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: