Analysis of superstructures. Case study: Optimizing agro-industrial waste as precursors of chemical products, an essential element for the energy transition
dc.contributor.advisor | Maya López, Juan Carlos | |
dc.contributor.advisor | Chejne, Farid | |
dc.contributor.author | Ceballos Marin, Carlos Mario | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000469670 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=jZcaS3UAAAAJ&hl=es | spa |
dc.contributor.orcid | Ceballos Marin, Carlos Mario [0000-0002-5345-2532] | spa |
dc.contributor.orcid | Chejne Janna, Farid [0000-0003-0445-7609] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Carlos-Ceballos-7 | spa |
dc.contributor.researchgroup | Termodinámica Aplicada y Energías Alternativas | spa |
dc.date.accessioned | 2023-05-24T20:14:45Z | |
dc.date.available | 2023-05-24T20:14:45Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Este estudio presenta una herramienta de optimización basada en análisis de superestructura para el diseño de procesos químicos y la toma de decisiones en la implementación de esquemas de poligeneración en Colombia. El programa de optimización que se desarrolló en Matlab, considera los parámetros de diferentes procesos termoquímicos y tecnologías para la transformación de tres posibles biomasas en nueve productos de alto valor agregado en el mercado nacional. Para obtener los parámetros necesarios se utilizó simulación detallada de los procesos en AspenPlus®, lo que permitió reducir el número de niveles de la superestructura y disminuir también el costo computacional del proceso de optimización en Matlab. Los resultados destacados en este estudio incluyen la generación de una herramienta de optimización, la identificación del biochar como el producto más viable para la implementación de esquemas de poligeneración en Colombia y la identificación de las posibles tecnologías para la transformación de las biomasas. Finalmente, este trabajo demuestra que el análisis de superestructura es una herramienta útil para la toma de decisiones, que puede ser de utilidad para entidades gubernamentales y posibles inversionistas en la definición de esquemas de poligeneración. (Texto tomado de la fuente) | spa |
dc.description.abstract | This study presents an optimization tool based on superstructure analysis for designing chemical processes and decision-making in implementing polygeneration schemes in Colombia. The optimization program developed in Matlab considers the parameters of different thermochemical processes and technologies for transforming three possible biomasses into nine high-added-value products in the national market. To obtain the required parameters, a detailed simulation of the processes in AspenPlus® was used, which allowed reducing the number of levels of the superstructure and reducing the computational cost of the optimization process in Matlab. The results highlighted in this study include generating an optimization tool, identifying biochar as the most viable product for implementing polygeneration schemes in Colombia, and identifying possible technologies for transforming biomasses. Finally, this work demonstrates that superstructure analysis is a useful tool for decision-making, which can be useful for government entities and potential investors in defining polygeneration schemes. | eng |
dc.description.curriculararea | Área curricular de Ingeniería Química e Ingeniería de Petróleos | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.sponsorship | Ministerio de Ciencia y Tecnología que financión el programa ENERGETICA 2030 por al convocatoria 788 del Ecosistema Colombia Científca, contrato número FP44842-210-2018 | spa |
dc.description.sponsorship | Al centro de excelencia ABISURE - “Alliance for Biomass and Sustainability Research (ABISURE), financiado por la Universidad Nacional de Colombia, Código Hermes 53024. | spa |
dc.format.extent | xxviii, 225 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83857 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abba, I. A., Grace, J. R., Bi, H. T., & Thompson, M. L. (2003). Spanning the flow regimes: Generic fluidized-bed reactor model. AIChE Journal, 49(7), 1838–1848. https://doi.org/10.1002/aic.690490720 | spa |
dc.relation.references | Abd El Aziz, Y. (2022). Renewables 2022 Global Status Report Germany Factsheet. | spa |
dc.relation.references | Acevedo, J. C., Posso, F. R., Durán, J. M., & Arenas, E. (2018). Simulation of the gasification process of palm kernel shell using Aspen PLUS. Journal of Physics: Conference Series, 1126(1). https://doi.org/10.1088/1742-6596/1126/1/012010 | spa |
dc.relation.references | Adams, T. A., & Ghouse, J. H. (2015). Polygeneration of fuels and chemicals. Current Opinion in Chemical Engineering, 10, 87–93. https://doi.org/10.1016/j.coche.2015.09.006 | spa |
dc.relation.references | Aghaalikhani, A., Schmid, J. C., Borello, D., Fuchs, J., Benedikt, F., Hofbauer, H., Rispoli, F., Henriksen, U. B., Sárossy, Z., & Cedola, L. (2019). Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation. Renewable Energy, 143, 703–718. https://doi.org/10.1016/J.RENENE.2019.05.022 | spa |
dc.relation.references | Ahmed, A. M. A., Salmiaton, A., Choong, T. S. Y., & Wan Azlina, W. A. K. G. (2015). Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus. Renewable and Sustainable Energy Reviews, 52, 1623–1644. https://doi.org/10.1016/J.RSER.2015.07.125 | spa |
dc.relation.references | Aho, A., Kumar, N., Eranen, K., Holmbom, B., Hupa, M., Salmi, T., & Murzin, D. Y. (2008). Pyrolysis of softwood carbohydrates in a fluidized bed reactor. International Journal of Molecular Sciences, 9(9), 1665–1675. https://doi.org/10.3390/ijms9091665 | spa |
dc.relation.references | Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews, 14(9), 2852–2862. https://doi.org/10.1016/j.rser.2010.07.026 | spa |
dc.relation.references | ANDRE, R., PINTO, F., FRANCO, C., DIAS, M., GULYURTLU, I., MATOS, M., & CABRITA, I. (2005). Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel, 84(12), 1635–1644. https://doi.org/10.1016/j.fuel.2005.02.018 | spa |
dc.relation.references | Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., & Dutta, A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89(SUPPL. 1), S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015 | spa |
dc.relation.references | Aspen Technology, Inc. (2001). Aspen Physical Property System Physical Property Methods and Models (11.1). | spa |
dc.relation.references | Atlas Interactivo - Radiación IDEAM. (n.d.). Retrieved April 17, 2022, from http://atlas.ideam.gov.co/visorAtlasRadiacion.html | spa |
dc.relation.references | Ayodele, E., Misra, S., Damasevicius, R., & Maskeliunas, R. (2019). Hybrid microgrid for microfinance institutions in rural areas – A field demonstration in West Africa. Sustainable Energy Technologies and Assessments, 35(February), 89–97. https://doi.org/10.1016/j.seta.2019.06.009 | spa |
dc.relation.references | Babi, D. K., Holtbruegge, J., Lutze, P., Gorak, A., Woodley, J. M., & Gani, R. (2015). Sustainable process synthesis-intensification. Computers and Chemical Engineering, 81, 218–244. https://doi.org/10.1016/j.compchemeng.2015.04.030 | spa |
dc.relation.references | Babu, S. P., Shah, B., & Talwalkar, A. (1978). FLUIDIZATION CORRELATIONS FOR COAL GASIFICATION MATERIALS - MINIMUM FLUIDIZATION VELOCITY AND FLUIDIZED BED EXPANSION RATIO. AIChE Symp Ser, 74(176), 176–186. | spa |
dc.relation.references | Bahng, M. K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, 651(2), 117–138. https://doi.org/10.1016/J.ACA.2009.08.016 | spa |
dc.relation.references | Baratieri, M., & Prando, D. (2015). Biomass for polygeneration and district heating. Handbook of Clean Energy Systems, 189–211. https://doi.org/10.1002/9781118991978.hces185 | spa |
dc.relation.references | Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. In Renewable and Sustainable Energy Reviews (Vol. 39, pp. 806–815). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.07.129 | spa |
dc.relation.references | Basu, P. (2006). Combustion and gasification in fluidized beds. | spa |
dc.relation.references | Basu, P. (2010). Biomass Gasifcation and Pyrolysis Practical Design and Theory. In Biomass Gasification Design Handbook. Elsevier. https://doi.org/10.1016/B978-0-12-374988-8.00011-8 | spa |
dc.relation.references | Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013). Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies, 6(12), 6508–6524. https://doi.org/10.3390/en6126508 | spa |
dc.relation.references | Bertran, M.-O. (2017). Modelling, synthesis and analysis of biorefinery networks. Technical University of Denmark. | spa |
dc.relation.references | Bertran, M.-O., Frauzem, R., Sanchez-Arcilla, A.-S., Zhang, L., Woodley, J. M., & Gani, R. (2017). A generic methodology for processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering, 106, 892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030 | spa |
dc.relation.references | Bhutada, G. (2022, April 13). The 200-year history of mankind’s energy transitions, World economic forum. https://www.weforum.org/agenda/2022/04/visualizing-the-history-of-energy-transitions/ | spa |
dc.relation.references | bioliq - El proceso bioliq®. (n.d.). Retrieved March 11, 2023, from https://www.bioliq.de/english/55.php | spa |
dc.relation.references | Bisht, A. S., & Thakur, N. S. (2019). Small scale biomass gasification plants for electricity generation in India: Resources, installation, technical aspects, sustainability criteria & policy. Renewable Energy Focus, 28, 112–126. https://doi.org/https://doi.org/10.1016/j.ref.2018.12.004 | spa |
dc.relation.references | Bonilla, J., Gordillo, G., & Cantor, C. (2019). Experimental Gasification of Coffee Husk Using Pure Oxygen-Steam Blends. Frontiers in Energy Research, 7(November), 1–11. https://doi.org/10.3389/fenrg.2019.00127 | spa |
dc.relation.references | Brassard, P., Godbout, S., & Raghavan, V. (2017a). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80–92. https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.06.020 | spa |
dc.relation.references | Bridgwater, T. (2018a). Challenges and opportunities in fast pyrolysis of biomass: Part I. Johnson Matthey Technology Review, 62(1), 118–130. https://doi.org/10.1595/205651318X696693 | spa |
dc.relation.references | Bridgwater, A. V. (2012a). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048 | spa |
dc.relation.references | British Petroleum. (2020). Energy Outlook 2020. In BP Energy Outlook 2020, Statistical Review. London: British Petroleum. | spa |
dc.relation.references | British Petroleum. (2022). BP Energy Outlook 2022 edition. In bp Energy Outlook 2022 edition. | spa |
dc.relation.references | Brown, J. N., & Brown, R. C. (2012a). Process optimization of an auger pyrolyzer with heat carrier using response surface methodology. Bioresource Technology, 103(1), 405–414. https://doi.org/10.1016/J.BIORTECH.2011.09.117 | spa |
dc.relation.references | Brown, T. R., Thilakaratne, R., Brown, R. C., & Hu, G. (2013). Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel, 106, 463–469. https://doi.org/10.1016/j.fuel.2012.11.029 | spa |
dc.relation.references | Cáceres-Martínez, L. E., Guío-Pérez, D. C., & Rincón-Prat, S. L. (2016). Potencial energético teórico y técnico de biomasa residual disponible en Colombia para aprovechamiento en procesos de transformación termoquímica. Tercer Congreso de Energía Sostenible, Octubre 24-26 de 2016, 106–111. | spa |
dc.relation.references | Campuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102, 372–409. https://doi.org/10.1016/J.RSER.2018.12.014 | spa |
dc.relation.references | CarbonTrust. (2011). Energy Management - a Comprehensive Guide to Controlling Energy Use. https://doi.org/10.4337/9780857932167.00018 | spa |
dc.relation.references | Cardona, S., Orozco, L. M., Gómez, C. L., Solís, W. A., Velásquez, J. A., & Rios, L. A. (2021a). Valorization of banana residues via gasification coupled with electricity generation. Sustainable Energy Technologies and Assessments, 44, 101072. https://doi.org/10.1016/j.seta.2021.101072 | spa |
dc.relation.references | Centeno, F., Mahkamov, K., Silva Lora, E. E., & Andrade, R. V. (2012). Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system. Renewable Energy, 37(1), 97–108. https://doi.org/10.1016/j.renene.2011.06.008 | spa |
dc.relation.references | Chejne, F., & Hernandez, J. P. (2002a). Modelling and simulation of coal gasification process in fluidised bed. Fuel, 81(13), 1687–1702. https://doi.org/10.1016/S0016-2361(02)00036-4 | spa |
dc.relation.references | Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039 | spa |
dc.relation.references | Chicco, G., & Mancarella, P. (2009). Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews, 13(3), 535–551. https://doi.org/10.1016/j.rser.2007.11.014 | spa |
dc.relation.references | Colciencias. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro. Mision de Sabios - Colombia 2019, 63. | spa |
dc.relation.references | Commeh, M. K., Kemausuor, F., Badger, E. N., & Osei, I. (2019). Experimental study of ferrocement downdraft gasifier engine system using different biomass feedstocks in Ghana. Sustainable Energy Technologies and Assessments, 31(October 2018), 124–131. https://doi.org/10.1016/j.seta.2018.12.016 | spa |
dc.relation.references | Contreras-Florez, N. L., & Niño-Rincon, C. A. (2022). Diseño y análisis termodinámico de un reactor tipo auger para el procesamiento de biomasa a escala laboratorio. Universidad Francisco de Paula Santander. | spa |
dc.relation.references | Culaba, A. B., Mayol, A. P., San Juan, J. L. G., Ubando, A. T., Bandala, A. A., Concepcion, R. S., Alipio, M., Chen, W. H., Show, P. L., & Chang, J. S. (2023). Design of biorefineries towards carbon neutrality: A critical review. Bioresource Technology, 369, 128256. https://doi.org/10.1016/J.BIORTECH.2022.128256 | spa |
dc.relation.references | Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 19(2), 590–598. https://doi.org/10.1021/ef034067u | spa |
dc.relation.references | Dahmen, N., & Sauer, J. (2021). Evaluation of techno‐economic studies on the bioliq® process for synthetic fuels production from biomass. Processes, 9(4). https://doi.org/10.3390/pr9040684 | spa |
dc.relation.references | Daizo, K., & Levenspiel, O. (1991). Fluidization engineering, 2nd edition. Stoneham, MA (United States); Butterworth Publishers. | spa |
dc.relation.references | Dale F, R., Saees, F.-A., Andres A, T., & Mark A, S. (1981). Petrochemical Technology Assessment. John Wiley & Sons, Ltd. | spa |
dc.relation.references | de Oliveira, J. L., da Silva, J. N., Martins, M. A., Pereira, E. G., & da Conceição Trindade Bezerra e Oliveira, M. (2018a). Gasification of waste from coffee and eucalyptus production as an alternative source of bioenergy in Brazil. Sustainable Energy Technologies and Assessments, 27(April), 159–166. https://doi.org/10.1016/j.seta.2018.04.005 | spa |
dc.relation.references | de Wild, P., Reith, H., & Heeres, E. (2011). Biomass pyrolysis for chemicals. Biofuels, 2(2), 185–208. https://doi.org/10.4155/bfs.10.88 | spa |
dc.relation.references | Douglas, J. M. (1985). A hierarchical decision procedure for process synthesis. AIChE Journal, 31(3), 353–362. https://doi.org/10.1002/aic.690310302 | spa |
dc.relation.references | Echegaray, M., García, D. Z., Mazza, G., & Rodriguez, R. (2019). Air-steam gasification of five regional lignocellulosic wastes: Exergetic evaluation. Sustainable Energy Technologies and Assessments, 31(October 2018), 115–123. https://doi.org/10.1016/j.seta.2018.12.015 | spa |
dc.relation.references | El-Hawagi, A. M., Rosas, C., Ponce-Ortega, J. M., Jiménez-Gutierrez, A., Mannan, M. S., & El-Halwagi, M. M. (2013). Multiobjective Optimization of Biorefineries with Economic and Safety Objectives. AIChe Journal, 59(7), 2427–2434. https://doi.org/10.1002/aic.14030 | spa |
dc.relation.references | Erlich, C., & Fransson, T. H. (2011). Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study. Applied Energy, 88(3), 899–908. https://doi.org/10.1016/j.apenergy.2010.08.028 | spa |
dc.relation.references | European Biochar Industry, E. (2022). EU-Biochar-Market-Report_2022-03-09. https://www.biochar-industry.com/2022/european-biochar-market-report-2021-2022-available-now/ | spa |
dc.relation.references | Faravelli, T., Frassoldati, A., Migliavacca, G., & Ranzi, E. (2010). Detailed kinetic modeling of the thermal degradation of lignins. Biomass and Bioenergy, 34(3), 290–301. https://doi.org/10.1016/j.biombioe.2009.10.018 | spa |
dc.relation.references | Fernando Frechoso Escudero, Jhon Fredy Vélez Jaramillo, D. D., Rodríguez, Ana Urueña Leal, Farid Chejne Janna, J. A. O. L., Robert José Macías Naranjo, Carlos Andrés Gómez Gutiérrez, E. O., Restrepo, Fanor Mondragón Pérez, Diana Patricia López López, R. R., Casado, Virginia Pérez López, José María Sánchez Hervás, J. M. M., Laplaza, Jorge Arenales Rivera, Alfonso Pascual Delgado, I. O. G., Daniela Tavares Silva, Ricardo Barbosa Monteiro, R. M. M., & Alfredo Curbelo Alonso, D. O. M. (2016). GENERACIÓN DE ENERGÍA ELÉCTRICA MEDIANTE SISTEMA HÍBRIDO SOLAR/GASIFICACIÓN DE RESIDUOS AGROINDUSTRIALES HIBRELEC (CARTIF, Ed.). | spa |
dc.relation.references | Fletcher, T. H. (2017). Gasification fundamentals. In Integrated Gasification Combined Cycle (IGCC) Technologies (Vol. 3173). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100167-7.00006-8 | spa |
dc.relation.references | Fonseca, F. G., Funke, A., & Dahmen, N. (2019). Aspen PlusTM Modelling of Fractional Condensation Schemes for Production of Fast Pyrolysis Bio-oil. European Biomass Conference and Exhibition Proceedings, 1227–1233. https://doi.org/10.5071/27THEUBCE2019-3BV.7.9 | spa |
dc.relation.references | Fonseca Gomes, F., Funke, A., Niebel, A., Soares Dias, A. P., & Dahmen, N. (2019a). Moisture content as a design and operational parameter for fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 139, 73–86. https://doi.org/10.1016/J.JAAP.2019.01.012 | spa |
dc.relation.references | Funke, A., Grandl, R., Ernst, M., & Dahmen, N. (2018a). Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chemical Engineering and Processing - Process Intensification, 130, 67–75. https://doi.org/10.1016/J.CEP.2018.05.023 | spa |
dc.relation.references | Funke, A., Richter, D., Niebel, A., Dahmen, N., & Sauer, J. (2016). Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor. JoVE (Journal of Visualized Experiments), 2016(115), e54395. https://doi.org/10.3791/54395 | spa |
dc.relation.references | Funke, A., Tomasi Morgano, M., Dahmen, N., & Leibold, H. (2017a). Experimental comparison of two bench scale units for fast and intermediate pyrolysis. Journal of Analytical and Applied Pyrolysis, 124, 504–514. https://doi.org/10.1016/J.JAAP.2016.12.033 | spa |
dc.relation.references | Gangadharan, P., Zanwar, A., Zheng, K., Gossage, J., & Lou, H. H. (2012). Sustainability assessment of polygeneration processes based on syngas derived from coal and natural gas. Computers and Chemical Engineering, 39, 105–117. https://doi.org/10.1016/j.compchemeng.2011.10.006 | spa |
dc.relation.references | Garcia-Freites, S., Welfle, A., Lea-Langton, A., Gilbert, P., & Thornley, P. (2020). The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector. Biomass Conversion and Biorefinery, 10(4), 1137–1152. https://doi.org/10.1007/s13399-019-00480-8 | spa |
dc.relation.references | García-Ibañez, P., Cabanillas, A., & Sánchez, J. M. (2004). Gasification of leached orujillo (olive oil waste) in a pilot plant circulating fluidised bed reactor. Preliminary results. Biomass and Bioenergy, 27(2), 183–194. https://doi.org/10.1016/j.biombioe.2003.11.007 | spa |
dc.relation.references | Garcia-Perez, M., Lewis, T., … C. K.-S. D. of, & 2010, undefined. (2011a). Methods for producing biochar and advanced biofuels in Washington State. Researchgate.Net. | spa |
dc.relation.references | Golden, T., Reed, B., & Das, A. (1988). Handbook of Biomass Downdraft Gasifier Engine Systems. SERI . U.S. Department of Energy, March, 148. | spa |
dc.relation.references | Gómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444–509. https://doi.org/http://dx.doi.org/10.1016/j.pecs.2009.12.002 | spa |
dc.relation.references | Granados, D. A., Basu, P., Nhuchhen, D. R., & Chejne, F. (2019). Investigation into torrefaction kinetics of biomass and combustion behaviors of raw, torrefied and char samples. Biofuels. https://doi.org/10.1080/17597269.2018.1558837 | spa |
dc.relation.references | Guda, V. K., Steele, P. H., Penmetsa, V. K., & Li, Q. (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. In Recent Advances in Thermochemical Conversion of Biomass (pp. 177–211). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63289-0.00007-7 | spa |
dc.relation.references | Guo, Q., Chen, X., & Liu, H. (2012). Experimental research on shape and size distribution of biomass particle. Fuel, 94, 551–555. https://doi.org/10.1016/j.fuel.2011.11.041 | spa |
dc.relation.references | Han, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of Cleaner Production, 231, 254–267. https://doi.org/10.1016/j.jclepro.2019.05.094 | spa |
dc.relation.references | Haro, P., Ollero, P., Villanueva Perales, Á. L., & Vidal-Barrero, F. (2013). Potential routes for themochemical biorefineries. Biofuels, Bioproducts and Biorefining, 7(5), 321–351. https://doi.org/10.1002/bbb.1409 | spa |
dc.relation.references | Harris, D. J., & Roberts, D. G. (2013). Coal gasification and conversion. In The Coal Handbook: Towards Cleaner Production (Vol. 2, pp. 427–454). Elsevier Inc. https://doi.org/10.1533/9781782421177.3.427 | spa |
dc.relation.references | Hernández, J. J., Aranda-Almansa, G., & Bula, A. (2010a). Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91, 681–692. https://doi.org/10.1016/j.fuproc.2010.01.018 | spa |
dc.relation.references | Higman, C., & van der Burgt, M. (2003). Gasification. In Gasification. https://doi.org/10.1016/B978-0-7506-7707-3.X5000-1 | spa |
dc.relation.references | How Green Hydrogen Could End The Fossil Fuel Era | Vaitea Cowan | TED - YouTube. (n.d.). Retrieved September 25, 2022, from https://www.youtube.com/watch?v=9OLxBvLvCoM&list=FLBzHGCxuzABD1gwy91_wd5w | spa |
dc.relation.references | Huang, K., Won, W., Barnett, K. J., Brentzel, Z. J., Alonso, D. M., Huber, G. W., Dumesic, J. A., & Maravelias, C. T. (2018). Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. https://doi.org/10.1016/j.apenergy.2017.11.002 | spa |
dc.relation.references | IEA. (2021). World Energy Outlook 2021. In International Energy Agency. | spa |
dc.relation.references | ISE, F. I. F. S. E. S. (2020). Photovoltaics Report (Issue September). | spa |
dc.relation.references | Islam, M. N., Zailani, R., & Ani, F. N. (1999). Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renewable Energy, 17(1), 73–84. https://doi.org/10.1016/S0960-1481(98)00112-8 | spa |
dc.relation.references | Jagtap, K. K., Patil, G., Katti, P. K., & Kulkarni, S. B. (2017). Techno-economic modeling of wind-solar PV and wind-solar PV-biomass hybrid energy system. IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2016, 2016-Janua, 1–6. https://doi.org/10.1109/PEDES.2016.7914546 | spa |
dc.relation.references | Jain, A. A., Mehra, A., & Ranade, V. V. (2018). Modeling and simulation of a fluidized bed gasifier. Asia-Pacific Journal of Chemical Engineering, 13(1), e2155. https://doi.org/10.1002/apj.2155 | spa |
dc.relation.references | Jana, K., Ray, A., Majoumerd, M. M., Assadi, M., & De, S. (2017). Polygeneration as a future sustainable energy solution – A comprehensive review. Applied Energy, 202, 88–111. https://doi.org/10.1016/j.apenergy.2017.05.129 | spa |
dc.relation.references | Jimenez, O., Curbelo, A., & Suarez, Y. (2012). Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy for Sustainable Development, 16(1), 98–102. https://doi.org/10.1016/j.esd.2011.12.003 | spa |
dc.relation.references | Joint Research Centre. (2020). State of the Art on Alternative Fuels Transport Systems in the European Union - Update 2020 - Well-to-Wheels analysis of future automotive fuels and powertrains in the European context (Issue February). https://doi.org/10.2771/29117 | spa |
dc.relation.references | Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/J.RSER.2015.12.185 | spa |
dc.relation.references | Kanatlı, T. K., & Ayas, N. (2021). Simulating the steam reforming of sunflower meal in Aspen Plus. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.12.195 | spa |
dc.relation.references | Keche, A. J., Gaddale, A. P. R., & Tated, R. G. (2015). Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technologies and Environmental Policy, 17(2), 465–473. https://doi.org/10.1007/s10098-014-0804-x | spa |
dc.relation.references | Kim, J., Sen, S. M., & Maravelias, C. T. (2013a). An optimization-based assessment framework for biomass-to-fuel conversion strategies. Energy & Environmental Science, 6(4), 1093–1104. https://doi.org/10.1039/c3ee24243a | spa |
dc.relation.references | Kong, L., Sen, S. M., Henao, C. A., Dumesic, J. A., & Maravelias, C. T. (2016). A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design. Computers and Chemical Engineering, 91, 68–84. https://doi.org/10.1016/j.compchemeng.2016.02.013 | spa |
dc.relation.references | Laiwatthanaphaisarn, T., & Anantpinijwatna, A. (n.d.). Optimization of dimethyl ether production process synthesis using superstructure analysis. https://doi.org/10.1051/matecconf/201819203018 | spa |
dc.relation.references | Lédé, J., & Authier, O. (2015). Temperature and heating rate of solid particles undergoing a thermal decomposition. Which criteria for characterizing fast pyrolysis? Journal of Analytical and Applied Pyrolysis, 113, 1–14. https://doi.org/10.1016/J.JAAP.2014.11.013 | spa |
dc.relation.references | Li, K., Zhang, R., & Bi, J. (2010). Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. International Journal of Hydrogen Energy, 35(7), 2722–2726. https://doi.org/10.1016/j.ijhydene.2009.04.046 | spa |
dc.relation.references | Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., Zhou, Z., & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 134, p. 110335). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110335 | spa |
dc.relation.references | Liu, P. (2009). Modelling and Optimization of Polygeneration Energy Systems [imperial College London]. https://spiral.imperial.ac.uk/bitstream/10044/1/5530/1/Liu-P-2009-PhD-Thesis.pdf | spa |
dc.relation.references | Liu, P., Gerogiorgis, D. I., & Pistikopoulos, E. N. (2007a). Modeling and optimization of polygeneration energy systems. Catalysis Today, 127(1–4), 347–359. https://doi.org/10.1016/j.cattod.2007.05.024 | spa |
dc.relation.references | Liu, P., & Pistikopoulos, E. N. (2010). A Multi-Objective Optimization Approach to Polygeneration Energy Systems Design. AIChe Journal, 56(5), 1218–1234. https://doi.org/10.1002/aic.12058 | spa |
dc.relation.references | Lv, P. M., Xiong, Z. H., Chang, J., Wu, C. Z., Chen, Y., & Zhu, J. X. (2004a). An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95–101. https://doi.org/10.1016/j.biortech.2004.02.003 | spa |
dc.relation.references | Macías, R. J., Ceballos, C., Ordonez-Loza, J., Ortiz, M., Gómez, C. A., Chejne, F., & Vélez, F. (2022). Evaluation of the performance of a solar photovoltaic - Biomass gasifier system as electricity supplier. Energy, 260. https://doi.org/10.1016/j.energy.2022.125046 | spa |
dc.relation.references | Macías-Naranjo, R. J., Chejne, F., Montoya, J. I., & Adriana Blanco-Leal. (2013). Gasificación de bagazo de caña y carbón en planta piloto. Mutis, 4(1), 24–32. | spa |
dc.relation.references | Mahmut C. Acar, Y. E. B. (2018). Simulation Of Biomass Gasification Process Using Aspen Plus. 14Th International Combustion Sympoium, April, 25–27. | spa |
dc.relation.references | Manrique, R., Vásquez, D., Ceballos, C., Chejne, F., & Amell, A. (2019). Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks. ACS Omega, 4(2), 2957–2963. https://doi.org/10.1021/acsomega.8b02591 | spa |
dc.relation.references | Marrugo Escobar, G. P. (2016a). Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar. 191. | spa |
dc.relation.references | Martin, M., Gani, R., & Mujtaba, I. M. (2022). Sustainable process synthesis, design, and analysis: Challenges and opportunities. Sustainable Production and Consumption, 30, 686–705. https://doi.org/10.1016/j.spc.2022.01.002 | spa |
dc.relation.references | Matsui, I., Kunii, D., & Furusawa, T. (1985). Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 18(2), 105–113. https://doi.org/10.1252/jcej.18.105 | spa |
dc.relation.references | Mehrpooya, M., Khalili, M., Mehdi, M., & Sharifzadeh, M. (2018). Model development and energy and exergy analysis of the biomass gasi fi cation process ( Based on the various biomass sources ). Renewable and Sustainable Energy Reviews, 91(2), 869–887. https://doi.org/10.1016/j.rser.2018.04.076 | spa |
dc.relation.references | Meier, D., Van De Beld, B., Bridgwater, A. V., Elliott, D. C., Oasmaa, A., & Preto, F. (2013a). State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews, 20, 619–641. https://doi.org/10.1016/J.RSER.2012.11.061 | spa |
dc.relation.references | Mencarelli, L., Chen, Q., Pagot, A., & Grossmann, I. E. (2020). A review on superstructure optimization approaches in process system engineering. Computers and Chemical Engineering, 136, 106808. https://doi.org/10.1016/j.compchemeng.2020.106808 | spa |
dc.relation.references | Mirkouei, A., Haapala, K. R., Sessions, J., & Murthy, G. S. (2017). A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renewable and Sustainable Energy Reviews, 67, 15–35. https://doi.org/10.1016/j.rser.2016.08.053 | spa |
dc.relation.references | Mitsos, A., Asprion, N., Floudas, C. A., Michael, B., Michael, B., Dominique, B., Adrian, C., & Pascal, S. (2018). Challenges in process optimization for new feedstocks and energy sources. Computers & Chemical Engineering, 113, 209–221. https://doi.org/doi.org/10.1016/j.compchemeng.2018.03.013 | spa |
dc.relation.references | Mitta, N. R., Ferrer-Nadal, S., Lazovic, A. M., Parales, J. F., Velo, E., & Puigjaner, L. (2006). Modelling and simulation of a tyre gasification plant for synthesis gas production. Computer Aided Chemical Engineering, 21(C), 1771–1776. https://doi.org/10.1016/S1570-7946(06)80304-4 | spa |
dc.relation.references | Mohan, D., Pittman, C. U., & Steele, P. H. (2006a). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. https://doi.org/10.1021/EF0502397/ASSET/IMAGES/LARGE/EF0502397H00010.JPEG | spa |
dc.relation.references | Montoya Arbeláez, J. I., Chejne Janna, F., & Garcia-Pérez, M. (2015). Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study. Dyna, 82(192), 239–248. https://doi.org/10.15446/dyna.v82n192.44701 | spa |
dc.relation.references | Montoya, J. I., Valdés, C., Chejne, F., Gómez, C. A., Blanco, A., Marrugo, G., Osorio, J., Castillo, E., Aristóbulo, J., & Acero, J. (2015a). Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 112, 379–387. https://doi.org/10.1016/j.jaap.2014.11.007 | spa |
dc.relation.references | Moshi, R. E., Jande, Y. A. C., Kivevele, T. T., & Kim, W. S. (2020a). Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1806404 | spa |
dc.relation.references | Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 94, 998–1023. https://doi.org/10.1016/J.RSER.2018.06.042 | spa |
dc.relation.references | Murugan, S., & Horák, B. (2016). Tri and polygeneration systems-A review. Renewable and Sustainable Energy Reviews, 60, 1032–1051. https://doi.org/10.1016/j.rser.2016.01.127 | spa |
dc.relation.references | Muslim, M. B., Saleh, S., & Samad, N. A. F. A. (2017). Effects of purification on the hydrogen production in biomass gasification process. Chemical Engineering Transactions, 56, 1495–1500. https://doi.org/10.3303/CET1756250 | spa |
dc.relation.references | Nayaggy, M., & Putra, Z. A. (2019). Process Simulation on Fast Pyrolysis of Palm Kernel Shell for Production of Fuel. Indonesian Journal of Science and Technology, 4(1), 64–73. https://doi.org/10.17509/IJOST.V4I1.15803 | spa |
dc.relation.references | Ng, K. S., & Martinez Hernandez, E. (2016). A systematic framework for energetic, environmental and economic (3E) assessment and design of polygeneration systems. Chemical Engineering Research and Design, 106, 1–25. https://doi.org/10.1016/J.CHERD.2015.11.017 | spa |
dc.relation.references | Ng, R. T. L., Patchin, S., Wu, W., Sheth, N., & Maravelias, C. T. (2018). An optimization-based web application for synthesis and analysis of biomass-to-fuel strategies. Biofuels, Bioproducts and Biorefining, 12(2), 170–176. https://doi.org/10.1002/bbb.1821 | spa |
dc.relation.references | Nikoo, M. B., & Mahinpey, N. (2008a). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 32(12), 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020 | spa |
dc.relation.references | Nixon, J. D., Dey, P. K., & Davies, P. A. (2012). The feasibility of hybrid solar-biomass power plants in India. Energy, 46(1), 541–554. https://doi.org/10.1016/j.energy.2012.07.058 | spa |
dc.relation.references | Orozco, L. (2019). PREPARACIÓN DE CARBÓN ACTIVADO CONFORMADO A PARTIR DE HYDROCHAR DE BORRA DE CAFÉ (Preparation shaped activated carbon from hydrochar to spend coffee ground) [Universida Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/77471/1106307814.2020.pdf?sequence=5&isAllowed=y#:~:text=En%20general%2C%20la%20preparaci%C3%B3n%20de,importantes%20para%20el%20procedimiento%20hidrotermal. | spa |
dc.relation.references | Osorio, J., & Chejne, F. (2019). Bio-Oil Production in Fluidized Bed Reactor at Pilot Plant from Sugarcane Bagasse by Catalytic Fast Pyrolysis. Waste and Biomass Valorization, 10(1), 187–195. https://doi.org/10.1007/s12649-017-0025-8 | spa |
dc.relation.references | Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1–14. https://doi.org/10.1080/23311916.2016.1167990 | spa |
dc.relation.references | Papari, S., & Hawboldt, K. (2015). A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renewable and Sustainable Energy Reviews, 52, 1580–1595. https://doi.org/10.1016/J.RSER.2015.07.191 | spa |
dc.relation.references | Parra-Peña, R. I., Flórez, S., & Rodriguez, D. (2022). LA COMPETITIVIDAD DE LA CADENA DEL ARROZ EN COLOMBIA. UN COMPROMISO CON EL BIENESTAR DEL AGRICULTOR. | spa |
dc.relation.references | Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1489. https://doi.org/10.1016/j.rser.2015.09.070 | spa |
dc.relation.references | Perea-Moreno, M. A., Samerón-Manzano, E., & Perea-Moreno, A. J. (2019a). Biomass as renewable energy: Worldwide research trends. Sustainability (Switzerland), 11(3), 863. https://doi.org/10.3390/su11030863 | spa |
dc.relation.references | Peters, J. F. (2015a). Pyrolysis for biofuels or biochar? A thermodinamic, envirnmental and economic assessment [Universidad Rey Juan Carlos]. https://doi.org/10.13140/RG.2.2.34448.30721 | spa |
dc.relation.references | Peters, J. F., Banks, S. W., Bridgwater, A. V, & Dufour, J. (2017). A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Applied Energy, 188, 595–603. https://doi.org/10.1016/j.apenergy.2016.12.030 | spa |
dc.relation.references | Peters, J. F., Iribarren, D., & Dufour, J. (2015). Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel, 139, 441–456. https://doi.org/10.1016/j.fuel.2014.09.014 | spa |
dc.relation.references | Pfitzer, C., Dahmen, N., Tröger, N., Weirich, F., Sauer, J., Günther, A., & Müller-Hagedorn, M. (2016a). Fast Pyrolysis of Wheat Straw in the Bioliq Pilot Plant. Energy and Fuels, 30(10), 8047–8054. https://doi.org/10.1021/ACS.ENERGYFUELS.6B01412/ASSET/IMAGES/LARGE/EF-2016-014129_0007.JPEG | spa |
dc.relation.references | Puig-Gamero, M., Pio, D. T., Tarelho, L. A. C., Sánchez, P., & Sanchez-Silva, L. (2021). Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®. Energy Conversion and Management, 235, 113981. https://doi.org/10.1016/j.enconman.2021.113981 | spa |
dc.relation.references | Puy, N., Murillo, R., Navarro, M. V., López, J. M., Rieradevall, J., Fowler, G., Aranguren, I., García, T., Bartrolí, J., & Mastral, A. M. (2011). Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Management, 31(6), 1339–1349. https://doi.org/10.1016/J.WASMAN.2011.01.020 | spa |
dc.relation.references | Quaglia, A., Sarup, B., Sin, G., & Gani, R. (2012). Integrated business and engineering framework for synthesis and design of enterprise-wide processing networks. Computers and Chemical Engineering, 38, 213–223. https://doi.org/10.1016/j.compchemeng.2011.12.011 | spa |
dc.relation.references | Rajan, R. R., & Wen, C. Y. (1980). A comprehensive model for fluidized bed coal combustors. AIChE Journal, 26(4), 642–655. https://doi.org/10.1002/aic.690260416 | spa |
dc.relation.references | Rodríguez Valencia, N., & Zambrano Franco, D. (2010). Los subproductos del café: fuente de energía renovable. Avances Técnicos Cenicafé, 3, 8. | spa |
dc.relation.references | Roy, C., De Caumia, B., & Pakdel, H. (1988). Preliminary Feasibility Study of the Biomass Vacuum Pyrolysis Process. In Research in Thermochemical Biomass Conversion (pp. 585–596). Springer Netherlands. https://doi.org/10.1007/978-94-009-2737-7_45 | spa |
dc.relation.references | Rozzi, E., Minuto, F. D., Lanzini, A., & Leone, P. (2020). Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020, Vol. 13, Page 420, 13(2), 420. https://doi.org/10.3390/EN13020420 | spa |
dc.relation.references | Safarian, S., Unnþórsson, R., & Richter, C. (2019). A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews, 110, 378–391. https://doi.org/https://doi.org/10.1016/j.rser.2019.05.003 | spa |
dc.relation.references | https://doi.org/https://doi.org/10.1016/j.rser.2019.05.003 Sahoo, U., Kumar, R., Pant, P. C., & Chaudhury, R. (2015a). Scope and sustainability of hybrid solar-biomass power plant with cooling, desalination in polygeneration process in India. Renewable and Sustainable Energy Reviews, 51(May), 304–316. https://doi.org/10.1016/j.rser.2015.06.004 | spa |
dc.relation.references | Santos, A. M., Carlos, J., Hurtado, R., & Flores Villaseñor, S. E. (n.d.). Carbón activado: generalidades y aplicaciones. Activated carbon: generalities and applications. | spa |
dc.relation.references | Seifi, S., & Crowther, D. (2016). Managing with depleted resources. Developments in Corporate Governance and Responsibility, 10, 67–86. https://doi.org/10.1108/S2043-052320160000010005 | spa |
dc.relation.references | Serra, L. M., Lozano, M.-A., Ramos, J., Ensinas, A. V., & Nebra, S. A. (2009). Polygeneration and efficient use of natural resources. Energy, 34(5), 575–586. https://doi.org/10.1016/J.ENERGY.2008.08.013 | spa |
dc.relation.references | Shemfe, M. B., Gu, S., & Ranganathan, P. (2015). Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 143, 361–372. https://doi.org/10.1016/j.fuel.2014.11.078 | spa |
dc.relation.references | Sher, F., Iqbal, S. Z., Liu, H., Imran, M., & Snape, C. E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203, 112266. https://doi.org/10.1016/j.enconman.2019.112266 | spa |
dc.relation.references | Sierra, V., Marín Ceballos, C. M., & Chejne Janna, F. (2021a). Simulation of thermochemical processes in Aspen Plus as a tool for biorefinery analysis. CT&F - Ciencia, Tecnología y Futuro, 11(2), 27–38. https://doi.org/10.29047/01225383.372 | spa |
dc.relation.references | Sigurjonsson, H. Æ., & Clausen, L. R. (2018). Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power. Applied Energy, 216(August 2017), 323–337. https://doi.org/10.1016/j.apenergy.2018.02.124 | spa |
dc.relation.references | Singh, A., & Baredar, P. (2016). Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system. Energy Reports, 2, 254–260. https://doi.org/10.1016/j.egyr.2016.10.001 | spa |
dc.relation.references | Singh, S., Singh, M., & Kaushik, S. C. (2016). Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Conversion and Management, 128, 178–190. https://doi.org/10.1016/j.enconman.2016.09.046 | spa |
dc.relation.references | Skoulou, V. K., & Zabaniotou, A. a. (2013). Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. Journal of Analytical and Applied Pyrolysis, 99, 110–116. https://doi.org/10.1016/j.jaap.2012.10.015 | spa |
dc.relation.references | Srinivas, T., & Reddy, B. V. (2014). Case Studies in Thermal Engineering Hybrid solar – biomass power plant without energy storage. Case Studies in Thermal Engineering, 2, 75–81. https://doi.org/10.1016/j.csite.2013.12.004 | spa |
dc.relation.references | Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2019). Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture. Sustainable Energy Technologies and Assessments, 34(October 2018), 27–34. https://doi.org/10.1016/j.seta.2019.04.008 | spa |
dc.relation.references | Sutar, K. B., Kohli, S., & Ravi, M. R. (2017). Design, development and testing of small downdraft gasifiers for domestic cookstoves. Energy, 124, 447–460. https://doi.org/https://doi.org/10.1016/j.energy.2017.02.076 | spa |
dc.relation.references | Suwatthikul, A., Limprachaya, S., Kittisupakorn, P., & Mujtaba, I. M. (2017). Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition. Energies, 10(3), 1–15. https://doi.org/10.3390/en10030314 | spa |
dc.relation.references | Thangalazhy-Gopakumar, S., Adhikari, S., Gupta, R. B., & Fernando, S. D. (2011). Influence of pyrolysis operating conditions on bio-Oil components: A microscale study in a pyroprobe. Energy and Fuels, 25(3), 1191–1199. https://doi.org/10.1021/ef101032s | spa |
dc.relation.references | Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., & Henrich, E. (2011). Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Processing Technology, 92(11), 2169–2184. https://doi.org/10.1016/J.FUPROC.2011.06.026 | spa |
dc.relation.references | Tröger, N., Richter, D., & Stahl, R. (2013a). Effect of feedstock composition on product yields and energy recovery rates of fast pyrolysis products from different straw types. Journal of Analytical and Applied Pyrolysis, 100, 158–165. https://doi.org/10.1016/J.JAAP.2012.12.012 | spa |
dc.relation.references | Ubando, A. T., Del Rosario, A. J. R., Chen, W. H., & Culaba, A. B. (2021). A state-of-the-art review of biowaste biorefinery. Environmental Pollution, 269. https://doi.org/10.1016/j.envpol.2020.116149 | spa |
dc.relation.references | Ubando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299(November 2019). https://doi.org/10.1016/j.biortech.2019.122585 | spa |
dc.relation.references | Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., & Ashrafur, S. M. (2018). An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, Vol. 11, Page 3115, 11(11), 3115. https://doi.org/10.3390/EN11113115 | spa |
dc.relation.references | Unidad de Planeación Minero Energética-Upme. (2014). Plan De Expansion De Referencia Generacion - Transmisión, 2015-2029 Unidad de Planeación Minero Energética. | spa |
dc.relation.references | Unidad de Planeación Minero Energética-Upme. (2015). Plan Energético Nacional - Colombia: Ideario Energético 2050. | spa |
dc.relation.references | Upme, Ideam, Colciencias, & Uis. (2011a). Atlas del potencial energético de la biomasa residual en Colombia. In Universidad Industrial de Santander (Ed.), Colombia: Ministerio de Minas y Energía (1st ed.). https://doi.org/ISBN 978-958-8504-59-9 | spa |
dc.relation.references | V, A. K., & Verma, A. (2021). Optimal techno-economic sizing of a solar-biomass-battery hybrid system for off-setting dependency on diesel generators for microgrid facilities. Journal of Energy Storage, 36(February), 102251. https://doi.org/10.1016/j.est.2021.102251 | spa |
dc.relation.references | Valdés, C. F., Chejne, F., Marrugo, G., Macias, R. J., Gómez, C. A., Montoya, J. I., Londoño, C. A., La, J. De, & Arenas, E. (2016). Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process. 107, 1201–1209. https://doi.org/10.1016/j.applthermaleng.2016.07.086 | spa |
dc.relation.references | Valdés, C. F., Marrugo, G. P., Chejne, F., Marin-Jaramillo, A., Franco-Ocampo, J., & Norena-Marin, L. (2020). Co-gasification and co-combustion of industrial solid waste mixtures and their implications on environmental emissions, as an alternative management. Waste Management, 101, 54–65. https://doi.org/10.1016/j.wasman.2019.09.037 | spa |
dc.relation.references | Valero C., A., & Valero D., A. (2015). Thanathia: the destiny of the Earth´s mineral resources (Y. Amanda, Ed.). World Scientific Publishing Co. Pte. Ltd. | spa |
dc.relation.references | Van Der Drift, A., Van Doorn, J., & Vermeulen, J. W. (2001). Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass and Bioenergy, 20(1), 45–56. https://doi.org/10.1016/S0961-9534(00)00045-3 | spa |
dc.relation.references | Vélez, J. F., Chejne, F., Valdés, C. F., Emery, E. J., & Londoño, C. A. (2009). Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel, 88(3), 424–430. https://doi.org/10.1016/j.fuel.2008.10.018 | spa |
dc.relation.references | Venselaar, J. (1982). Design Rules for Down Draft Wood Gasifiers: a Short Review. Joint Technical Assistance Project, JTA-9A-Research Development1 at the Institut Teknologi Bandung, Indonesia, 1–24. | spa |
dc.relation.references | Verma, M., Godbout, S., Brar, S. K., Solomatnikova, O., Lemay, S. P., & Larouche, J. P. (2012). Biofuels production from biomass by thermochemical conversion technologies. International Journal of Chemical Engineering. https://doi.org/10.1155/2012/542426 | spa |
dc.relation.references | Veses, A., Aznar, M., Callén, M. S., Murillo, R., & García, T. (2016a). An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties. Fuel, 181, 430–437. https://doi.org/10.1016/J.FUEL.2016.05.006 | spa |
dc.relation.references | Veses, A., Aznar, M., Martínez, I., Martínez, J. D., López, J. M., Navarro, M. V., Callén, M. S., Murillo, R., & García, T. (2014a). Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology, 162, 250–258. https://doi.org/10.1016/j.biortech.2014.03.146 | spa |
dc.relation.references | Vivekh, P., Sudhakar, M., Srinivas, M., & Vishwanthkumar, V. (2017). Desalination technology selection using multi-criteria evaluation: TOPSIS and PROMETHEE-2. International Journal of Low-Carbon Technologies, 12(1), 24–35. https://doi.org/10.1093/ijlct/ctw001 | spa |
dc.relation.references | Wang, C., Zhang, L., Chang, Y., & Pang, M. (2015). Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix. Energy Policy, 84, 155–165. https://doi.org/10.1016/j.enpol.2015.04.025 | spa |
dc.relation.references | Wang, J., & Yang, Y. (2016). Energy , exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy. Energy Conversion and Management, 124, 566–577. https://doi.org/10.1016/j.enconman.2016.07.059 | spa |
dc.relation.references | Wang, Z., Xu, G., Ren, J., Li, Z., Zhang, B., & Ren, X. (2017). Polygeneration system and sustainability: Multi-attribute decision-support framework for comprehensive assessment under uncertainties. Journal of Cleaner Production, 167, 1122–1137. https://doi.org/10.1016/j.jclepro.2017.08.089 | spa |
dc.relation.references | Wen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610–612. https://doi.org/10.1002/aic.690120343 | spa |
dc.relation.references | Won, W., Motagamwala, A. H., Dumesic, J. A., & Maravelias, C. T. (2017). A co-solvent hydrolysis strategy for the production of biofuels: Process synthesis and technoeconomic analysis. Reaction Chemistry and Engineering, 2(3), 397–405. https://doi.org/10.1039/c6re00227g | spa |
dc.relation.references | Wooley, R. J., & Putsche, V. (n.d.). Development of an ASPEN PLUS Physical Property Database for Biofuels Components. | spa |
dc.relation.references | Xu, G., Murakami, T., Suda, T., Matsuzawa, Y., & Tani, H. (2006). Gasification of coffee grounds in dual fluidized bed: Performance evaluation and parametric investigation. Energy and Fuels, 20(6), 2695–2704. https://doi.org/10.1021/ef060120d | spa |
dc.relation.references | Yamashita, K., & Barreto, L. (2005). Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy, 30(13), 2453–2473. https://doi.org/10.1016/j.energy.2004.12.002 | spa |
dc.relation.references | Yan, H. M., Heidenreich, C., & Zhang, D. K. (1998a). Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of “net flow.” Fuel, 77(9–10), 1067–1079. https://doi.org/10.1016/S0016-2361(98)00003-9 | spa |
dc.relation.references | Yang, Q., Chen, G. Q., Liao, S., Zhao, Y. H., Peng, H. W., & Chen, H. P. (2013). Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm. Renewable and Sustainable Energy Reviews, 25, 229–239. https://doi.org/10.1016/j.rser.2013.04.013 | spa |
dc.relation.references | Yang, Q., Yang, S., Qian, Y., & Kraslawski, A. (2015). Application of House of Quality in evaluation of low rank coal pyrolysis polygeneration technologies. Energy Conversion and Management, 99, 231–241. https://doi.org/10.1016/j.enconman.2015.03.104 | spa |
dc.relation.references | Yates, J. G. (1988). Gas fluidization technology. The Chemical Engineering Journal, 37(2), 134–135. https://doi.org/10.1016/0300-9467(88)80042-x | spa |
dc.relation.references | Yeh, A. I., & Jaw, Y. M. (1999). Predicting residence time distributions in a single screw extruder from operating conditions. Journal of Food Engineering, 39(1), 81–89. https://doi.org/10.1016/S0260-8774(98)00150-2 | spa |
dc.relation.references | Yeomans, H., & Grossmann, I. E. (1999). A systematic modeling framework of superstructure optimization in process synthesis. Computers and Chemical Engineering, 23(6), 709–731. https://doi.org/10.1016/S0098-1354(99)00003-4 | spa |
dc.relation.references | Yoon, S. J., Son, Y.-I., Kim, Y.-K., & Lee, J.-G. (2012a). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. https://doi.org/10.1016/j.renene.2011.08.028 | spa |
dc.relation.references | Yuan, Z., & Eden, M. R. (2016). Superstructure optimization of integrated fast pyrolysis-gasification for production of liquid fuels and propylene. AIChE Journal, 62(9), 3155–3176. https://doi.org/10.1002/AIC.15337 | spa |
dc.relation.references | Zhang, L., Babi, D. K., & Gani, R. (2016). New Vistas in Chemical Product and Process Design. Annual Review of Chemical and Biomolecular Engineering, 7, 557–582. https://doi.org/10.1146/annurev-chembioeng-080615-034439 | spa |
dc.relation.references | Zhao, S., & Luo, Y. (2020). Multiscale Modeling of Lignocellulosic Biomass Thermochemical Conversion Technology: An Overview on the State-of-the-Art. Energy and Fuels, 34(10), 11867–11886. https://doi.org/10.1021/acs.energyfuels.0c02247 | spa |
dc.relation.references | Zheng, Y., Jenkins, B. M., Kornbluth, K., & Træholt, C. (2018). Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage. Renewable Energy, 123, 204–217. https://doi.org/10.1016/j.renene.2018.01.120 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | spa |
dc.subject.lemb | Recursos energéticos renovables | spa |
dc.subject.lemb | Renewable energy sources | eng |
dc.subject.proposal | Poligeneración | spa |
dc.subject.proposal | Polygeneration | eng |
dc.subject.proposal | Optimización | spa |
dc.subject.proposal | Optimization | eng |
dc.subject.proposal | Superestructuras | spa |
dc.subject.proposal | Superstructure | eng |
dc.subject.proposal | Biomasa | spa |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Simulation | eng |
dc.title | Analysis of superstructures. Case study: Optimizing agro-industrial waste as precursors of chemical products, an essential element for the energy transition | eng |
dc.title.translated | Análisis de superestructuras. Caso de estudio: Optimización de residuos agroindustriales como precursores de productos químicos, un elemento esencial para la transición energética | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estrategia de transformación del sector energético Colombiano en el horizonte 2030 - ENERGETICA 2030 | spa |
oaire.awardtitle | Alliance for Biomass and Sustainability Research - ABISURE | spa |
oaire.fundername | Ministerio de Ciencia y Tecnología | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 71376687.2023.pdf
- Tamaño:
- 6.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas Energéticos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: