Uso de la técnica del plano de Lund para la identificación de partículas en el experímento ATLAS del LHC

dc.contributor.advisorSandoval Usme, Carlos Eduardo
dc.contributor.authorVinasco Soler, Rafael Andrei
dc.contributor.researchgroupGrupo de Partículas Fenyx-Unspa
dc.date.accessioned2024-02-01T16:13:37Z
dc.date.available2024-02-01T16:13:37Z
dc.date.issued2023-07-28
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractSe estudia el uso de las variables del Plano de Lund como entradas para algoritmos de aprendizaje automático basados en Graph neural Networks (GNN) para la identificación de jets provenientes de bosones W y bosones de Higgs con alto momento transverso en el experimento del ATLAS. Se realizó el análisis por separado para bosones W y para bosones de Higgs. Para bosones W se probaron 5 diferentes arquitecturas de GNN, además para la arquitectura con mejor comportamiento se estudia la inclusión de una red adversaria con el propósito de obtener un identificador de partículas no dependiente de la masa. Para el bosón de Higgs se realizaron los estudios con el propósito de detectar únicamente el canal de decaimiento H a bb, para este caso 2 arquitecturas fueron estudiadas, una siendo un modelo basado únicamente en GNN que usa variables del plano de Lund y otra un modelo mixto que usa las variables del plano de Lund y además el puntaje del identificador actualmente usado en el experimento del ATLAS. Se obtuvo como resultado para los identificadores de bosones W que 4 de ellos tienen un rechazo de jets no deseados mayor a los identificadores encontrados en la literatura actualmente usados, además para el clasificador entrenado junto a una red adversaria se obtuvo una excelente decorrelación además de mantener un rechazo de eventos no deseados de más del doble en comparación al tagger decorrelacionado de la masa reportado en la literatura. Para el caso de identificación de bosones de Higgs se encontró un pobre rendimiento del algoritmo que únicamente usa las variables del Plano de Lund, pero para el algoritmo mixto se obtiene una mejora de alrededor de un orden de magnitud en el rechazo de los jets no deseados. Para el clasificador mixto entrenado junto a una red adversaria se obtuvo una decorrelación buena con un rechazo de jets de no deseados 3 veces mayor al tagger actualmente usado reportado.spa
dc.description.abstractThe use of the Lund Plane variables as inputs for machine learning algorithms based on Graph neural Networks (GNN) for the identification of jets coming from W bosons and Higgs bosons with high transverse moment in the ATLAS experiment is studied. The analisis was performed separately for W bosons and for Higgs bosons. For W bosons, 5 different GNN architectures were tested, for the architecture with the best rejection of unwanted jets the inclusion of an adversarial network during the training is studied, in order to obtain a tagger that does not depend on mass. For the Higgs boson, the studies are done with the purpose of tag only the decay channel H to bb, for this case 2 architectures were studied, one being a model based on GNN that uses variables of the Lund plane and the other proposed is a mixed model that uses the Lund plane variables and also the score of the tagger currently used in the ATLAS experiment. It was obtained for the W boson taggers that 4 of the taggers proposed have a greater rejection of unwanted jets than the currently taggers used found in the literature. In addition, the tagger trained together with an adversarial network obtain an excellent decorrelation with a rejection of unwanted jets of more tan double compared to the mass decorrelated taggers reported in the literature. For the case of Higgs boson identification, a poor performance of the algorithm that only uses the variables of the Lund Plane was found compared to current tagger, but for the mixed algorithm an improvement of around an order of magnitude is obtained in the rejection of unwanted jets. For the classifier trained together with an adversarial network a good decorrelation is obtained, with a rejection of unwanted jets 3 times higher than the currently used tagger reported.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentxi, 110 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85588
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesC. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental test of parity conservation in beta decay. Phys. Rev., 105:1413–1415, Feb 1957.spa
dc.relation.referencesC´assio Leite Vieira and Antonio Augusto Passos Videira. Carried by history: Cesar lattes, nuclear emulsions, and the discovery of the pi-meson. Physics in Perspective, 16(1):3–36, 2014.spa
dc.relation.referencesF. Abe, H. Akimoto, A. Akopian, M. G. Albrow, S. R. Amendolia, D. Amidei, J. Antos, C. Anway-Wiese, S. Aota, G. Apollinari, and et al. Observation of top quark production inppcollisions with the collider detector at fermilab. Physical Review Letters, 74(14):2626–2631, Apr 1995.spa
dc.relation.referencesAtlas Collaboration et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. arXiv preprint arXiv:1207.7214, 2012.spa
dc.relation.referencesJ Bendavid, F Caola, V Ciulli, R Harlander, G Heinrich, J Huston, S Kallweit, S Prestel, E Re, K Tackmann, et al. Les houches 2017: physics at tev colliders standard model working group report. arXiv preprint arXiv:1803.07977, 2018.spa
dc.relation.referencesEric Moreno, Olmo Cerri, Javier Duarte, Harvey Newman, Thong Nguyen, Avikar Periwal, Maurizio Pierini, Aidana Serikova, Maria Spiropulu, and Jean-Roch Vlimant. Jedi-net: a jet identification algorithm based on interaction networks. The European Physical Journal C, 80, 01 2020.spa
dc.relation.referencesAgni Bethani, Alexander Bitadze, Jonathan Crane, Cinzia Da Via, Nicholas Dann, Sam Dysch, Alessandra Forti, Emily Hanson, James Howarth, David Lack, et al. Performance of top-quark and ww-boson tagging with atlas in run 2 of the lhc. The Journal of High Energy Physics, 2019.spa
dc.relation.referencesBo Andersson, Gosta Gustafson, Leif Lonnblad, and Ulf Pettersson. Coherence efects in deep inelastic scattering. Zeitschrift fur Physik C Particles and Fields, 43(4):625–632, 1989.spa
dc.relation.referencesFrédéric A Dreyer, Gavin P Salam, and Grégory Soyez. The lund jet plane. Journal of High Energy Physics, 2018(12):1–42, 2018.spa
dc.relation.referencesF. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.spa
dc.relation.referencesMatthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric, 5 2019.spa
dc.relation.referencesSepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.spa
dc.relation.referencesATLAS PUB Note. Identification of hadronically-decaying w bosons and top quarks using high-level features as input to boosted decision trees and deep neural networks in atlas at. 2017.spa
dc.relation.referencesAtlas fact sheets. https://atlas.cern/Resources/Fact-sheets Accessed: 2022-09-07.spa
dc.relation.referencesGeorges Aad, E Abat, Jasmin Abdallah, AA Abdelalim, Abdelmalek Abdesselam, BA Abi, M Abolins, H Abramowicz, E Acerbi, BS Acharya, et al. The atlas experiment at the cern large hadron collider. Journal of instrumentation, 3(S08003), 2008.spa
dc.relation.referencesFrancesca Pastore, Atlas Collaboration, et al. Atlas run-2 status and performance. Nuclear and Particle Physics Proceedings, 270:3–7, 2016.spa
dc.relation.referencesYosuke Takubo. Atlas ibl operational experience. Technical report, ATL-COM-INDET- 2016-085, 2016.spa
dc.relation.referencesAlessandro La Rosa, on behalf of ATLAS collaboration, et al. The atlas insertable b-layer: from construction to operation. Journal of Instrumentation, 11(12):C12036, 2016.spa
dc.relation.referencesGeorges Aad, Tatevik Abajyan, Brad Abbott, Jalal Abdallah, S Abdel Khalek, AA Abdelalim, R Aben, B Abi, M Abolins, OS AbouZeid, et al. Improved luminosity determination in pp collisions at ps = 7 TeV using the atlas detector at the lhc. The European Physical Journal C, 73(8):1–39, 2013.spa
dc.relation.referencesC Goessling, R Klingenberg, D Muenstermann, A Rummler, G Troska, and T Wittig. Planar n+-in-n silicon pixel sensors for the atlas ibl upgrade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 650(1):198–201, 2011.spa
dc.relation.referencesCinzia Da Via, Maurizio Boscardin, Gian-Franco Dalla Betta, Giovanni Darbo, Celeste Fleta, Claudia Gemme, Philippe Grenier, Sebastian Grinstein, Thor-Erik Hansen, Jasmine Hasi, et al. 3d silicon sensors: Design, large area production and quality assurance for the atlas ibl pixel detector upgrade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 694:321–330, 2012.spa
dc.relation.referencesWerner Herr and Bruno Muratori. Concept of luminosity. 2006.spa
dc.relation.referencesATLAS Collaboration. luminosity public results run 2. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2. Accessed: 2022-10-05.spa
dc.relation.referencesMichael E Peskin. An introduction to quantum field theory. CRC press, 2018.spa
dc.relation.referencesGeorges Aad, B Abbott, J Abdallah, R Aben, M Abolins, OS AbouZeid, H Abramowicz, H Abreu, R Abreu, Y Abulaiti, et al. Constraints on new phenomena via higgs boson couplings and invisible decays with the atlas detector. Journal of High Energy Physics, 2015(11):1–52, 2015.spa
dc.relation.referencesStefano Giagu. Wimp dark matter searches with the atlas detector at the lhc. Frontiers in Physics, 7:75, 2019.spa
dc.relation.referencesR Keith Ellis, W James Stirling, and Bryan R Webber. QCD and collider physics. Cambridge university press, 2003.spa
dc.relation.referencesPeter Skands. Introduction to qcd. In Searching for New Physics at Small and Large Scales: TASI 2012, pages 341–420. World Scientific, 2013.spa
dc.relation.referencesMasaharu Tanabashi, K Hagiwara, K Hikasa, Katsumasa Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, Claude Amsler, et al. Review of particle physics. Physical Review D, 98(3):030001, 2018.spa
dc.relation.referencesW. N. Cottingham and D. A. Greenwood. An Introduction to the Standard Model of Particle Physics. Cambridge University Press, 2 edition, 2007.spa
dc.relation.referencesJohan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. Madgraph 5: going beyond. Journal of High Energy Physics, 2011(6):1–40, 2011.spa
dc.relation.referencesAlexander Pukhov. Calchep 2.3: Mssm, structure functions, event generation, batchs, and generation of matrix elements for other packages. arXiv preprint hep-ph/0412191, 2004.spa
dc.relation.referencesEdward Boos, V Bunichev, M Dubinin, L Dudko, V Edneral, V Ilyin, A Kryukov, V Savrin, A Semenov, and A Sherstnev. Comphep 4.4—automatic computations from lagrangians to events. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 534(1-2):250–259, 2004.spa
dc.relation.referencesChristian Bierlich, Smita Chakraborty, Nishita Desai, Leif Gellersen, Ilkka Helenius, Philip Ilten, Leif Lonnblad, Stephen Mrenna, Stefan Prestel, Christian T Preuss, et al. A comprehensive guide to the physics and usage of pythia 8.3. arXiv preprint arXiv:2203.11601, 2022.spa
dc.relation.referencesGuido Altarelli and Giorgio Parisi. Asymptotic freedom in parton language. Nuclear Physics B, 126(2):298–318, 1977.spa
dc.relation.referencesD Mason, J Brau, RB Drucker, R Frey, P Spentzouris, J Conrad, BT Fleming, J Formaggio, JH Kim, S Koutsoliotas, et al. Measurement of the nucleon strange-antistrange asymmetry at next-to-leading order in qcd from nutev dimuon data. Physical review letters, 99(19):192001, 2007.spa
dc.relation.referencesSergey Alekhin, Kirill Melnikov, and Frank Petriello. Fixed target drell-yan data and nnlo qcd fits of parton distribution functions. Physical Review D, 74(5):054033, 2006.spa
dc.relation.referencesSergey Alekhin, Simone Alioli, Richard D Ball, Valerio Bertone, Johannes Blumlein, Michiel Botje, Jon Butterworth, Francesco Cerutti, Amanda Cooper-Sarkar, Albert de Roeck, et al. The pdf4lhc working group interim report. arXiv preprint arXiv:1101.0536, 2011.spa
dc.relation.referencesTorbjörn Sjöstrand. A model for initial state parton showers. Physics Letters B, 157(4):321–325, 1985.spa
dc.relation.referencesLeif Lönnblad. Ariadne version 4—a program for simulation of qdc cascades implementing the colour dipole model. Computer Physics Communications, 71(1-2):15–31, 1992.spa
dc.relation.referencesGösta Gustafson and Ulf Pettersson. Dipole formulation of qcd cascades. Nuclear Physics B, 306(4):746–758, 1988.spa
dc.relation.referencesStefan Höche and Stefan Prestel. The midpoint between dipole and parton showers. The European Physical Journal C, 75(9):1–18, 2015.spa
dc.relation.referencesBo Andersson, Gösta Gustafson, and B Söderberg. A general model for jet fragmentation. Zeitschrift fur Physik C Particles and Fields, 20(4):317–329, 1983.spa
dc.relation.referencesG Gorcella et al. Herwig 6.5: an event generator for hadron emmission reactions with interfering gluons (including supersymmetric processes). JHEP, 101:010, 2001.spa
dc.relation.referencesBryan R Webber. A qcd model for jet fragmentation including soft gluon interference. Nuclear Physics B, 238(3):492–528, 1984.spa
dc.relation.referencesMorad Aaboud, G Aad, B Abbott, J Abdallah, Baptiste Abeloos, Syed Haide Abidi, OS AbouZeid, NL Abraham, Halina Abramowicz, Henso Abreu, et al. Jet reconstruction and performance using particle flow with the atlas detector. The European Physical Journal C, 77(7):1–47, 2017.spa
dc.relation.referencesATLAS collaboration et al. Improving jet substructure performance in atlas using track-caloclusters. Technical report, ATL-PHYS-PUB-2017-015, 2017.spa
dc.relation.referencesGeorges Aad, Brad Abbott, Dale Charles Abbott, A Abed Abud, Kira Abeling, Deshan Kavishka Abhayasinghe, Syed Haider Abidi, OS AbouZeid, NL Abraham, Halina Abramowicz, et al. Optimisation of large-radius jet reconstruction for the atlas detector in 13 tev proton–proton collisions. The European Physical Journal C, 81(4):1–47, 2021.spa
dc.relation.referencesGavin P Salam. Towards jetography. The European Physical Journal C, 67(3):637–686, 2010.spa
dc.relation.referencesG Arnison, A Astbury, B Aubert, C Bacci, G Bauer, A Bezaguet, RK Bock, TJV Bowcock, M Calvetti, T Carroll, et al. Hadronic jet production at the cern protonantiproton collider. Physics Letters B, 132(1-3):214–222, 1983.spa
dc.relation.referencesGavin P Salam and Gregory Soyez. A practical seedless infrared-safe cone jet algorithm. Journal of High Energy Physics, 2007(05):086, 2007.spa
dc.relation.referencesStefano Catani, Yu L Dokshitzer, Michael H Seymour, and Bryan R Webber. Longitudinally-invariant k-clustering algorithms for hadron-hadron collisions. Nuclear Physics B, 406(1-2):187–224, 1993.spa
dc.relation.referencesMatteo Cacciari, Gavin P Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. Journal of High Energy Physics, 2008(04):063, 2008.spa
dc.relation.referencesMarkus Wobisch and Thorsten Wengler. Hadronization corrections to jet cross sections in deep-inelastic scattering. arXiv preprint hep-ph/9907280, 1999.spa
dc.relation.referencesIan Moult, Lina Necib, and Jesse Thaler. New angles on energy correlation functions. Journal of High Energy Physics, 2016(12):1–72, 2016.spa
dc.relation.referencesAndrew J Larkoski, Simone Marzani, Gregory Soyez, and Jesse Thaler. Soft drop. Journal of High Energy Physics, 2014(5):1–46, 2014.spa
dc.relation.referencesATLAS Collaboration et al. Performance of w/z taggers using ufo jets in atlas, 2021.spa
dc.relation.referencesAgni Bethani, Alexander Bitadze, Jonathan Crane, Cinzia Da Via, Nicholas Dann, Sam Dysch, Alessandra Forti, Emily Hanson, James Howarth, David Lack, Ivan Lopez Paz, Jiri Masik, Stephen Menary, Francisca Munoz Sanchez, Alexander Oh, Joleen Pater, Yvonne Peters, Rebecca Pickles, Andrew Pilkington, Darren Price, Yang Qin, Jacob Rawling, Nicolas Scharmberg, Savanna Shaw, and Terence Wyatt. Performance of topquark and ww -boson tagging with atlas in run 2 of the lhc. The Journal of High Energy Physics, 2019.spa
dc.relation.referencesAtlas Collaboration et al. Performance of mass-decorrelated jet substructure observables for hadronic two-body decay tagging in atlas. Technical report, ATL-PHYS-PUB-2018- 014, 2018.spa
dc.relation.referencesJesse Thaler and Ken Van Tilburg. Identifying boosted objects with n-subjettiness. Journal of High Energy Physics, 2011(3):1–28, 2011.spa
dc.relation.referencesGeoffrey C Fox and Stephen Wolfram. Observables for the analysis of event shapes in e+ e- annihilation and other processes. Physical Review Letters, 41(23):1581, 1978.spa
dc.relation.referencesLeandro G Almeida, Seung J Lee, Gilad Perez, Ilmo Sung, and Joseph Virzi. Top quark jets at the lhc. Physical Review D, 79(7):074012, 2009.spa
dc.relation.referencesGeorges Aad, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, B Abi, M Abolins, OS AbouZeid, H Abramowicz, H Abreu, et al. Atlas measurements of the properties of jets for boosted particle searches. Physical Review D, 86(7):072006, 2012.spa
dc.relation.referencesChunhui Chen. New approach to identifying boosted hadronically decaying particles using jet substructure in its center-of-mass frame. Physical Review D, 85(3):034007, 2012.spa
dc.relation.referencesGeorges Aad, Tatevik Abajyan, Brad Abbott, Jalal Abdallah, S Abdel Khalek, AA Abdelalim, R Aben, B Abi, M Abolins, OS AbouZeid, et al. Measurement of k t splitting scales in w ! lw events at ps = 7TeV with the atlas detector. The European Physical Journal C, 73(5):1–30, 2013.spa
dc.relation.referencesIan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.spa
dc.relation.referencesChristopher M Bishop. Mixture density networks. 1994.spa
dc.relation.referencesATLAS Collaboration et al. Identification of boosted higgs bosons decaying into bb with neural networks and variable radius subjets in atlas, 2020.spa
dc.relation.referencesFrancesco Armando Di Bello. Optimisation of the atlas b-tagging algorithms for the 2017-2018 lhc data-taking. Technical report, ATL-COM-PHYS-2017-1472, 2017.spa
dc.relation.referencesFrédéric A Dreyer and Huilin Qu. Jet tagging in the lund plane with graph networks. Journal of High Energy Physics, 2021(3):1–23, 2021.spa
dc.relation.referencesDiederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.spa
dc.relation.referencesYurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o (1/k 2). In Doklady an ussr, volume 269, pages 543–547, 1983.spa
dc.relation.referencesKeyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.spa
dc.relation.referencesMichael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.spa
dc.relation.referencesYue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.spa
dc.relation.referencesGilles Louppe, Michael Kagan, and Kyle Cranmer. Learning to pivot with adversarial networks. Advances in neural information processing systems, 30, 2017.spa
dc.relation.referencesYaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In International conference on machine learning, pages 1180–1189. PMLR, 2015.spa
dc.relation.referencesSolomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.spa
dc.relation.referencesAtlas Collaboration et al. Measurement of the lund jet plane using charged particles in 13 tev proton-proton collisions with the atlas detector. arXiv preprint arXiv:2004.03540, 2020.spa
dc.relation.referencesPetar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.spa
dc.relation.referencesJesse Thaler and Lian-Tao Wang. Strategies to identify boosted tops. Journal of High Energy Physics, 2008(07):092, jul 2008.spa
dc.relation.referencesEnrico Bothmann, Gurpreet Singh Chahal, Stefan Hoche, Johannes Krause, Frank Krauss, Silvan Kuttimalai, Sebastian Liebschner, Davide Napoletano, Marek Schonherr, Holger Schulz, Stefen Schumann, and Frank Siegert. Event generation with Sherpa 2.2. SciPost Phys., 7:034, 2019.spa
dc.relation.referencesJ-C Winter, Frank Krauss, and Gerhard Sof. A modified cluster-hadronisation model. The European Physical Journal C-Particles and Fields, 36:381–395, 2004.spa
dc.relation.referencesB. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand. Parton fragmentation and string dynamics. Physics Reports, 97(2):31–145, 1983.spa
dc.relation.referencesTorbjorn Sjostrand. Jet fragmentation of multiparton configurations in a string framework. Nuclear Physics B, 248(2):469–502, 1984.spa
dc.relation.referencesJohannes Bellm, Stefan Gieseke, David Grellscheid, Simon Platzer, Michael Rauch, Christian Reuschle, Peter Richardson, Peter Schichtel, Michael H Seymour, Andrzej Si´odmok, et al. Herwig 7.0/herwig++ 3.0 release note. The European Physical Journal C, 76:1–8, 2016.spa
dc.relation.referencesManuel Bahr, Stefan Gieseke, Martyn A Gigg, David Grellscheid, Keith Hamilton, Oluseyi Latunde-Dada, Simon Platzer, Peter Richardson, Michael H Seymour, Alexander Sherstnev, et al. Herwig++ physics and manual. The European Physical Journal C, 58:639–707, 2008.spa
dc.relation.referencesLucian A Harland-Lang, AD Martin, P Motylinski, and RS Thorne. Parton distributions in the lhc era: Mmht 2014 pdfs. The European Physical Journal C, 75(5):204, 2015.spa
dc.relation.referencesTagging boosted W bosons applying machine learning to the Lund Jet Plane. Technical report, CERN, Geneva, 2023. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATLPHYS- PUB-2023-017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalW-taggingeng
dc.subject.proposalLund Jet planeeng
dc.subject.proposalMachine learningeng
dc.subject.proposalIdentificación bosones Wspa
dc.subject.proposalPlano de Lundspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.wikidataHiggs boson
dc.subject.wikidatabosón de Higgs
dc.subject.wikidataW boson
dc.subject.wikidatabosón W
dc.titleUso de la técnica del plano de Lund para la identificación de partículas en el experímento ATLAS del LHCspa
dc.title.translatedUse of the Lund plane technique for the identification of particles in ATLAS experiment at the LHCeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030646597.2023.pdf
Tamaño:
15.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: