Desarrollo de tabaco genéticamente modificado portador del gen phaC de Aeromonas caviae para la síntesis de polihidroxialcanoatos

dc.contributor.advisorLopez-Pazos, Silvio Alejandro
dc.contributor.advisorSarmiento Salazar, Felipe
dc.contributor.authorPortela Dussán, Diana Daniela
dc.contributor.orcid0000-0003-2949-7033spa
dc.contributor.researchgroupIngeniería Genética de Plantasspa
dc.date.accessioned2023-07-28T19:41:56Z
dc.date.available2023-07-28T19:41:56Z
dc.date.issued2022-09-11
dc.descriptionIlustracionesspa
dc.description.abstractEn este trabajo se planteó un modelo basado en Derechos de Propiedad Intelectual (DPI) para generación de productos de interés industrial en tabaco (Nicotiana tabacum L.) que aporte en nuevos usos comerciales del cultivo. Este modelo comprende análisis del estado de patentes asociadas a los elementos implicados en un avance biotecnológico, y así establecer una estrategia que permita alcanzar un producto con una carga mínima de patentes asociadas que hagan factible su liberación comercial (denominado Estudio de Libertad de Operación - ELO). Este diseño se usó en el desarrollo de líneas genéticamente modificadas (GM) de tabaco, portadoras del gen phaC de Aeromonas caviae para síntesis de polihidroxialcanoatos en peroxisomas, para lo cual se realizó un ELO especifico con el cual se estableció un esquema que incluye el uso de casetes de expresión sintéticos de uso comercial para ser clonados en vectores de libre acceso pCAMBIA, transformación del vector en la cepa Agrobacterium tumefaciens LBA4404 (protegida por cinco patentes vigentes hasta 2032), la patente que cubre el método de transformación de este trabajo tiene vigencia hasta 2023. Además se identificaron 16 patentes relacionadas con los elementos relevantes para el desarrollo de una línea GM de tabaco productora de polihidroxialcanoatos en peroxisomas: secuencia promotora, codificante y terminadora, vector de transformación, cepa de A. tumefaciens para transformación, y péptido de tránsito, de las cuales 11 se encuentran vigentes. La variedad Samsun con la que se trabajó tiene titulos de obtentor de Variedades vegetales caducados. Se diseñaron dos casetes de expresión con el transgen phaC de A. caviae y péptido de tránsito a peroxisomas, con ajuste de uso codónico para N. tabacum (denominado PHACAcMOD) y sin modificación de uso codónico (denominado PHACA.c), los cuales fueron insertados en el genoma de tabaco, logrando una frecuencia de transformación de 0.78 % con el transgen PHACAcMOD y 3.9 % con el transgen PHACA.c para la variedad Samsun. Las plantas transformadas produjeron 0.36 mg de polihidrobutirato, con observación de gránulos relacionados en peroxisomas. El modelo experimental basado en DPI fue aplicado a la variedad Virginia k326, proceso cubierto por el mismo tipo y número de patentes, y titulos de obtentor de Variedades vegetales caducados, alcanzando frecuencias de transformación de 1.56 % con el constructo PHACAcMOD y 4.29 % con la construcción PHACA.c. Finalmente, siguiendo el mismo esquema apoyado en DPI, se transformó ambas variedades con un casete de expresión codificante de la parasporina 6 de Bacillus thuringiensis (una proteína con actividad anticancerígena) usando procedimientos experimentales idénticos, como perspectiva para producción de biofarmacos en tabaco. En el análisis de propiedad intelectual se identificaron siete patentes que protegen parasporinas en general con vigencia hasta 2033, ninguna patente específicamente cubre a la parasporina 6. (texto tomado de la fuente)spa
dc.description.abstractHere we present a model based on Intellectual Property Rights (IPR) for the production of industrial goods in tobacco (Nicotiana tabacum L) in order to develop new commercial uses for this crop. This model comprises a Freedom to Operate (FTO) analysis of the patents related to the elements involved in a biotechnological product in order to establish a strategy to develop a product with the minimum associated patent load and, therefore, facilitate its eventual commercialization. This approach was used in the development of Genetically Modified (GM) tobacco lines carrying the phaC gene from Aeromonas caviae for the production of polyhydrohyalkanoates in peroxisomes. For this, a case specific FTO analysis was carried out. Based on this analysis we outlined a strategy that includes the use of commercial synthetic expression cassettes cloned in free-access vectors (CAMBIA) and the transformation of Agrobacterium tumefaciens strain LBA4404 with these vectors. This bacterial strain is protected by five patents in force until 2032, but the patent covering the transformation method used here expires in 2023. We identified 16 patents related to relevant elements involved in the development of a GM tobacco line that produces polyhydroxyalkanoates in peroxisomes (promoter, coding and terminator sequences, transformation vector, A. tumefaciens strain, and transit peptide). Of these, eleven are still in force. Samsun tobacco variety was protected by Plant Breeder’s Rights, but these are now expired. We designed two expression cassettes with the A. caviae phaC gene and a peroxisomal transit peptide. The sequence of one of these was adjusted to optimize it for N. tabacum codon usage (PHACAcMOD) while the other was not modified for codon usage (PHACA.c). These expression cassettes were transformed into the tobacco (var. Samsun) genome with a frequency of 0.78 % (PHACAcMOD) and 3.9 % (PHACA.c). Transformed plants produced 0.36 mg of polyhydroxybutyrate and related peroxisomal granules were observed. This IPR based experimental model was applied to N. tabacum var. Virginia k326, in a process covered by the same type and number of patents and expired Plant Breeder’s Rights, with a transformation frequency of 1.56 % for PHACAcMOD and 4.29 % for PHACA.c. Following the same IPR based approach and identical experimental methods, both tobacco varieties were also transformed with an expression cassette coding for Bacillus thuringiensis parasporin 6 (a protein with anticancer activity) as a perspective for the production of biopharmaceuticals in tobacco. An IP analysis of this gene led to the identification of seven patents protecting parasporins in general, in force until 2033, but none covering parasporin 6 specifically.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaBiotecnología vegetalspa
dc.format.extent178 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84363
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbbas, M. (2018). Genetically engineered (modified) crops (Bacillus thuriengiensis crops) and the world controversy on their safety. Egyptian journal of Biological Pest Control, 28(52). doi:https://doi.org/10.1186/s41938-018-0051-2spa
dc.relation.referencesAgarwal, P., Garg, V., Gautam, T., Pillai, B., Kanoria, S., & Burma, P. (2014). A study on the influence of different promoter and 5′UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton. Transgenic Res, 23(2), 351-363. doi:https://doi.org/10.1007/s11248-013-9757-9spa
dc.relation.referencesAgarwal, P., Gautam, T., Singh, A., & Burma, P. (2019). Evaluating the effect of codon optimization on expression of bar gene in transgenic tobacco plants. Journal of Plant Biochemistry and Biotechnology, 8, 189–202. doi:10.1007/s13562-019-00506-2spa
dc.relation.referencesAkiba , T., & Okumura , S. (2017). Parasporins 1 and 2: Their structure and activity. Journal of Invertebrate Pathology, 142, 44-49.spa
dc.relation.referencesAlandete-Saez, M., Chi Ham, C. L., Graff, G. D., Boettiger, S., & Bennet, A. B. (2015). Intellectual property in agricultural biotechnology: Strategies for open access. In N. Stewart (Ed.), Plant Biotechnology and Genetics: Principles, Techniques, and Applications (pp. 347-63). New Jersey: John Wiley & Sons.spa
dc.relation.referencesAltenbach, S. B. (1989). Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding methionine-rich protein in transgenic plants. Plant Mol. Biol, 513–522.spa
dc.relation.referencesAnderson, D. J., Gnanasambandam, A., Mills, E., O'shea, M., Nielsen, J., & Brumbley, S. (2011). Synthesis of short-chain-length / medium-chain length polyhydroxy alkanoate-(PHA) Copolymers of peroxisomes in transgenic sugarcane. Tropical Plant Biology, 4, 170-184. doi:10.1007/s12042-011-9080-7spa
dc.relation.referencesArai, Y., Nakashita, H., Suzuki, Y., Kobayashi, Y., Shimizu, T., Yasuda, M., . . . Yamaguchi, I. (2002). Synthesis of a novel class of polyhydroxyalkanoates in Arabidopsis peroxisomes, and their use in monitoring short-chain-length intermediates of βoxidation. Plant cell physiology, 555-562.spa
dc.relation.referencesBaidurah, S. (2022). Methods of analyses for biodegradable polymers: A review. Polymers, 14(22). doi:https://doi.org/10.3390/polym14224928spa
dc.relation.referencesakhsh, A., Anayol, E., & Ozcan, S. (2014). Comparison of transformation efficiency of five Agrobacterium tumefaciens strains in Nicotiana Tabacum L. Plant Sciences, 26(3), 259-264.spa
dc.relation.referencesBarbosa , M., Espinoza-Hernandez, A., Malagón, D., & Moreno-Sarmiento, N. (2005). Producción de poli-β-hidrobutirato (PHB) por Ralstonia euthropha ATCC 17697. Universitas Scientiarum, 45-54. Obtenido de https://www.redalyc.org/pdf/499/49910105.pdfspa
dc.relation.referencesBohmert, K. B. (2002). Constitutive expression of the beta-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant physiology, 128(4), págs. 1282–1290.spa
dc.relation.referencesBohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a for the Production of Polyhydroxybutyrate. Plant Physiology, 155, 1690-1708.spa
dc.relation.referencesBudde, C., Riedel, S. L., Willis, L. B., Rha, C. K., & Sinskey, A. J. (2011). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol, 2847-2854. doi:10.1128/aem.02429-10spa
dc.relation.referencesCAMBIA. (02 de Febrero de 2022). Legacy pCAMBIA Vectors. Obtenido de https://cambia.org/welcome-to-cambialabs/cambialabs-projects/cambialabs-projects-legacy-pcambia-vectors-pcambia-legacy-vectors-1/spa
dc.relation.referencesCarreño-Venegas, A., Mora-Oberlaender, J., & Chaparro-Giraldo, A. (2017). Identification and freedom to operate analysis of potential genes for drought tolerance in maize. Agronomía Colombiana, 35(2), 150-157. doi:https://doi.org/10.15446/agron.colomb.v35n2.60706.spa
dc.relation.referencesCarroll, M. J. (2016). The importance of regulatory data protection or exclusive use and other forms of intellectual property rights in the crop protection industry. Pest Management Science.spa
dc.relation.referencesCarvajal- Campos P; Jiménes V. (2021).Ingeniería Genética contra estrés abiótico en cultivos neotropicales: osmolitos, factores de transcripción y CRISPR/Cas9. Rev. colomb.biotechnol, 33 (2).spa
dc.relation.referencesChacón-Sanchez, M. I. (2009). Darwin y la domesticación de plantas en las Américas: el caso del maíz y el fríjol. Acta biológica Colombiana, 14, 351-364.spa
dc.relation.referencesChakraborty, S. C. (2000). Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Nat. Acad. Sci, 3724-3729.spa
dc.relation.referencesChileBIO. (Agosto de 2020). Plantas transgénicas que producen medicamentes: ¿es la agricultura el futuro de las vacunas? Obtenido de https://www.chilebio.cl/2020/08/28/plantas-transgenicas-que-producen-medicamentos-es-la-agricultura-el-futuro-de-las-vacunas/: https://www.chilebio.cl/2020/08/28/plantas-transgenicas-que-producen-medicamentos-es-la-agricultura-el-futuro-de-las-vacunas/spa
dc.relation.referencesChoi, S., Rhie, M., Kim, H., Joo, J., Cho, I., Son, J., . . . Park, S. J. (2020). Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 58, 47-81. doi:10.1016/j.ymben.2019.05.009spa
dc.relation.referencesDaniell, H., Streatfield, S., & Wycoff, K. (2001). Medical molecular farm-ing: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci, 219-226.spa
dc.relation.referencesDe Guglielmo, Z. F. (2016). Principales promotores utilizados en la transformación genética de plantas. Revista Colombiana de Biotecnología, 18(2), págs. 119-128.spa
dc.relation.referencesDeepa, K., Rodionov, R. N., Weiss, N., & Parani, M. (2013). Transgenic Expression and Functional Characterization of Human Platelet Derived Growth Factor BB (PDGF-BB) in Tobacco (Nicotiana tabacum L.). Appl Biochem Biotechnol, 171, 1390-1404. doi:10.1007/s12010-013-0413-xspa
dc.relation.referencesDong, O., & Ronald, P. (2019). Genetic Engineering for Disease Resistance in Plants: Recent Progress and Future Perspectives. Plant Physiology, 180(1), 26-38. doi:doi.org/10.1104/pp.18.01224spa
dc.relation.referencesEdwards, K., Fernandez-Pozo, N., Drake-Stowe, K., Humpry, M., Evans, A., Bombarely, A., . . . Mueller, L. (2017). A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 448. doi:10.1186/s12864-017-3791-6spa
dc.relation.referencesEriksson, D., Custers, R., Edvardsson, B., Hansson, S., Purnhagen, K., Qaim, M., . . . Visser, R. (2020). Options to reform the european union legislation on gmos: scope and definitions. Trends Biotechnol, 231-234. doi:10.1016/j.tibtech.2019.12.002spa
dc.relation.referencesFalco, S. C., Guida, T., Locke, M., Mauvais, J., Sanders, C., Ward, R. T., & Webber, P. (1995). Transgenic canola and soybean seeds with increased lysine. BioTechnology, 577–582.spa
dc.relation.referencesFilling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorvski, T., Nordling, E., . . . Opperman, U. (2002). Critical Residues for Structure and Catalysis in Short-chain Dehydrogenases/Reductases. Journal Of Biological Chemistry, 277(28), 25677-25684. doi:10.1074/jbc.M202160200spa
dc.relation.referencesFinagro. (2018). Ficha Técina Tabaco. Bogotá: Finagrospa
dc.relation.referencesFukui, T. D. (1997). Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. Journal of bacteriology, 179(15), págs. 4821-4830.spa
dc.relation.referencesFulgsang, A. (2004). The 'effective number of codons' revisited. Biochem Biophys Res Commun, 317(3), 957-964. doi:10.1016/j.bbrc.2004.03.138spa
dc.relation.referencesGao, Y., Liu, J., Yang, F., Zhang, G., Wang, D., Zhang, L., Ou, Y., & Yao, Y. (2020). The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 168(1), 98-117. https://doi.org/10.1111/ppl.12978.spa
dc.relation.referencesGoel, D., Singh, A. K., Yadav, V., Babbar, S. B., Murata, N., & Bansal, K. C. (2011). Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology, 168(11), 1286-1294. https://doi.org/10.1016/j.jplph.2011.01.010spa
dc.relation.referencesGupta, J., Rathour, R., Maheshwari, N., & Thakur, I. S. (2021). Integrated analysis of Whole genome sequencing and life cycle assessment for polyhydroxyalkanoates production by Cupriavidus sp ISTL7. Bioresource Technology, 337.spa
dc.relation.referencesHahn, J., Eschenlauer, A., Narrol, M., Somers, D., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(beta-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnol. Progress, 13, 347-354.spa
dc.relation.referencesHahn, J., Eschenlauer, A., Sleytr, U. B., Somers, D. A., & Srienc, F. (1999). Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog, 15(6), 1053-1057. doi:10.1021/bp990118nspa
dc.relation.referencesHarada, K., Kobayashi, S., Oshima, K., Yoshida, S., Tsuge, T., & Sato, S. (2021). Engineering of Aeromonas caviae Polyhydroxyalkanoate Synthase Through Site-Directed Mutagenesis for Enhanced Polymerization of the 3-Hydroxyhexanoate Unit. Front Bioeng Biotechnol. doi:10.3389/fbioe.2021.627082spa
dc.relation.referencesHaseloff, J., Siemering, K. R., Prasher, D. C., & Hodge, S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. U. S. A.,, 2122-2127. Obtenido de 10.1073/pnas.94.6.2122spa
dc.relation.referencesHerrera-Estrella, L., & Simpson, J. (1995). Genetically-Engineered resistance to bacterial and fungal pathogens. World Journal of Microbiology & Biotechnology. doi:10.1007/BF00364613spa
dc.relation.referencesHincapie, V., & Chaparro-Giraldo, A. (2014). Estudio de libertad de operación para una línea genéticamente modificada de papa (Solanum tuberosum L .) Study of freedom to operate for a genetically modified potato ( Solanum tuberosum L .). Rev. colomb. biotecnology, XVI(1), 119–128.spa
dc.relation.referencesHolásková, E., Galuszka, P., Mičúchová, A., Šebela, O., Öz, M., & Frébort, I. (2018). Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37. Biotechnol J, 13(6), e1700628. doi:10.1002/biot.201700628. Epub 2018spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2017). Legislación sobre protección a los derechos de obtentores de variedades vegetales. Bogotá: Ministerio de Agricultura.spa
dc.relation.referencesISAAA. (2021). Breaking Barriers with Breeding: A Primer on New Breeding Innovations for Food security. Ithaca, NY: ISAAA Brief. Retrieved Abril 2022, from ISAAA Brief: https://www.isaaa.org/resources/publications/briefs/56/spa
dc.relation.referencesJefferson, D. J., Graff, G. D., Chi-Ham, C. L., & Bennet, A. B. (2015). The emergence of agbiogenerics. National Biotechnology, 819-823. doi:10.1038/nbt.3306spa
dc.relation.referencesJia, K., Cao, R., Hua, D. H., & Li, P. (2016). Study of Class I and Class III Polyhydroxyalkanoate (PHA) Synthases with Substrates Containing a Modified Side Chain. Biomacromoleculas, 17(4), 1477-1485. doi:10.1021/acs.biomac.6b00082spa
dc.relation.referencesKahar, P., Tsuge, T., Taguchi, K., & Doi, Y. (2004). High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stabil, 79-86. doi:10.1016/s0141-3910(03)00277-1spa
dc.relation.referencesKazusa. (Marzo de 2020). Codon usage database. Obtenido de https://www.kazusa.or.jp/codon/spa
dc.relation.referencesLacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. doi: https://doi.org/10.1146/annurev-phyto-082718-100101spa
dc.relation.referencesLemoigne, M., Grelet, N., Croson, M., & Le Treis, M. (1945). Formation de lipide /B-hydroxybutyrique aux dkpens du glucose par le Bacillus megaterium. DonnCes quantitatives. Chim biol pams, 27-90.spa
dc.relation.referencesLi , X., Li, S., Lang, Z., Zhang, J., Zhu, L., & Huang, D. (2013). Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Plant Cell Reports, 8(32), 1299-1308.spa
dc.relation.referencesLössl, A., Bohmert, K., Harloff, H., Eibl, C., Mühlbauer, S., & Koop, H.-U. (2005). Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol, 46(9), 1462-1471. doi:10.1093/pcp/pci157. Epubspa
dc.relation.referencesLössl, A., Eibl, C., Harloff, H.-J., Jung, C., & Koop, U.-H. (2003). Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep, 21, 891-899. doi:10.1007/s00299-003-0610-0spa
dc.relation.referencesManoj K, S., Singh, S., Kapoor, N., & Tomar, R. (2022). Polyhydroxyalkanoate Production in Transgenic Plants: Green Plastics for Better Future and Environmental Sustainability. En P. Kumar, R. Tomar , J. Bhat, M. Dobriyal, & M. Rani, Agro-biodiversity and Agri-ecosystem Management. Springer, Singapore.spa
dc.relation.referencesMatsumoto , K., Murata, T., Nagao, R., Nomura, C., Arai, S., Arai, Y., . . . Shimada, H. (2009). Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III. Biomacromoleculas, 686-690. doi:10.1021/bm8013878spa
dc.relation.referencesMatsumoto, K., Nagao, R., & Murata, T. (2005). Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of Polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae. Biomacromolecules, 6(4), 2126-2130.spa
dc.relation.referencesMittendorf, V., Robertson, E. J., Krüger, N., Steinbüchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Natl Acad. Sci, 13397-13402.spa
dc.relation.referencesMoon, K.-B., Park , J.-S., Park, Y.-I., Song, I.-J., Lee , H.-J., Cho, H., . . . Kim , H.-S. (2020). Development of Systems for the Production of Plant-Derived Biopharmaceuticals. Plants, 9(1). doi:https://doi.org/10.3390/plants9010030spa
dc.relation.referencesMuneer , F., Rasul, I., Azeem, F., Siddique, M. H., Zubair, M., & Nadeem, H. (2020). Microbial Polyhydroxyalkanoates (PHAs): Efficient Remplacement of Synthetic Polymers. Journal of Polymer and the Environment, 28, 2301–2323.spa
dc.relation.referencesNagamatsu, Y., Okamura, S., Saitou , H., Akao, T., & Mizuki, E. (2010). Three Cry toxin in two types from Bacillus thuringiensis Strain M019 prefentially kill human hepatocyte cancer and uterus cervix cancer cells. Biosci Biotechnol Biochem, 494-498. doi:10.1271/bbb.90615spa
dc.relation.referencesNakamura, Y., Gojobori, T., & Ikemura, T. (2000). Codon usage tabulated from international DNA sequence databases: status for year 2000. Nucleic Acids Research.spa
dc.relation.referencesNakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., . . . Yamaguchi, I. (1999). Production of Biodegradable Polyester by a Transgenic Tobacco. Biochemistry & Molecular Biology Regular, 63(5), 870-874. doi:10.1271/bbb.63.870spa
dc.relation.referencesNawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. PNAS, 91(26). doi:10.1073/pnas.91.26.12760spa
dc.relation.referencesOkumura, S., Saitoh, H., Ishikawa, T., Inouye, K., & Mizuki, E. (2011). Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. Biochim Biophys Acta, 1476-82. doi:10.1016/j.bbamem.2010.11.003.spa
dc.relation.referencesOMPI. (16 de Abril de 2022). Organizacion Mundial de la Propiedad Intelectual. Obtenido de https://www.wipo.int/about-ip/es/spa
dc.relation.referencesOnelli, E., Moscatelli, A., Gagliardi, A., Zaninelli, M., Bini, L., Baldi, A., . . . Rossi, L. (2017). Retarded germination of Nicotiana tabacum seeds following insertion of exogenous DNA mimics the seed persistent behavior. PLOS ONE. doi:doi.org/10.1371/journal.pone.0187929spa
dc.relation.referencesPark, S. J., Park, J. P., & Lee, S. Y. (2002). Production of poly(3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter. Biotechnol Lett, 24, 185–189.spa
dc.relation.referencesParveez, G., Bahariah, B., Ayub, N., Masani, M., Rasid, O., Tarmizi, A., & Ishak, Z. (2015). Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli. Front Plant Sci, 11(6). doi:10.3389/fpls.2015.00598spa
dc.relation.referencesPoirier, Yves. (2002). Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog Lipid Res, 41(2), 131-155spa
dc.relation.referencesPriyadarshi, S., Shukla, A., & Borse, B. B. (2014). Polyhydroxyalkanoates: Role of Ralstonia eutropha. International Journal of Biomedical and Advance Research, 05(02). doi:10.7439/ijbarspa
dc.relation.referencesQueensland, T. U. . (2018). Turning plants into medicine factories. Obtenido de https://www.uq.edu.au/news/article/2018/03/turning-plants-medicine-factoriesspa
dc.relation.referencesRojas-Arias, A. C., Palacio, J. L., Chaparro-Giraldo, A., & López-Pazos, S. A. (2017). Patents and genetically modified soybean for glyphosate resistance. World Patent Information, 48, 47-51. doi:https://doi.org/10.1016/j.wpi.2017.01.002spa
dc.relation.referencesSagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends and Biochemical Sciences, 790-805. doi:10.1016/j.tibs.2018.08.005spa
dc.relation.referencesSeoane, I., Manfredi, L., & Cyras, V. (2018). Effect of two different plasticizers on the properties of poly(3-hydroxybutyrate) binary and ternaryscopy. Applied Polymer Science Scinece. doi: https://doi.org/10.1002/app.46016spa
dc.relation.referencesShah, K. (2014). Optimization and production of Polyhydroxybutarate(PHB) by Bacillus subtilis G1S1from soil. Int.J.Curr.Microbiol.App.Sci, 3(5), 377-387. Obtenido de https://www.ijcmas.com/vol-3-5/K.R.Shah.pdfspa
dc.relation.referencesStuart, E., Tehrain, A., Valentin, H., Dennis, D., Lenz, R., & Fuller, R. (1998). Protein organization on the PHA inclusion cytoplasmic boundary. 64(2-3), pp. 137-144. doi:10.1016/s0168-1656(98)00096-0.spa
dc.relation.referencesSung, Y. J., & Seo, Y. B. (2009). Thermogravimetric study on stem biomass of Nicotiana tabacum. pp. 1-4. doi:10.1016/j.tca.2008.12.010spa
dc.relation.referencesTeixeira da Silva, J. A. (2005). Simple multiplication and effective genetic transformation (four methods) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 1046–1058. doi:10.1016/j.plantsci.2005.07.012spa
dc.relation.referencesTilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops, Plant biotechn. Plant Biotechnology Journal, 9(9), 958-969. doi:10.1111/j.1467-7652.2011.00600.xspa
dc.relation.referencesTilbrook, K., Poirier, Y., Gebbie, L., Schenk, P. M., McQualte, R. B., & Brumbley, S. M. (2014). Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes. Plant Biotechnology Journal, 12, 1044-1052. doi:10.1111/pbi.12211spa
dc.relation.referencesTurnbull, C., Lillemo, M., & Hvoslef-Eide, T. (2021). Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom - A Review. Front Plant Sci, 24(12), 630396. doi:10.3389/fpls.2021.630396spa
dc.relation.referencesUniversitat Politècnica de València, U. (2018). NEWCOTIANA. Obtenido de http://www.upv.es/noticias-upv/noticia-9822-newcotiana-es.htmlspa
dc.relation.referencesUPOV. (20 de 02 de 2022). UPOV. Obtenido de https://www.upov.int/about/es/overview.htmlspa
dc.relation.referencesUSDA APHIS. (Semptember de 2022). Petitions for determination of nonregulated status. Obtenido de https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/permits-notifications-petitions/petitions/petition-statusspa
dc.relation.referencesVolova, T. G., Zhila, N. O., Shishatskaya, E. I., Mironov, P. V., Vasil’ev, A. D., Sukovatyi, A. G., & Sinskey , A. J. (2013). The physicochemical properties of polyhydroxyalkanoates with different chemical structures. Polymer Sciences Series A, 427-437. doi:10.1134/S0965545X13070080spa
dc.relation.referencesWang, H., Zhou, X., Liu, Q., & Chen, G.-Q. (2010). Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Applied Microbiology and Biotechnology, 89(5), 1497–1507. doi:doi:10.1007/s00253-010-2964-xspa
dc.relation.referencesWilliams, S., Rizk, S., & Martin, D. (2013). Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedizinische Technik/Biomedical Engineering, 58(5). doi:doi:10.1515/bmt-2013spa
dc.relation.referencesYadav, B., Talan, A., Tyagi, R., & Drogui, P. (2021). Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology, 37. doi:https://doi.org/10.1016/j.biortech.2021.12541spa
dc.relation.referencesZhao, Y., Yang, X., Zhou, G., & Zhang, T. (2019). Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnology Journal, 18(2), 328-336. doi: https://doi.org/10.1111/pbi.13278spa
dc.relation.referencesZhang, H., Li, J., Wang, R., Zhi , J., Yin, P., & Xu, J. (2018). Comparative Analysis of Expansin Gene Codon Usage Patterns among Eight Plant Species. Journal of Biomolecular Structure and Dynamics. doi: https://doi.org/10.1080/07391102.2018.1442746spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc570 - Biologíaspa
dc.subject.lembNicotina
dc.subject.lembPlantas trasgenicas
dc.subject.lembPropiedad intelectual
dc.subject.proposalAeromonas caviaespa
dc.subject.proposalNicotiana tabacumspa
dc.subject.proposalDerechos de Propiedad Intelectualspa
dc.subject.proposalPolihidroxialcanoatosspa
dc.subject.proposalPolihidroxialcanoatosspa
dc.subject.proposalGen phaCspa
dc.titleDesarrollo de tabaco genéticamente modificado portador del gen phaC de Aeromonas caviae para la síntesis de polihidroxialcanoatosspa
dc.title.translatedDevelopment of genetically modified tobacco carrying the phaC gene of Aeromonas caviae for the synthesis of polyhydroxyalkanoateseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleFormación de recurso humano de alto nivel Departamento del Huilaspa
oaire.awardtitleExpresión del gen phaC de Aeromonas caviae en líneas transgénicas derivadas de una variedad de Nicotiana tabacum L cultivada en el Departamento del Huila (Colombia)spa
oaire.fundernameDepartamento de Ciencia y Tecnología Departamento del Huilaspa
oaire.fundernameFundación para la promoción de la investigación y la tecnología del Banco de la Repúblicaspa
oaire.fundernameMinisterio de Ciencias y Tecnologíaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis DD Portela Dussan 1032432887 FINAL (2) (3).pdf
Tamaño:
3.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: