Analysis of superstructures. Case study: Optimizing agro-industrial waste as precursors of chemical products, an essential element for the energy transition

dc.contributor.advisorMaya López, Juan Carlos
dc.contributor.advisorChejne, Farid
dc.contributor.authorCeballos Marin, Carlos Mario
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000469670spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=jZcaS3UAAAAJ&hl=esspa
dc.contributor.orcidCeballos Marin, Carlos Mario [0000-0002-5345-2532]spa
dc.contributor.orcidChejne Janna, Farid [0000-0003-0445-7609]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Carlos-Ceballos-7spa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2023-05-24T20:14:45Z
dc.date.available2023-05-24T20:14:45Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste estudio presenta una herramienta de optimización basada en análisis de superestructura para el diseño de procesos químicos y la toma de decisiones en la implementación de esquemas de poligeneración en Colombia. El programa de optimización que se desarrolló en Matlab, considera los parámetros de diferentes procesos termoquímicos y tecnologías para la transformación de tres posibles biomasas en nueve productos de alto valor agregado en el mercado nacional. Para obtener los parámetros necesarios se utilizó simulación detallada de los procesos en AspenPlus®, lo que permitió reducir el número de niveles de la superestructura y disminuir también el costo computacional del proceso de optimización en Matlab. Los resultados destacados en este estudio incluyen la generación de una herramienta de optimización, la identificación del biochar como el producto más viable para la implementación de esquemas de poligeneración en Colombia y la identificación de las posibles tecnologías para la transformación de las biomasas. Finalmente, este trabajo demuestra que el análisis de superestructura es una herramienta útil para la toma de decisiones, que puede ser de utilidad para entidades gubernamentales y posibles inversionistas en la definición de esquemas de poligeneración. (Texto tomado de la fuente)spa
dc.description.abstractThis study presents an optimization tool based on superstructure analysis for designing chemical processes and decision-making in implementing polygeneration schemes in Colombia. The optimization program developed in Matlab considers the parameters of different thermochemical processes and technologies for transforming three possible biomasses into nine high-added-value products in the national market. To obtain the required parameters, a detailed simulation of the processes in AspenPlus® was used, which allowed reducing the number of levels of the superstructure and reducing the computational cost of the optimization process in Matlab. The results highlighted in this study include generating an optimization tool, identifying biochar as the most viable product for implementing polygeneration schemes in Colombia, and identifying possible technologies for transforming biomasses. Finally, this work demonstrates that superstructure analysis is a useful tool for decision-making, which can be useful for government entities and potential investors in defining polygeneration schemes.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.sponsorshipMinisterio de Ciencia y Tecnología que financión el programa ENERGETICA 2030 por al convocatoria 788 del Ecosistema Colombia Científca, contrato número FP44842-210-2018spa
dc.description.sponsorshipAl centro de excelencia ABISURE - “Alliance for Biomass and Sustainability Research (ABISURE), financiado por la Universidad Nacional de Colombia, Código Hermes 53024.spa
dc.format.extentxxviii, 225 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83857
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbba, I. A., Grace, J. R., Bi, H. T., & Thompson, M. L. (2003). Spanning the flow regimes: Generic fluidized-bed reactor model. AIChE Journal, 49(7), 1838–1848. https://doi.org/10.1002/aic.690490720spa
dc.relation.referencesAbd El Aziz, Y. (2022). Renewables 2022 Global Status Report Germany Factsheet.spa
dc.relation.referencesAcevedo, J. C., Posso, F. R., Durán, J. M., & Arenas, E. (2018). Simulation of the gasification process of palm kernel shell using Aspen PLUS. Journal of Physics: Conference Series, 1126(1). https://doi.org/10.1088/1742-6596/1126/1/012010spa
dc.relation.referencesAdams, T. A., & Ghouse, J. H. (2015). Polygeneration of fuels and chemicals. Current Opinion in Chemical Engineering, 10, 87–93. https://doi.org/10.1016/j.coche.2015.09.006spa
dc.relation.referencesAghaalikhani, A., Schmid, J. C., Borello, D., Fuchs, J., Benedikt, F., Hofbauer, H., Rispoli, F., Henriksen, U. B., Sárossy, Z., & Cedola, L. (2019). Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation. Renewable Energy, 143, 703–718. https://doi.org/10.1016/J.RENENE.2019.05.022spa
dc.relation.referencesAhmed, A. M. A., Salmiaton, A., Choong, T. S. Y., & Wan Azlina, W. A. K. G. (2015). Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus. Renewable and Sustainable Energy Reviews, 52, 1623–1644. https://doi.org/10.1016/J.RSER.2015.07.125spa
dc.relation.referencesAho, A., Kumar, N., Eranen, K., Holmbom, B., Hupa, M., Salmi, T., & Murzin, D. Y. (2008). Pyrolysis of softwood carbohydrates in a fluidized bed reactor. International Journal of Molecular Sciences, 9(9), 1665–1675. https://doi.org/10.3390/ijms9091665spa
dc.relation.referencesAlauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews, 14(9), 2852–2862. https://doi.org/10.1016/j.rser.2010.07.026spa
dc.relation.referencesANDRE, R., PINTO, F., FRANCO, C., DIAS, M., GULYURTLU, I., MATOS, M., & CABRITA, I. (2005). Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel, 84(12), 1635–1644. https://doi.org/10.1016/j.fuel.2005.02.018spa
dc.relation.referencesAnex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., & Dutta, A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89(SUPPL. 1), S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015spa
dc.relation.referencesAspen Technology, Inc. (2001). Aspen Physical Property System Physical Property Methods and Models (11.1).spa
dc.relation.referencesAtlas Interactivo - Radiación IDEAM. (n.d.). Retrieved April 17, 2022, from http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlspa
dc.relation.referencesAyodele, E., Misra, S., Damasevicius, R., & Maskeliunas, R. (2019). Hybrid microgrid for microfinance institutions in rural areas – A field demonstration in West Africa. Sustainable Energy Technologies and Assessments, 35(February), 89–97. https://doi.org/10.1016/j.seta.2019.06.009spa
dc.relation.referencesBabi, D. K., Holtbruegge, J., Lutze, P., Gorak, A., Woodley, J. M., & Gani, R. (2015). Sustainable process synthesis-intensification. Computers and Chemical Engineering, 81, 218–244. https://doi.org/10.1016/j.compchemeng.2015.04.030spa
dc.relation.referencesBabu, S. P., Shah, B., & Talwalkar, A. (1978). FLUIDIZATION CORRELATIONS FOR COAL GASIFICATION MATERIALS - MINIMUM FLUIDIZATION VELOCITY AND FLUIDIZED BED EXPANSION RATIO. AIChE Symp Ser, 74(176), 176–186.spa
dc.relation.referencesBahng, M. K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, 651(2), 117–138. https://doi.org/10.1016/J.ACA.2009.08.016spa
dc.relation.referencesBaratieri, M., & Prando, D. (2015). Biomass for polygeneration and district heating. Handbook of Clean Energy Systems, 189–211. https://doi.org/10.1002/9781118991978.hces185spa
dc.relation.referencesBaruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. In Renewable and Sustainable Energy Reviews (Vol. 39, pp. 806–815). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.07.129spa
dc.relation.referencesBasu, P. (2006). Combustion and gasification in fluidized beds.spa
dc.relation.referencesBasu, P. (2010). Biomass Gasifcation and Pyrolysis Practical Design and Theory. In Biomass Gasification Design Handbook. Elsevier. https://doi.org/10.1016/B978-0-12-374988-8.00011-8spa
dc.relation.referencesBegum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013). Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies, 6(12), 6508–6524. https://doi.org/10.3390/en6126508spa
dc.relation.referencesBertran, M.-O. (2017). Modelling, synthesis and analysis of biorefinery networks. Technical University of Denmark.spa
dc.relation.referencesBertran, M.-O., Frauzem, R., Sanchez-Arcilla, A.-S., Zhang, L., Woodley, J. M., & Gani, R. (2017). A generic methodology for processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering, 106, 892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030spa
dc.relation.referencesBhutada, G. (2022, April 13). The 200-year history of mankind’s energy transitions, World economic forum. https://www.weforum.org/agenda/2022/04/visualizing-the-history-of-energy-transitions/spa
dc.relation.referencesbioliq - El proceso bioliq®. (n.d.). Retrieved March 11, 2023, from https://www.bioliq.de/english/55.phpspa
dc.relation.referencesBisht, A. S., & Thakur, N. S. (2019). Small scale biomass gasification plants for electricity generation in India: Resources, installation, technical aspects, sustainability criteria & policy. Renewable Energy Focus, 28, 112–126. https://doi.org/https://doi.org/10.1016/j.ref.2018.12.004spa
dc.relation.referencesBonilla, J., Gordillo, G., & Cantor, C. (2019). Experimental Gasification of Coffee Husk Using Pure Oxygen-Steam Blends. Frontiers in Energy Research, 7(November), 1–11. https://doi.org/10.3389/fenrg.2019.00127spa
dc.relation.referencesBrassard, P., Godbout, S., & Raghavan, V. (2017a). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80–92. https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.06.020spa
dc.relation.referencesBridgwater, T. (2018a). Challenges and opportunities in fast pyrolysis of biomass: Part I. Johnson Matthey Technology Review, 62(1), 118–130. https://doi.org/10.1595/205651318X696693spa
dc.relation.referencesBridgwater, A. V. (2012a). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048spa
dc.relation.referencesBritish Petroleum. (2020). Energy Outlook 2020. In BP Energy Outlook 2020, Statistical Review. London: British Petroleum.spa
dc.relation.referencesBritish Petroleum. (2022). BP Energy Outlook 2022 edition. In bp Energy Outlook 2022 edition.spa
dc.relation.referencesBrown, J. N., & Brown, R. C. (2012a). Process optimization of an auger pyrolyzer with heat carrier using response surface methodology. Bioresource Technology, 103(1), 405–414. https://doi.org/10.1016/J.BIORTECH.2011.09.117spa
dc.relation.referencesBrown, T. R., Thilakaratne, R., Brown, R. C., & Hu, G. (2013). Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel, 106, 463–469. https://doi.org/10.1016/j.fuel.2012.11.029spa
dc.relation.referencesCáceres-Martínez, L. E., Guío-Pérez, D. C., & Rincón-Prat, S. L. (2016). Potencial energético teórico y técnico de biomasa residual disponible en Colombia para aprovechamiento en procesos de transformación termoquímica. Tercer Congreso de Energía Sostenible, Octubre 24-26 de 2016, 106–111.spa
dc.relation.referencesCampuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102, 372–409. https://doi.org/10.1016/J.RSER.2018.12.014spa
dc.relation.referencesCarbonTrust. (2011). Energy Management - a Comprehensive Guide to Controlling Energy Use. https://doi.org/10.4337/9780857932167.00018spa
dc.relation.referencesCardona, S., Orozco, L. M., Gómez, C. L., Solís, W. A., Velásquez, J. A., & Rios, L. A. (2021a). Valorization of banana residues via gasification coupled with electricity generation. Sustainable Energy Technologies and Assessments, 44, 101072. https://doi.org/10.1016/j.seta.2021.101072spa
dc.relation.referencesCenteno, F., Mahkamov, K., Silva Lora, E. E., & Andrade, R. V. (2012). Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system. Renewable Energy, 37(1), 97–108. https://doi.org/10.1016/j.renene.2011.06.008spa
dc.relation.referencesChejne, F., & Hernandez, J. P. (2002a). Modelling and simulation of coal gasification process in fluidised bed. Fuel, 81(13), 1687–1702. https://doi.org/10.1016/S0016-2361(02)00036-4spa
dc.relation.referencesChen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039spa
dc.relation.referencesChicco, G., & Mancarella, P. (2009). Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews, 13(3), 535–551. https://doi.org/10.1016/j.rser.2007.11.014spa
dc.relation.referencesColciencias. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro. Mision de Sabios - Colombia 2019, 63.spa
dc.relation.referencesCommeh, M. K., Kemausuor, F., Badger, E. N., & Osei, I. (2019). Experimental study of ferrocement downdraft gasifier engine system using different biomass feedstocks in Ghana. Sustainable Energy Technologies and Assessments, 31(October 2018), 124–131. https://doi.org/10.1016/j.seta.2018.12.016spa
dc.relation.referencesContreras-Florez, N. L., & Niño-Rincon, C. A. (2022). Diseño y análisis termodinámico de un reactor tipo auger para el procesamiento de biomasa a escala laboratorio. Universidad Francisco de Paula Santander.spa
dc.relation.referencesCulaba, A. B., Mayol, A. P., San Juan, J. L. G., Ubando, A. T., Bandala, A. A., Concepcion, R. S., Alipio, M., Chen, W. H., Show, P. L., & Chang, J. S. (2023). Design of biorefineries towards carbon neutrality: A critical review. Bioresource Technology, 369, 128256. https://doi.org/10.1016/J.BIORTECH.2022.128256spa
dc.relation.referencesCzernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 19(2), 590–598. https://doi.org/10.1021/ef034067uspa
dc.relation.referencesDahmen, N., & Sauer, J. (2021). Evaluation of techno‐economic studies on the bioliq® process for synthetic fuels production from biomass. Processes, 9(4). https://doi.org/10.3390/pr9040684spa
dc.relation.referencesDaizo, K., & Levenspiel, O. (1991). Fluidization engineering, 2nd edition. Stoneham, MA (United States); Butterworth Publishers.spa
dc.relation.referencesDale F, R., Saees, F.-A., Andres A, T., & Mark A, S. (1981). Petrochemical Technology Assessment. John Wiley & Sons, Ltd.spa
dc.relation.referencesde Oliveira, J. L., da Silva, J. N., Martins, M. A., Pereira, E. G., & da Conceição Trindade Bezerra e Oliveira, M. (2018a). Gasification of waste from coffee and eucalyptus production as an alternative source of bioenergy in Brazil. Sustainable Energy Technologies and Assessments, 27(April), 159–166. https://doi.org/10.1016/j.seta.2018.04.005spa
dc.relation.referencesde Wild, P., Reith, H., & Heeres, E. (2011). Biomass pyrolysis for chemicals. Biofuels, 2(2), 185–208. https://doi.org/10.4155/bfs.10.88spa
dc.relation.referencesDouglas, J. M. (1985). A hierarchical decision procedure for process synthesis. AIChE Journal, 31(3), 353–362. https://doi.org/10.1002/aic.690310302spa
dc.relation.referencesEchegaray, M., García, D. Z., Mazza, G., & Rodriguez, R. (2019). Air-steam gasification of five regional lignocellulosic wastes: Exergetic evaluation. Sustainable Energy Technologies and Assessments, 31(October 2018), 115–123. https://doi.org/10.1016/j.seta.2018.12.015spa
dc.relation.referencesEl-Hawagi, A. M., Rosas, C., Ponce-Ortega, J. M., Jiménez-Gutierrez, A., Mannan, M. S., & El-Halwagi, M. M. (2013). Multiobjective Optimization of Biorefineries with Economic and Safety Objectives. AIChe Journal, 59(7), 2427–2434. https://doi.org/10.1002/aic.14030spa
dc.relation.referencesErlich, C., & Fransson, T. H. (2011). Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study. Applied Energy, 88(3), 899–908. https://doi.org/10.1016/j.apenergy.2010.08.028spa
dc.relation.referencesEuropean Biochar Industry, E. (2022). EU-Biochar-Market-Report_2022-03-09. https://www.biochar-industry.com/2022/european-biochar-market-report-2021-2022-available-now/spa
dc.relation.referencesFaravelli, T., Frassoldati, A., Migliavacca, G., & Ranzi, E. (2010). Detailed kinetic modeling of the thermal degradation of lignins. Biomass and Bioenergy, 34(3), 290–301. https://doi.org/10.1016/j.biombioe.2009.10.018spa
dc.relation.referencesFernando Frechoso Escudero, Jhon Fredy Vélez Jaramillo, D. D., Rodríguez, Ana Urueña Leal, Farid Chejne Janna, J. A. O. L., Robert José Macías Naranjo, Carlos Andrés Gómez Gutiérrez, E. O., Restrepo, Fanor Mondragón Pérez, Diana Patricia López López, R. R., Casado, Virginia Pérez López, José María Sánchez Hervás, J. M. M., Laplaza, Jorge Arenales Rivera, Alfonso Pascual Delgado, I. O. G., Daniela Tavares Silva, Ricardo Barbosa Monteiro, R. M. M., & Alfredo Curbelo Alonso, D. O. M. (2016). GENERACIÓN DE ENERGÍA ELÉCTRICA MEDIANTE SISTEMA HÍBRIDO SOLAR/GASIFICACIÓN DE RESIDUOS AGROINDUSTRIALES HIBRELEC (CARTIF, Ed.).spa
dc.relation.referencesFletcher, T. H. (2017). Gasification fundamentals. In Integrated Gasification Combined Cycle (IGCC) Technologies (Vol. 3173). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100167-7.00006-8spa
dc.relation.referencesFonseca, F. G., Funke, A., & Dahmen, N. (2019). Aspen PlusTM Modelling of Fractional Condensation Schemes for Production of Fast Pyrolysis Bio-oil. European Biomass Conference and Exhibition Proceedings, 1227–1233. https://doi.org/10.5071/27THEUBCE2019-3BV.7.9spa
dc.relation.referencesFonseca Gomes, F., Funke, A., Niebel, A., Soares Dias, A. P., & Dahmen, N. (2019a). Moisture content as a design and operational parameter for fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 139, 73–86. https://doi.org/10.1016/J.JAAP.2019.01.012spa
dc.relation.referencesFunke, A., Grandl, R., Ernst, M., & Dahmen, N. (2018a). Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chemical Engineering and Processing - Process Intensification, 130, 67–75. https://doi.org/10.1016/J.CEP.2018.05.023spa
dc.relation.referencesFunke, A., Richter, D., Niebel, A., Dahmen, N., & Sauer, J. (2016). Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor. JoVE (Journal of Visualized Experiments), 2016(115), e54395. https://doi.org/10.3791/54395spa
dc.relation.referencesFunke, A., Tomasi Morgano, M., Dahmen, N., & Leibold, H. (2017a). Experimental comparison of two bench scale units for fast and intermediate pyrolysis. Journal of Analytical and Applied Pyrolysis, 124, 504–514. https://doi.org/10.1016/J.JAAP.2016.12.033spa
dc.relation.referencesGangadharan, P., Zanwar, A., Zheng, K., Gossage, J., & Lou, H. H. (2012). Sustainability assessment of polygeneration processes based on syngas derived from coal and natural gas. Computers and Chemical Engineering, 39, 105–117. https://doi.org/10.1016/j.compchemeng.2011.10.006spa
dc.relation.referencesGarcia-Freites, S., Welfle, A., Lea-Langton, A., Gilbert, P., & Thornley, P. (2020). The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector. Biomass Conversion and Biorefinery, 10(4), 1137–1152. https://doi.org/10.1007/s13399-019-00480-8spa
dc.relation.referencesGarcía-Ibañez, P., Cabanillas, A., & Sánchez, J. M. (2004). Gasification of leached orujillo (olive oil waste) in a pilot plant circulating fluidised bed reactor. Preliminary results. Biomass and Bioenergy, 27(2), 183–194. https://doi.org/10.1016/j.biombioe.2003.11.007spa
dc.relation.referencesGarcia-Perez, M., Lewis, T., … C. K.-S. D. of, & 2010, undefined. (2011a). Methods for producing biochar and advanced biofuels in Washington State. Researchgate.Net.spa
dc.relation.referencesGolden, T., Reed, B., & Das, A. (1988). Handbook of Biomass Downdraft Gasifier Engine Systems. SERI . U.S. Department of Energy, March, 148.spa
dc.relation.referencesGómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444–509. https://doi.org/http://dx.doi.org/10.1016/j.pecs.2009.12.002spa
dc.relation.referencesGranados, D. A., Basu, P., Nhuchhen, D. R., & Chejne, F. (2019). Investigation into torrefaction kinetics of biomass and combustion behaviors of raw, torrefied and char samples. Biofuels. https://doi.org/10.1080/17597269.2018.1558837spa
dc.relation.referencesGuda, V. K., Steele, P. H., Penmetsa, V. K., & Li, Q. (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. In Recent Advances in Thermochemical Conversion of Biomass (pp. 177–211). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63289-0.00007-7spa
dc.relation.referencesGuo, Q., Chen, X., & Liu, H. (2012). Experimental research on shape and size distribution of biomass particle. Fuel, 94, 551–555. https://doi.org/10.1016/j.fuel.2011.11.041spa
dc.relation.referencesHan, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of Cleaner Production, 231, 254–267. https://doi.org/10.1016/j.jclepro.2019.05.094spa
dc.relation.referencesHaro, P., Ollero, P., Villanueva Perales, Á. L., & Vidal-Barrero, F. (2013). Potential routes for themochemical biorefineries. Biofuels, Bioproducts and Biorefining, 7(5), 321–351. https://doi.org/10.1002/bbb.1409spa
dc.relation.referencesHarris, D. J., & Roberts, D. G. (2013). Coal gasification and conversion. In The Coal Handbook: Towards Cleaner Production (Vol. 2, pp. 427–454). Elsevier Inc. https://doi.org/10.1533/9781782421177.3.427spa
dc.relation.referencesHernández, J. J., Aranda-Almansa, G., & Bula, A. (2010a). Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91, 681–692. https://doi.org/10.1016/j.fuproc.2010.01.018spa
dc.relation.referencesHigman, C., & van der Burgt, M. (2003). Gasification. In Gasification. https://doi.org/10.1016/B978-0-7506-7707-3.X5000-1spa
dc.relation.referencesHow Green Hydrogen Could End The Fossil Fuel Era | Vaitea Cowan | TED - YouTube. (n.d.). Retrieved September 25, 2022, from https://www.youtube.com/watch?v=9OLxBvLvCoM&list=FLBzHGCxuzABD1gwy91_wd5wspa
dc.relation.referencesHuang, K., Won, W., Barnett, K. J., Brentzel, Z. J., Alonso, D. M., Huber, G. W., Dumesic, J. A., & Maravelias, C. T. (2018). Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. https://doi.org/10.1016/j.apenergy.2017.11.002spa
dc.relation.referencesIEA. (2021). World Energy Outlook 2021. In International Energy Agency.spa
dc.relation.referencesISE, F. I. F. S. E. S. (2020). Photovoltaics Report (Issue September).spa
dc.relation.referencesIslam, M. N., Zailani, R., & Ani, F. N. (1999). Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renewable Energy, 17(1), 73–84. https://doi.org/10.1016/S0960-1481(98)00112-8spa
dc.relation.referencesJagtap, K. K., Patil, G., Katti, P. K., & Kulkarni, S. B. (2017). Techno-economic modeling of wind-solar PV and wind-solar PV-biomass hybrid energy system. IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2016, 2016-Janua, 1–6. https://doi.org/10.1109/PEDES.2016.7914546spa
dc.relation.referencesJain, A. A., Mehra, A., & Ranade, V. V. (2018). Modeling and simulation of a fluidized bed gasifier. Asia-Pacific Journal of Chemical Engineering, 13(1), e2155. https://doi.org/10.1002/apj.2155spa
dc.relation.referencesJana, K., Ray, A., Majoumerd, M. M., Assadi, M., & De, S. (2017). Polygeneration as a future sustainable energy solution – A comprehensive review. Applied Energy, 202, 88–111. https://doi.org/10.1016/j.apenergy.2017.05.129spa
dc.relation.referencesJimenez, O., Curbelo, A., & Suarez, Y. (2012). Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy for Sustainable Development, 16(1), 98–102. https://doi.org/10.1016/j.esd.2011.12.003spa
dc.relation.referencesJoint Research Centre. (2020). State of the Art on Alternative Fuels Transport Systems in the European Union - Update 2020 - Well-to-Wheels analysis of future automotive fuels and powertrains in the European context (Issue February). https://doi.org/10.2771/29117spa
dc.relation.referencesKan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/J.RSER.2015.12.185spa
dc.relation.referencesKanatlı, T. K., & Ayas, N. (2021). Simulating the steam reforming of sunflower meal in Aspen Plus. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.12.195spa
dc.relation.referencesKeche, A. J., Gaddale, A. P. R., & Tated, R. G. (2015). Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technologies and Environmental Policy, 17(2), 465–473. https://doi.org/10.1007/s10098-014-0804-xspa
dc.relation.referencesKim, J., Sen, S. M., & Maravelias, C. T. (2013a). An optimization-based assessment framework for biomass-to-fuel conversion strategies. Energy & Environmental Science, 6(4), 1093–1104. https://doi.org/10.1039/c3ee24243aspa
dc.relation.referencesKong, L., Sen, S. M., Henao, C. A., Dumesic, J. A., & Maravelias, C. T. (2016). A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design. Computers and Chemical Engineering, 91, 68–84. https://doi.org/10.1016/j.compchemeng.2016.02.013spa
dc.relation.referencesLaiwatthanaphaisarn, T., & Anantpinijwatna, A. (n.d.). Optimization of dimethyl ether production process synthesis using superstructure analysis. https://doi.org/10.1051/matecconf/201819203018spa
dc.relation.referencesLédé, J., & Authier, O. (2015). Temperature and heating rate of solid particles undergoing a thermal decomposition. Which criteria for characterizing fast pyrolysis? Journal of Analytical and Applied Pyrolysis, 113, 1–14. https://doi.org/10.1016/J.JAAP.2014.11.013spa
dc.relation.referencesLi, K., Zhang, R., & Bi, J. (2010). Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. International Journal of Hydrogen Energy, 35(7), 2722–2726. https://doi.org/10.1016/j.ijhydene.2009.04.046spa
dc.relation.referencesLiang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., Zhou, Z., & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 134, p. 110335). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110335spa
dc.relation.referencesLiu, P. (2009). Modelling and Optimization of Polygeneration Energy Systems [imperial College London]. https://spiral.imperial.ac.uk/bitstream/10044/1/5530/1/Liu-P-2009-PhD-Thesis.pdfspa
dc.relation.referencesLiu, P., Gerogiorgis, D. I., & Pistikopoulos, E. N. (2007a). Modeling and optimization of polygeneration energy systems. Catalysis Today, 127(1–4), 347–359. https://doi.org/10.1016/j.cattod.2007.05.024spa
dc.relation.referencesLiu, P., & Pistikopoulos, E. N. (2010). A Multi-Objective Optimization Approach to Polygeneration Energy Systems Design. AIChe Journal, 56(5), 1218–1234. https://doi.org/10.1002/aic.12058spa
dc.relation.referencesLv, P. M., Xiong, Z. H., Chang, J., Wu, C. Z., Chen, Y., & Zhu, J. X. (2004a). An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95–101. https://doi.org/10.1016/j.biortech.2004.02.003spa
dc.relation.referencesMacías, R. J., Ceballos, C., Ordonez-Loza, J., Ortiz, M., Gómez, C. A., Chejne, F., & Vélez, F. (2022). Evaluation of the performance of a solar photovoltaic - Biomass gasifier system as electricity supplier. Energy, 260. https://doi.org/10.1016/j.energy.2022.125046spa
dc.relation.referencesMacías-Naranjo, R. J., Chejne, F., Montoya, J. I., & Adriana Blanco-Leal. (2013). Gasificación de bagazo de caña y carbón en planta piloto. Mutis, 4(1), 24–32.spa
dc.relation.referencesMahmut C. Acar, Y. E. B. (2018). Simulation Of Biomass Gasification Process Using Aspen Plus‏. 14Th International Combustion Sympoium, April, 25–27.spa
dc.relation.referencesManrique, R., Vásquez, D., Ceballos, C., Chejne, F., & Amell, A. (2019). Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks. ACS Omega, 4(2), 2957–2963. https://doi.org/10.1021/acsomega.8b02591spa
dc.relation.referencesMarrugo Escobar, G. P. (2016a). Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar. 191.spa
dc.relation.referencesMartin, M., Gani, R., & Mujtaba, I. M. (2022). Sustainable process synthesis, design, and analysis: Challenges and opportunities. Sustainable Production and Consumption, 30, 686–705. https://doi.org/10.1016/j.spc.2022.01.002spa
dc.relation.referencesMatsui, I., Kunii, D., & Furusawa, T. (1985). Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 18(2), 105–113. https://doi.org/10.1252/jcej.18.105spa
dc.relation.referencesMehrpooya, M., Khalili, M., Mehdi, M., & Sharifzadeh, M. (2018). Model development and energy and exergy analysis of the biomass gasi fi cation process ( Based on the various biomass sources ). Renewable and Sustainable Energy Reviews, 91(2), 869–887. https://doi.org/10.1016/j.rser.2018.04.076spa
dc.relation.referencesMeier, D., Van De Beld, B., Bridgwater, A. V., Elliott, D. C., Oasmaa, A., & Preto, F. (2013a). State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews, 20, 619–641. https://doi.org/10.1016/J.RSER.2012.11.061spa
dc.relation.referencesMencarelli, L., Chen, Q., Pagot, A., & Grossmann, I. E. (2020). A review on superstructure optimization approaches in process system engineering. Computers and Chemical Engineering, 136, 106808. https://doi.org/10.1016/j.compchemeng.2020.106808spa
dc.relation.referencesMirkouei, A., Haapala, K. R., Sessions, J., & Murthy, G. S. (2017). A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renewable and Sustainable Energy Reviews, 67, 15–35. https://doi.org/10.1016/j.rser.2016.08.053spa
dc.relation.referencesMitsos, A., Asprion, N., Floudas, C. A., Michael, B., Michael, B., Dominique, B., Adrian, C., & Pascal, S. (2018). Challenges in process optimization for new feedstocks and energy sources. Computers & Chemical Engineering, 113, 209–221. https://doi.org/doi.org/10.1016/j.compchemeng.2018.03.013spa
dc.relation.referencesMitta, N. R., Ferrer-Nadal, S., Lazovic, A. M., Parales, J. F., Velo, E., & Puigjaner, L. (2006). Modelling and simulation of a tyre gasification plant for synthesis gas production. Computer Aided Chemical Engineering, 21(C), 1771–1776. https://doi.org/10.1016/S1570-7946(06)80304-4spa
dc.relation.referencesMohan, D., Pittman, C. U., & Steele, P. H. (2006a). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. https://doi.org/10.1021/EF0502397/ASSET/IMAGES/LARGE/EF0502397H00010.JPEGspa
dc.relation.referencesMontoya Arbeláez, J. I., Chejne Janna, F., & Garcia-Pérez, M. (2015). Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study. Dyna, 82(192), 239–248. https://doi.org/10.15446/dyna.v82n192.44701spa
dc.relation.referencesMontoya, J. I., Valdés, C., Chejne, F., Gómez, C. A., Blanco, A., Marrugo, G., Osorio, J., Castillo, E., Aristóbulo, J., & Acero, J. (2015a). Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 112, 379–387. https://doi.org/10.1016/j.jaap.2014.11.007spa
dc.relation.referencesMoshi, R. E., Jande, Y. A. C., Kivevele, T. T., & Kim, W. S. (2020a). Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1806404spa
dc.relation.referencesMotta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 94, 998–1023. https://doi.org/10.1016/J.RSER.2018.06.042spa
dc.relation.referencesMurugan, S., & Horák, B. (2016). Tri and polygeneration systems-A review. Renewable and Sustainable Energy Reviews, 60, 1032–1051. https://doi.org/10.1016/j.rser.2016.01.127spa
dc.relation.referencesMuslim, M. B., Saleh, S., & Samad, N. A. F. A. (2017). Effects of purification on the hydrogen production in biomass gasification process. Chemical Engineering Transactions, 56, 1495–1500. https://doi.org/10.3303/CET1756250spa
dc.relation.referencesNayaggy, M., & Putra, Z. A. (2019). Process Simulation on Fast Pyrolysis of Palm Kernel Shell for Production of Fuel. Indonesian Journal of Science and Technology, 4(1), 64–73. https://doi.org/10.17509/IJOST.V4I1.15803spa
dc.relation.referencesNg, K. S., & Martinez Hernandez, E. (2016). A systematic framework for energetic, environmental and economic (3E) assessment and design of polygeneration systems. Chemical Engineering Research and Design, 106, 1–25. https://doi.org/10.1016/J.CHERD.2015.11.017spa
dc.relation.referencesNg, R. T. L., Patchin, S., Wu, W., Sheth, N., & Maravelias, C. T. (2018). An optimization-based web application for synthesis and analysis of biomass-to-fuel strategies. Biofuels, Bioproducts and Biorefining, 12(2), 170–176. https://doi.org/10.1002/bbb.1821spa
dc.relation.referencesNikoo, M. B., & Mahinpey, N. (2008a). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 32(12), 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020spa
dc.relation.referencesNixon, J. D., Dey, P. K., & Davies, P. A. (2012). The feasibility of hybrid solar-biomass power plants in India. Energy, 46(1), 541–554. https://doi.org/10.1016/j.energy.2012.07.058spa
dc.relation.referencesOrozco, L. (2019). PREPARACIÓN DE CARBÓN ACTIVADO CONFORMADO A PARTIR DE HYDROCHAR DE BORRA DE CAFÉ (Preparation shaped activated carbon from hydrochar to spend coffee ground) [Universida Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/77471/1106307814.2020.pdf?sequence=5&isAllowed=y#:~:text=En%20general%2C%20la%20preparaci%C3%B3n%20de,importantes%20para%20el%20procedimiento%20hidrotermal.spa
dc.relation.referencesOsorio, J., & Chejne, F. (2019). Bio-Oil Production in Fluidized Bed Reactor at Pilot Plant from Sugarcane Bagasse by Catalytic Fast Pyrolysis. Waste and Biomass Valorization, 10(1), 187–195. https://doi.org/10.1007/s12649-017-0025-8spa
dc.relation.referencesOwusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1–14. https://doi.org/10.1080/23311916.2016.1167990spa
dc.relation.referencesPapari, S., & Hawboldt, K. (2015). A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renewable and Sustainable Energy Reviews, 52, 1580–1595. https://doi.org/10.1016/J.RSER.2015.07.191spa
dc.relation.referencesParra-Peña, R. I., Flórez, S., & Rodriguez, D. (2022). LA COMPETITIVIDAD DE LA CADENA DEL ARROZ EN COLOMBIA. UN COMPROMISO CON EL BIENESTAR DEL AGRICULTOR.spa
dc.relation.referencesPatel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1489. https://doi.org/10.1016/j.rser.2015.09.070spa
dc.relation.referencesPerea-Moreno, M. A., Samerón-Manzano, E., & Perea-Moreno, A. J. (2019a). Biomass as renewable energy: Worldwide research trends. Sustainability (Switzerland), 11(3), 863. https://doi.org/10.3390/su11030863spa
dc.relation.referencesPeters, J. F. (2015a). Pyrolysis for biofuels or biochar? A thermodinamic, envirnmental and economic assessment [Universidad Rey Juan Carlos]. https://doi.org/10.13140/RG.2.2.34448.30721spa
dc.relation.referencesPeters, J. F., Banks, S. W., Bridgwater, A. V, & Dufour, J. (2017). A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Applied Energy, 188, 595–603. https://doi.org/10.1016/j.apenergy.2016.12.030spa
dc.relation.referencesPeters, J. F., Iribarren, D., & Dufour, J. (2015). Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel, 139, 441–456. https://doi.org/10.1016/j.fuel.2014.09.014spa
dc.relation.referencesPfitzer, C., Dahmen, N., Tröger, N., Weirich, F., Sauer, J., Günther, A., & Müller-Hagedorn, M. (2016a). Fast Pyrolysis of Wheat Straw in the Bioliq Pilot Plant. Energy and Fuels, 30(10), 8047–8054. https://doi.org/10.1021/ACS.ENERGYFUELS.6B01412/ASSET/IMAGES/LARGE/EF-2016-014129_0007.JPEGspa
dc.relation.referencesPuig-Gamero, M., Pio, D. T., Tarelho, L. A. C., Sánchez, P., & Sanchez-Silva, L. (2021). Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®. Energy Conversion and Management, 235, 113981. https://doi.org/10.1016/j.enconman.2021.113981spa
dc.relation.referencesPuy, N., Murillo, R., Navarro, M. V., López, J. M., Rieradevall, J., Fowler, G., Aranguren, I., García, T., Bartrolí, J., & Mastral, A. M. (2011). Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Management, 31(6), 1339–1349. https://doi.org/10.1016/J.WASMAN.2011.01.020spa
dc.relation.referencesQuaglia, A., Sarup, B., Sin, G., & Gani, R. (2012). Integrated business and engineering framework for synthesis and design of enterprise-wide processing networks. Computers and Chemical Engineering, 38, 213–223. https://doi.org/10.1016/j.compchemeng.2011.12.011spa
dc.relation.referencesRajan, R. R., & Wen, C. Y. (1980). A comprehensive model for fluidized bed coal combustors. AIChE Journal, 26(4), 642–655. https://doi.org/10.1002/aic.690260416spa
dc.relation.referencesRodríguez Valencia, N., & Zambrano Franco, D. (2010). Los subproductos del café: fuente de energía renovable. Avances Técnicos Cenicafé, 3, 8.spa
dc.relation.referencesRoy, C., De Caumia, B., & Pakdel, H. (1988). Preliminary Feasibility Study of the Biomass Vacuum Pyrolysis Process. In Research in Thermochemical Biomass Conversion (pp. 585–596). Springer Netherlands. https://doi.org/10.1007/978-94-009-2737-7_45spa
dc.relation.referencesRozzi, E., Minuto, F. D., Lanzini, A., & Leone, P. (2020). Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020, Vol. 13, Page 420, 13(2), 420. https://doi.org/10.3390/EN13020420spa
dc.relation.referencesSafarian, S., Unnþórsson, R., & Richter, C. (2019). A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews, 110, 378–391. https://doi.org/https://doi.org/10.1016/j.rser.2019.05.003spa
dc.relation.referenceshttps://doi.org/https://doi.org/10.1016/j.rser.2019.05.003 Sahoo, U., Kumar, R., Pant, P. C., & Chaudhury, R. (2015a). Scope and sustainability of hybrid solar-biomass power plant with cooling, desalination in polygeneration process in India. Renewable and Sustainable Energy Reviews, 51(May), 304–316. https://doi.org/10.1016/j.rser.2015.06.004spa
dc.relation.referencesSantos, A. M., Carlos, J., Hurtado, R., & Flores Villaseñor, S. E. (n.d.). Carbón activado: generalidades y aplicaciones. Activated carbon: generalities and applications.spa
dc.relation.referencesSeifi, S., & Crowther, D. (2016). Managing with depleted resources. Developments in Corporate Governance and Responsibility, 10, 67–86. https://doi.org/10.1108/S2043-052320160000010005spa
dc.relation.referencesSerra, L. M., Lozano, M.-A., Ramos, J., Ensinas, A. V., & Nebra, S. A. (2009). Polygeneration and efficient use of natural resources. Energy, 34(5), 575–586. https://doi.org/10.1016/J.ENERGY.2008.08.013spa
dc.relation.referencesShemfe, M. B., Gu, S., & Ranganathan, P. (2015). Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 143, 361–372. https://doi.org/10.1016/j.fuel.2014.11.078spa
dc.relation.referencesSher, F., Iqbal, S. Z., Liu, H., Imran, M., & Snape, C. E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203, 112266. https://doi.org/10.1016/j.enconman.2019.112266spa
dc.relation.referencesSierra, V., Marín Ceballos, C. M., & Chejne Janna, F. (2021a). Simulation of thermochemical processes in Aspen Plus as a tool for biorefinery analysis. CT&F - Ciencia, Tecnología y Futuro, 11(2), 27–38. https://doi.org/10.29047/01225383.372spa
dc.relation.referencesSigurjonsson, H. Æ., & Clausen, L. R. (2018). Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power. Applied Energy, 216(August 2017), 323–337. https://doi.org/10.1016/j.apenergy.2018.02.124spa
dc.relation.referencesSingh, A., & Baredar, P. (2016). Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system. Energy Reports, 2, 254–260. https://doi.org/10.1016/j.egyr.2016.10.001spa
dc.relation.referencesSingh, S., Singh, M., & Kaushik, S. C. (2016). Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Conversion and Management, 128, 178–190. https://doi.org/10.1016/j.enconman.2016.09.046spa
dc.relation.referencesSkoulou, V. K., & Zabaniotou, A. a. (2013). Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. Journal of Analytical and Applied Pyrolysis, 99, 110–116. https://doi.org/10.1016/j.jaap.2012.10.015spa
dc.relation.referencesSrinivas, T., & Reddy, B. V. (2014). Case Studies in Thermal Engineering Hybrid solar – biomass power plant without energy storage. Case Studies in Thermal Engineering, 2, 75–81. https://doi.org/10.1016/j.csite.2013.12.004spa
dc.relation.referencesSusastriawan, A. A. P., Saptoadi, H., & Purnomo. (2019). Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture. Sustainable Energy Technologies and Assessments, 34(October 2018), 27–34. https://doi.org/10.1016/j.seta.2019.04.008spa
dc.relation.referencesSutar, K. B., Kohli, S., & Ravi, M. R. (2017). Design, development and testing of small downdraft gasifiers for domestic cookstoves. Energy, 124, 447–460. https://doi.org/https://doi.org/10.1016/j.energy.2017.02.076spa
dc.relation.referencesSuwatthikul, A., Limprachaya, S., Kittisupakorn, P., & Mujtaba, I. M. (2017). Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition. Energies, 10(3), 1–15. https://doi.org/10.3390/en10030314spa
dc.relation.referencesThangalazhy-Gopakumar, S., Adhikari, S., Gupta, R. B., & Fernando, S. D. (2011). Influence of pyrolysis operating conditions on bio-Oil components: A microscale study in a pyroprobe. Energy and Fuels, 25(3), 1191–1199. https://doi.org/10.1021/ef101032sspa
dc.relation.referencesTrippe, F., Fröhling, M., Schultmann, F., Stahl, R., & Henrich, E. (2011). Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Processing Technology, 92(11), 2169–2184. https://doi.org/10.1016/J.FUPROC.2011.06.026spa
dc.relation.referencesTröger, N., Richter, D., & Stahl, R. (2013a). Effect of feedstock composition on product yields and energy recovery rates of fast pyrolysis products from different straw types. Journal of Analytical and Applied Pyrolysis, 100, 158–165. https://doi.org/10.1016/J.JAAP.2012.12.012spa
dc.relation.referencesUbando, A. T., Del Rosario, A. J. R., Chen, W. H., & Culaba, A. B. (2021). A state-of-the-art review of biowaste biorefinery. Environmental Pollution, 269. https://doi.org/10.1016/j.envpol.2020.116149spa
dc.relation.referencesUbando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299(November 2019). https://doi.org/10.1016/j.biortech.2019.122585spa
dc.relation.referencesUddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., & Ashrafur, S. M. (2018). An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, Vol. 11, Page 3115, 11(11), 3115. https://doi.org/10.3390/EN11113115spa
dc.relation.referencesUnidad de Planeación Minero Energética-Upme. (2014). Plan De Expansion De Referencia Generacion - Transmisión, 2015-2029 Unidad de Planeación Minero Energética.spa
dc.relation.referencesUnidad de Planeación Minero Energética-Upme. (2015). Plan Energético Nacional - Colombia: Ideario Energético 2050.spa
dc.relation.referencesUpme, Ideam, Colciencias, & Uis. (2011a). Atlas del potencial energético de la biomasa residual en Colombia. In Universidad Industrial de Santander (Ed.), Colombia: Ministerio de Minas y Energía (1st ed.). https://doi.org/ISBN 978-958-8504-59-9spa
dc.relation.referencesV, A. K., & Verma, A. (2021). Optimal techno-economic sizing of a solar-biomass-battery hybrid system for off-setting dependency on diesel generators for microgrid facilities. Journal of Energy Storage, 36(February), 102251. https://doi.org/10.1016/j.est.2021.102251spa
dc.relation.referencesValdés, C. F., Chejne, F., Marrugo, G., Macias, R. J., Gómez, C. A., Montoya, J. I., Londoño, C. A., La, J. De, & Arenas, E. (2016). Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process. 107, 1201–1209. https://doi.org/10.1016/j.applthermaleng.2016.07.086spa
dc.relation.referencesValdés, C. F., Marrugo, G. P., Chejne, F., Marin-Jaramillo, A., Franco-Ocampo, J., & Norena-Marin, L. (2020). Co-gasification and co-combustion of industrial solid waste mixtures and their implications on environmental emissions, as an alternative management. Waste Management, 101, 54–65. https://doi.org/10.1016/j.wasman.2019.09.037spa
dc.relation.referencesValero C., A., & Valero D., A. (2015). Thanathia: the destiny of the Earth´s mineral resources (Y. Amanda, Ed.). World Scientific Publishing Co. Pte. Ltd.spa
dc.relation.referencesVan Der Drift, A., Van Doorn, J., & Vermeulen, J. W. (2001). Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass and Bioenergy, 20(1), 45–56. https://doi.org/10.1016/S0961-9534(00)00045-3spa
dc.relation.referencesVélez, J. F., Chejne, F., Valdés, C. F., Emery, E. J., & Londoño, C. A. (2009). Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel, 88(3), 424–430. https://doi.org/10.1016/j.fuel.2008.10.018spa
dc.relation.referencesVenselaar, J. (1982). Design Rules for Down Draft Wood Gasifiers: a Short Review. Joint Technical Assistance Project, JTA-9A-Research Development1 at the Institut Teknologi Bandung, Indonesia, 1–24.spa
dc.relation.referencesVerma, M., Godbout, S., Brar, S. K., Solomatnikova, O., Lemay, S. P., & Larouche, J. P. (2012). Biofuels production from biomass by thermochemical conversion technologies. International Journal of Chemical Engineering. https://doi.org/10.1155/2012/542426spa
dc.relation.referencesVeses, A., Aznar, M., Callén, M. S., Murillo, R., & García, T. (2016a). An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties. Fuel, 181, 430–437. https://doi.org/10.1016/J.FUEL.2016.05.006spa
dc.relation.referencesVeses, A., Aznar, M., Martínez, I., Martínez, J. D., López, J. M., Navarro, M. V., Callén, M. S., Murillo, R., & García, T. (2014a). Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology, 162, 250–258. https://doi.org/10.1016/j.biortech.2014.03.146spa
dc.relation.referencesVivekh, P., Sudhakar, M., Srinivas, M., & Vishwanthkumar, V. (2017). Desalination technology selection using multi-criteria evaluation: TOPSIS and PROMETHEE-2. International Journal of Low-Carbon Technologies, 12(1), 24–35. https://doi.org/10.1093/ijlct/ctw001spa
dc.relation.referencesWang, C., Zhang, L., Chang, Y., & Pang, M. (2015). Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix. Energy Policy, 84, 155–165. https://doi.org/10.1016/j.enpol.2015.04.025spa
dc.relation.referencesWang, J., & Yang, Y. (2016). Energy , exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy. Energy Conversion and Management, 124, 566–577. https://doi.org/10.1016/j.enconman.2016.07.059spa
dc.relation.referencesWang, Z., Xu, G., Ren, J., Li, Z., Zhang, B., & Ren, X. (2017). Polygeneration system and sustainability: Multi-attribute decision-support framework for comprehensive assessment under uncertainties. Journal of Cleaner Production, 167, 1122–1137. https://doi.org/10.1016/j.jclepro.2017.08.089spa
dc.relation.referencesWen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610–612. https://doi.org/10.1002/aic.690120343spa
dc.relation.referencesWon, W., Motagamwala, A. H., Dumesic, J. A., & Maravelias, C. T. (2017). A co-solvent hydrolysis strategy for the production of biofuels: Process synthesis and technoeconomic analysis. Reaction Chemistry and Engineering, 2(3), 397–405. https://doi.org/10.1039/c6re00227gspa
dc.relation.referencesWooley, R. J., & Putsche, V. (n.d.). Development of an ASPEN PLUS Physical Property Database for Biofuels Components.spa
dc.relation.referencesXu, G., Murakami, T., Suda, T., Matsuzawa, Y., & Tani, H. (2006). Gasification of coffee grounds in dual fluidized bed: Performance evaluation and parametric investigation. Energy and Fuels, 20(6), 2695–2704. https://doi.org/10.1021/ef060120dspa
dc.relation.referencesYamashita, K., & Barreto, L. (2005). Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy, 30(13), 2453–2473. https://doi.org/10.1016/j.energy.2004.12.002spa
dc.relation.referencesYan, H. M., Heidenreich, C., & Zhang, D. K. (1998a). Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of “net flow.” Fuel, 77(9–10), 1067–1079. https://doi.org/10.1016/S0016-2361(98)00003-9spa
dc.relation.referencesYang, Q., Chen, G. Q., Liao, S., Zhao, Y. H., Peng, H. W., & Chen, H. P. (2013). Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm. Renewable and Sustainable Energy Reviews, 25, 229–239. https://doi.org/10.1016/j.rser.2013.04.013spa
dc.relation.referencesYang, Q., Yang, S., Qian, Y., & Kraslawski, A. (2015). Application of House of Quality in evaluation of low rank coal pyrolysis polygeneration technologies. Energy Conversion and Management, 99, 231–241. https://doi.org/10.1016/j.enconman.2015.03.104spa
dc.relation.referencesYates, J. G. (1988). Gas fluidization technology. The Chemical Engineering Journal, 37(2), 134–135. https://doi.org/10.1016/0300-9467(88)80042-xspa
dc.relation.referencesYeh, A. I., & Jaw, Y. M. (1999). Predicting residence time distributions in a single screw extruder from operating conditions. Journal of Food Engineering, 39(1), 81–89. https://doi.org/10.1016/S0260-8774(98)00150-2spa
dc.relation.referencesYeomans, H., & Grossmann, I. E. (1999). A systematic modeling framework of superstructure optimization in process synthesis. Computers and Chemical Engineering, 23(6), 709–731. https://doi.org/10.1016/S0098-1354(99)00003-4spa
dc.relation.referencesYoon, S. J., Son, Y.-I., Kim, Y.-K., & Lee, J.-G. (2012a). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. https://doi.org/10.1016/j.renene.2011.08.028spa
dc.relation.referencesYuan, Z., & Eden, M. R. (2016). Superstructure optimization of integrated fast pyrolysis-gasification for production of liquid fuels and propylene. AIChE Journal, 62(9), 3155–3176. https://doi.org/10.1002/AIC.15337spa
dc.relation.referencesZhang, L., Babi, D. K., & Gani, R. (2016). New Vistas in Chemical Product and Process Design. Annual Review of Chemical and Biomolecular Engineering, 7, 557–582. https://doi.org/10.1146/annurev-chembioeng-080615-034439spa
dc.relation.referencesZhao, S., & Luo, Y. (2020). Multiscale Modeling of Lignocellulosic Biomass Thermochemical Conversion Technology: An Overview on the State-of-the-Art. Energy and Fuels, 34(10), 11867–11886. https://doi.org/10.1021/acs.energyfuels.0c02247spa
dc.relation.referencesZheng, Y., Jenkins, B. M., Kornbluth, K., & Træholt, C. (2018). Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage. Renewable Energy, 123, 204–217. https://doi.org/10.1016/j.renene.2018.01.120spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.lembRecursos energéticos renovablesspa
dc.subject.lembRenewable energy sourceseng
dc.subject.proposalPoligeneraciónspa
dc.subject.proposalPolygenerationeng
dc.subject.proposalOptimizaciónspa
dc.subject.proposalOptimizationeng
dc.subject.proposalSuperestructurasspa
dc.subject.proposalSuperstructureeng
dc.subject.proposalBiomasaspa
dc.subject.proposalBiomasseng
dc.subject.proposalSimulaciónspa
dc.subject.proposalSimulationeng
dc.titleAnalysis of superstructures. Case study: Optimizing agro-industrial waste as precursors of chemical products, an essential element for the energy transitioneng
dc.title.translatedAnálisis de superestructuras. Caso de estudio: Optimización de residuos agroindustriales como precursores de productos químicos, un elemento esencial para la transición energéticaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstrategia de transformación del sector energético Colombiano en el horizonte 2030 - ENERGETICA 2030spa
oaire.awardtitleAlliance for Biomass and Sustainability Research - ABISUREspa
oaire.fundernameMinisterio de Ciencia y Tecnologíaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71376687.2023.pdf
Tamaño:
6.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: