A framework for online prediction using kernel adaptive filtering

dc.contributor.advisorCastellanos Domínguez, César Germánspa
dc.contributor.advisorGarcia Vega, Sergiospa
dc.contributor.authorLeón Gómez, Eder Arleyspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2020-03-09T15:52:43Zspa
dc.date.available2020-03-09T15:52:43Zspa
dc.date.issued2019spa
dc.description.abstractNowadays, the task of predicting in schemas online is an essential field of study for machine learning. The Filters Adaptive based on kernel methods have taken an essential role in this type of task; this is primarily due to their condition of universal approximation, their ability to solve nonlinear problems and the modest computing cost they possess. However, although they have significant advantages with similar methods, they present different challenges to be solved such as: (1) the tuning of the kernel bandwidth parameters and the learning rate; (2) the limitation in the model size, product of the number of elements that the filtered dictionary may contain; and, (3) the efficient construction and modeling of multiple filters. The improvement of these conditions will allow an improvement in the representation of time series dynamics, which translates into a decrease in prediction error. This thesis document addresses the previous issues raised from three proposals. The first is through the interactive search for adequate kernel bandwidth and learning rate, which is achieved by minimizing the correntropy within a proposed cost function. The second contribution corresponds to a scheme of sequential construction of filters, which unlike other methods of state of the art, does not restrict the samples to a single dictionary, and that additionally updates the weights of the samples shared in several filters. The third and last one corresponds to the integration of a kernel bandwidth update method with another that sequentially builds a filter bank. These different proposed frameworks were validated in synthetic data sets as in the real world. The results, in general, show an improvement in the convergence rate, the reduction of the mean square error and the size of the dictionary with different filters of state of the art and a neural network for a specific case.eng
dc.description.abstractLa tarea de predicción en esquemas secuenciales en línea, es hoy un importante campo de estudio para el aprendizaje de máquina. Los Filtros Adaptativos basados en métodos kernel han tomado un papel importante para este tipo de tareas, esto se debe en gram medida a su condición de aproximación universal, su capacidad de solucionar problemas no lineales y al modesto costo computación que poseen. Sin embargo, aunque tienen ventajas significativas con métodos similares, presentan diferentes desafíos a solucionar como: (1) la sintonización de los parámetros del ancho de banda del kernel y la tasa de aprendizaje; (2) la limitación en el tamaño de modelo, producto del número de elementos que pueda contener el diccionario del filtro; y, (3) la eficaz construcción y modelamiento de múltiples filtros. El mejoramiento de estas condiciones permitirá una mejora en la representación de las dinámicas de series de tiempo, lo que se traduce en una disminución del error de predicción. Este documento de tesis aborda las problemáticas anteriores planteadas a partir de tres propuestas. La primera es vía de la búsqueda interativa de un adecuado ancho de banda del kernel y tasa de aprendizaje, lo cual se logra mediante la minimización de la correntropía dentro de una función de costos propuesta. El segundo aporte corresponde a un esquema de construcción secuencial de filtros, que a diferencia de otros métodos del estado del arte, no restringe las muestras a un único diccionario, y que adicionalmente actualiza los pesos de las muestras compartidas en varios filtros. La tercera y última, corresponde a la integración de un método de actualización del ancho de banda del kernel con otro que construye secuencialmente un banco de filtros. Estos distintos marcos propuestos, fueron validados en conjuntos de datos sintéticos como del mundo real. Los resultados en general presentan una mejora en la tasa de convergencia, la reducción del error cuadrático medio y el tamaño del diccionario con diferentes filtros del estado del arte y un red neuronal para un caso especifico.spa
dc.description.additionalTrabajo de grado presentado como requisito parcial para el título de: Magister en Ingeniería - Ingeniería Eléctrica. -- Línea de investigación: Aprendizaje de Máquina.spa
dc.description.degreelevelMaestríaspa
dc.format.extent64spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75985
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.relation.referencesS. Shanmuganathan and S. Samarasinghe, Artificial neural network modelling, vol. 628. Springer, 2016.spa
dc.relation.referencesY. Cui, S. Ahmad, and J. Hawkins, “Continuous online sequence learning with an unsupervised neural network model,” Neural computation, vol. 28, no. 11, pp. 2474–2504, 2016.spa
dc.relation.referencesC. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series forecasting techniques for building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 902–924, 2017.spa
dc.relation.referencesY. Feng, P. Zhang, M. Yang, Q. Li, and A. Zhang, “Short term load forecasting of offshore oil field microgrids based on da-svm,” Energy Procedia, vol. 158, pp. 2448–2455, 2019.spa
dc.relation.referencesB. Schölkopf, A. J. Smola, et al., Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002.spa
dc.relation.referencesF. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks architectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.spa
dc.relation.referencesB. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.spa
dc.relation.referencesW. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square algorithm,” IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 543–554, 2008.spa
dc.relation.referencesY. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Transactions on signal processing, vol. 52, no. 8, pp. 2275–2285, 2004.spa
dc.relation.referencesW. Liu, I. Park, Y. Wang, and J. C. Príncipe, “Extended kernel recursive least squares algorithm,” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp. 3801–3814, 2009.spa
dc.relation.referencesB. Chen, S. Zhao, P. Zhu, and J. C. Príncipe, “Quantized kernel least mean square algorithm,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 22–32, 2012.spa
dc.relation.referencesH. Fan and Q. Song, “A linear recurrent kernel online learning algorithm with sparse updates,” Neural Networks, vol. 50, pp. 142–153, 2014.spa
dc.relation.referencesW. Liu, I. Park, and J. C. Principe, “An information theoretic approach of designing sparse kernel adaptive filters,” IEEE Transactions on Neural Networks, vol. 20, no. 12, pp. 1950–1961, 2009.spa
dc.relation.referencesW. Ao, W.-Q. Xiang, Y.-P. Zhang, L. Wang, C.-Y. Lv, and Z.-H. Wang, “A new variable step size lms adaptive filtering algorithm,” in 2012 International Conference on Computer Science and Electronics Engineering, vol. 2, pp. 265–268, IEEE, 2012.spa
dc.relation.referencesQ. Niu and T. Chen, “A new variable step size lms adaptive algorithm,” in 2018 Chinese Control And Decision Conference (CCDC), pp. 1–4, IEEE, 2018.spa
dc.relation.referencesS. Garcia-Vega, X.-J. Zeng, and J. Keane, “Learning from data streams using kernel least-mean-square with multiple kernel-sizes and adaptive step-size,” Neurocomputing, vol. 339, pp. 105–115, 2019.spa
dc.relation.referencesB. Chen, J. Liang, N. Zheng, and J. C. Príncipe, “Kernel least mean square with adaptive kernel size,” Neurocomputing, vol. 191, pp. 95–106, 2016.spa
dc.relation.referencesW. W. Qitang Sun, Lujuan Dang and S. Wang, “Kernel least mean square algorithm with mixed kernel,” In Advanced Computational Intelligence (ICACI), 2018 Tenth International Conference, pp. 140–144, 2018.spa
dc.relation.referencesJ. Platt, A resource-allocating network for function interpolation. MIT Press, 1991.spa
dc.relation.referencesL. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation, vol. 14, no. 3, pp. 641–668, 2002.spa
dc.relation.referencesK. Li and J. C. Principe, “Transfer learning in adaptive filters: The nearest instance centroid-estimation kernel least-mean-square algorithm,” IEEE Transactions on Signal Processing, vol. 65, no. 24, pp. 6520–6535, 2017.spa
dc.relation.referencesG. Wahba, Spline models for observational data, vol. 59. Siam, 1990.spa
dc.relation.referencesJ. Racine, “An efficient cross-validation algorithm for window width selection for nonparametric kernel regression,” Communications in Statistics-Simulation and Computation, vol. 22, no. 4, pp. 1107–1114, 1993.spa
dc.relation.referencesE. Herrmann, “Local bandwidth choice in kernel regression estimation,” Journal of Computational and Graphical Statistics, vol. 6, no. 1, pp. 35–54, 1997.spa
dc.relation.referencesB. W. Silverman, Density estimation for statistics and data analysis. Routledge, 2018.spa
dc.relation.referencesY. Gao and S.-L. Xie, “A variable step size lms adaptive filtering algorithm and its analysis,” Acta Electronica Sinica, vol. 29, no. 8, pp. 1094–1097, 2001.spa
dc.relation.referencesY. Qian, “A new variable step size algorithm applied in lms adaptive signal processing,” in 2016 Chinese Control and Decision Conference (CCDC), pp. 4326–4329, IEEE, 2016.spa
dc.relation.referencesUPME, Plan de Expansión de Referencia Generación-Transmisión 2017 - 2031. Unidad de Planeación Minero Energética, 2017.spa
dc.relation.referencesS. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47, IEEE, 2013.spa
dc.relation.referencesN. Aronszajn, “Theory of reproducing kernels,” Transactions of the American mathematical society, vol. 68, no. 3, pp. 337–404, 1950.spa
dc.relation.referencesC. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.spa
dc.relation.referencesB. Chen, L. Li, W. Liu, and J. C. Príncipe, “Nonlinear adaptive filtering in kernel spaces,” in Springer Handbook of Bio-/Neuroinformatics, pp. 715–734, Springer, 2014.spa
dc.relation.referencesC. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Kong, and S. T. Bukkapatnam, “Time series forecasting for nonlinear and non-stationary processes: a review and comparative study,” Iie Transactions, vol. 47, no. 10, pp. 1053–1071, 2015.spa
dc.relation.referencesB. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2001.spa
dc.relation.referencesK. I. Kim, M. O. Franz, and B. Scholkopf, “Iterative kernel principal component analysis for image modeling,” IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 9, pp. 1351–1366, 2005.spa
dc.relation.referencesT.-T. Frieß and R. F. Harrison, “A kernel based adaline.,” in ESANN, vol. 72, pp. 21–23, 1999.spa
dc.relation.referencesS. An, W. Liu, and S. Venkatesh, “Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression,” Pattern Recognition, vol. 40, no. 8, pp. 2154–2162, 2007.spa
dc.relation.referencesG. C. Cawley and N. L. Talbot, “Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers,” Pattern Recognition, vol. 36, no. 11, pp. 2585–2592, 2003.spa
dc.relation.referencesW. Hardle, “ ‘applied nonparametric regression (cambridge: Cambridge university press),” 1990.spa
dc.relation.referencesC. M. Bishop, Pattern recognition and machine learning. springer, 2006.spa
dc.relation.referencesR. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012.spa
dc.relation.referencesA. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters, vol. 31, no. 8, pp. 651–666, 2010.spa
dc.relation.referencesJ. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE transactions on systems, man, and cybernetics, no. 4, pp. 580–585, 1985.spa
dc.relation.referencesK. Fu, Sequential methods in pattern recognition and machine learning, vol. 52. Academic press, 1968.spa
dc.relation.referencesC. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of time series data with kernels,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 1058–1067, 2008.spa
dc.relation.referencesC. Henry and R. Williams, “Real-time recursive estimation of statistical parameters,” Analytica chimica acta, vol. 242, pp. 17–23, 1991.spa
dc.relation.referencesC. G. Bezerra, B. S. J. Costa, L. A. Guedes, and P. P. Angelov, “A new evolving clustering algorithm for online data streams,” in 2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 162–168, IEEE, 2016.spa
dc.relation.referencesA. G. Salman, Y. Heryadi, E. Abdurahman, and W. Suparta, “Single layer & multilayer long short-term memory (lstm) model with intermediate variables for weather forecasting,” Procedia Computer Science, vol. 135, pp. 89–98, 2018spa
dc.relation.referencesM. Yukawa and R.-i. Ishii, “On adaptivity of online model selection method based on multikernel adaptive filtering,” in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–6, IEEE, 2013.spa
dc.relation.referencesM. Yukawa, “Multikernel adaptive filtering,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4672–4682, 2012.spa
dc.relation.referencesF. A. Tobar, S.-Y. Kung, and D. P. Mandic, “Multikernel least mean square algorithm,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 2, pp. 265– 277, 2013.spa
dc.relation.referencesT. Ishida and T. Tanaka, “Multikernel adaptive filters with multiple dictionaries and regularization,” in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–6, IEEE, 2013.spa
dc.relation.referencesQ. Sun, L. Dang, W. Wang, and S. Wang, “Kernel least mean square algorithm with mixed kernel,” in 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 140–144, IEEE, 2018.spa
dc.relation.referencesT. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind energy handbook. John Wiley & Sons, 2001.spa
dc.relation.referencesM. Elshendy, A. F. Colladon, E. Battistoni, and P. A. Gloor, “Using four different online media sources to forecast the crude oil price,” Journal of Information Science, 2017.spa
dc.relation.referencesP. J. Brockwell and R. A. Davis, Introduction to time series and forecasting. ingerir, 2016.spa
dc.relation.referencesV. Kotu, “Chapter 12: Time series forecasting, editor (s): Vijay kotu, bala deshpande, data science,” 2019.spa
dc.relation.referencesQ. Song, X. Zhao, Z. Feng, and B. Song, “Recursive least squares algorithm with adaptive forgetting factor based on echo state network,” in 2011 9th World Congress on Intelligent Control and Automation, pp. 295–298, IEEE, 2011.spa
dc.relation.referencesS. Wen, R. Hu, Y. Yang, T. Huang, Z. Zeng, and Y.-D. Song, “Memristor-based echo state network with online least mean square,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, no. 99, pp. 1–10, 2018.spa
dc.relation.referencesW.-Y. Chang, “A literature review of wind forecasting methods,” Journal of Power and Energy Engineering, vol. 2, no. 4, 2014.spa
dc.relation.referencesC. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, and A. Fouilloy, “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105, pp. 569–582, 2017.spa
dc.relation.referencesG. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, “Machine learning strategies for time series forecasting,” in European business intelligence summer school, pp. 62–77, Springer, 2012.spa
dc.relation.referencesL. Yu, Y. Zhao, L. Tang, and Z. Yang, “Online big data-driven oil consumption forecasting with google trends,” International Journal of Forecasting, vol. 35, no. 1, pp. 213– 223, 2019.spa
dc.relation.referencesO. Schaer, N. Kourentzes, and R. Fildes, “Demand forecasting with user-generated onlinespa
dc.relation.referencesA. S.Weigend, Time series prediction: forecasting the future and understanding the past. Routledge, 2018.spa
dc.relation.referencesF. Kaytez, M. C. Taplamacioglu, E. Cam, and F. Hardalac, “Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines,” International Journal of Electrical Power & Energy Systems, vol. 67, pp. 431–438, 2015.spa
dc.relation.referencesW. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a comprehensive introduction, vol. 57. John Wiley & Sons, 2011.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalMachine learningeng
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalForecastseng
dc.subject.proposalPredicciónspa
dc.subject.proposalFiltros adaptativos Kernelspa
dc.subject.proposalKernel adaptative filteringeng
dc.subject.proposalDiccionariospa
dc.subject.proposalDictionaryeng
dc.subject.proposalTasa de aprendizajespa
dc.subject.proposalLearning rateeng
dc.subject.proposalAncho de banda del Kernelspa
dc.subject.proposalKernel bandwidtheng
dc.subject.proposalClustering adaptiveeng
dc.subject.proposalAgrupamiento adaptativospa
dc.titleA framework for online prediction using kernel adaptive filteringspa
dc.title.alternativeMarco de predicción en línea usando filtros adaptativos kernelspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098671785.2019.pdf
Tamaño:
2.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: