Evaluación experimental de la escorrentía y la evapotranspiración en techos verdes
dc.contributor.advisor | Villarreal González, Edgar Leonardo | spa |
dc.contributor.advisor | Torres Abello, Andrés Eduardo | spa |
dc.contributor.author | Cortés Torres, Nicolás | spa |
dc.contributor.researchgroup | Grupo de Investigación en Ingeniería de Recursos Hidrícos - GIREH | spa |
dc.date.accessioned | 2020-04-30T14:49:19Z | spa |
dc.date.available | 2020-04-30T14:49:19Z | spa |
dc.date.issued | 2019-12-01 | spa |
dc.description.abstract | Green Roofs are an alternative as an urban sustainable drainage system. Due to the number of impermeable roofs available in cities, green roofs have a high potential for implementation in urban areas. This research project seeks to experimentally evaluate the hydrological behavior of green roofs with different configurations (substrate compositions, thicknesses, types of vegetation and tilt angles) subjected to high simulated precipitation intensities (51,7 mm/h). The project was built on the campus of The National University of Colombia - Bogotá headquarters. The experimental setup was able to provide information on rainfall, storage/evapotranspiration and runoff flow from three main structures: the rain simulator, the load frames, and the receiving tanks. Sixty experimental events were carried out showing, as a result, average evapotranspiration of 1.06 l/day, delays in the peak time exceeding twice the time compared to impermeable surfaces, and an increase in runoff volume and peak flow equal to 6.05% and 27.41% respectively. In conclusion, green roofs are not a structure that can be implemented generically in a region, on the contrary, the system must be based on a specific design objective and evaluated from an engineering perspective. | spa |
dc.description.abstract | Los techos verdes son una alternativa como sistema urbano de drenaje sostenible, cuentan con alto potencial para su implementación en áreas urbanas, debido a la cantidad de cubiertas impermeables disponibles en las ciudades. Este proyecto de investigación busca evaluar experimentalmente el comportamiento hidrológico de techos verdes con diferentes configuraciones (composiciones de sustrato, espesores, tipos de vegetación y ángulos de inclinación) sometidos a altas intensidades de precipitación simuladas (51,7 mm/h). Para ello se diseñó y construyó en el campus de la Universidad Nacional de Colombia – Sede Bogotá un montaje experimental mediante el cual se puede obtener información de precipitación, almacenaje/evapotranspiración y caudal de escorrentía, a partir de tres estructuras principales, un simulador de lluvia, cuatro marcos de carga y cuatro tanques receptores. Se realizaron 60 eventos experimentales en los cuales se obtuvo evapotranspiraciones promedio de 1,06 l/día, retrasos en el tiempo pico superiores al doble de tiempo comparado con superficies impermeables, y aumento en el volumen de escorrentía y en el caudal pico iguales al 6,05% y al 27,41% respectivamente, dejando en evidencia que un techo verde no es una estructura que pueda implementarse en una región de forma genérica, sino que debe estar en función de un objetivo de diseño específico y evaluado desde un punto de vista ingenieril. | spa |
dc.description.additional | Magíster en Ingeniería - Recursos Hidráulicos. Línea de Investigación: Hidrología y Meteorología | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 367 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77470 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.references | Rodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization (Taylor & Francis Group, Ed.). Boca Raton: CRC Press. | spa |
dc.relation.references | Acoptex. (2018). Basics: Project 071a Water flow sensor YF-S201. Retrieved from Acoptex website: http://acoptex.com/project/359/basics-project-071a-water-flowsensor- yf-s201-at-acoptexcom/#sthash.Z1ziNWXC.KLxvhFV8.dpbs Al-Mutlaq, S., & Wende, A. (2016). Load Cell Amplifier HX711 Breakout Hookup Guide. Retrieved from Sparkfun Start Something website: https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookupguide/ introduction Alcaldía Mayor de Bogotá D.C. (2016). Proyecto Plan de Desarrollo 2016-2020 (p. 604). p. 604. Amiyoled. (2019). LM7805 - Regulador Voltaje de 5V,TO220 Arduino, proyectos. Retrieved from Amiyoled website: https://amiyoled.es/home/949-lm7805-reguladorvoltaje- de-5vto220-arduino-proyectos.html Arduino. (2019). Libraries. Retrieved from Arduino website: https://www.arduino.cc/en/Reference/Libraries Arduino - Información y Modelos. (n.d.). Arduino - Información y Modelos. Retrieved from Arduino - Información y Modelos website: http://visystem.ddns.net:7442/arduinogenuino- informacion/#indice Arduino Project Hub. (2017). How To Use DS18B20 Water Proof Temperature Sensor. Retrieved from Arduino Project Hub website: https://create.arduino.cc/projecthub/iotboys/how-to-use-ds18b20-water-prooftemperature- sensor-2adecc Arduinodhtics. (2013). Arduino: Tecnología para todos. Retrieved from https://arduinodhtics.weebly.com/historia.html Augarten, S. (1983). State of the Art: A Photographic History of the Integrated Circuit (Ticknor & Fields, Ed.). New Haven & New York. | spa |
dc.relation.references | Avia Semiconductor. (2017). Data Sheet - HX-711. In Web (Vol. 9530). Retrieved from https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf Ballard Woods, B., Wilson, B., Udale-Clarke, H., Illman, H., Scott, T., Ashley, R., & Kellagher, R. (2015). The SUDS manual. In Ciria. Retrieved from http://www.persona.uk.com/A47postwick/deposit-docs/DD-181.pdf Bates, A. J., Sadler, J. P., & Mackay, R. (2013). Vegetation development over four years on two green roofs in the UK. Urban Forestry and Urban Greening, 12(1), 98–108. https://doi.org/10.1016/j.ufug.2012.12.003 Berghage, R. D., Beattie, D., Jarrett, A. R., Thuring, C., & O’Connor, T. P. (2009). Green Roofs for Stormwater Runoff Control Office. Retrieved from www.epa.gov/ord Burian, S. J., Nix, S. J., Durrans, R., Pitt, R. E., Fan, C.-Y., & Field, R. (1999). Historical Development Of Wet-Weather Flow Management. Journal of Water Resources Planning and Management, 11. Butler, D., & Davies, J. W. (2004). Urban Drainage. In Spon Press (Ed.), Climate Change 2013 - The Physical Science Basis (Second Edi). https://doi.org/10.1017/CBO9781107415324.004 Calabuig Belda, A. (2016). Desarrollo de un modelo matemático de cubierta vegetada en la universidad de Bolonia y aplicación a un caso real con tecnologías de drenaje sostenible. Universidad Politecnica de Valencia. Carbone, M., Garofalo, G., Nigro, G., & Piro, P. (2014). A conceptual model for predicting hydraulic behaviour of a green roof. Procedia Engineering, 70, 266–274. https://doi.org/10.1016/j.proeng.2014.02.030 Carter, T. L., & Rasmussen, T. C. (2006). Hydrologic Behavior of Vegetated Roofs. Journal of the American Water Resources Association, 42(5), 1261–1274. https://doi.org/10.1111/j.1752-1688.2006.tb05611.x Castleton, H. F., Stovin, V., Beck, S. B. M., & Davison, J. B. (2010). Green roofs; Building energy savings and the potential for retrofit. Energy and Buildings, 42(10), 1582– 1591. https://doi.org/10.1016/j.enbuild.2010.05.004 Chereque Morán, W. (1989). HIDROLOGIA para estudiantes de Ingeniería civil (Segunda; CONCYTEC, Ed.). Retrieved from http://repositorio.pucp.edu.pe/index/handle/123456789/28689 Chow, V. Te, Maidment, D. R., & Mays, L. W. (1994). Hidrología aplicada. Hidrologia Aplicada, p. 575 pp. Retrieved from http://bases.bireme.br/cgibin/ wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=REPIDISCA&la ng=p&nextAction=lnk&exprSearch=158911&indexSearch=ID%5Cnhttp://www.sidalc. net/cgi-bin/wxis.exe/?IsisScript=BINAI.xis&method=post&formato=2&cantidad= Circelli, G. (2015). Microcontroladores o Arduino, ¿no es lo mismo? Retrieved from Panamahitek website: http://panamahitek.com/microcontroladores-o-arduino-no-eslo- mismo/ Circuit Digest. (2019). Arduino Projects. Components 101. (2018). Arduino UNO. Retrieved from Components 101 website: https://components101.com/microcontrollers/arduino-uno Cortes-Torres, N., Duque Montenegro, A. F., Guasca Gallardo, A. K., Villarreal, E., & Torres Abello, A. (2019). Methodology for calibration and data processing in an experimental assembly of green roofs. Notavetch 2019, 1–4. Retrieved from http://www.novatech.graie.org/documents/auteurs/2B61-091COR.pdf Cortés Torres, N., Guasca Gallardo, A., Duque Montenegro, A., Guío González, R., Villarreal Ginzález, E., & Torres Abello, A. (2018). Montaje experimental para la evaluación de la escorrentía y la evapotranspiración en techos verdes. In XXVIII Congreso Latinoamericano de Hidráulica, Tema 2, Hidrología Superficial y Suterránea. https://doi.org/9789784519474 Creative. (2013). HISTORY OF ARDUINO. Retrieved from Creative website: http://creativityprojects.blogspot.com/2013/03/history-of-arduino_4195.html Crespo, E. (2016). Librerías Arduino. Retrieved from Aprendiendo Arduino website: https://aprendiendoarduino.wordpress.com/2016/11/16/librerias-arduino- 2/#comments Cruz Martinez, S. (2009). Las Azoteas verdes, una alternativa sustentable ante la acelerada urbanización. Retrieved April 15, 2017, from Ecotecnologías apropiedas para el bienestar website: https://ecotecnologiasparaelbienestar.wordpress.com/ecotecnologias/ azoteas-verdes/ DegrawSt. (2017). Arduino Bathroom Scale With 50 Kg Load Cells and HX711 Amplifier. Delleur, J. W. (2003). The Evolution of Urban Hydrology: Past, Present, and Future. Journal of Hydraulic Engineering, 129(8), 563–573. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(563) Duque, A., Ochoa, A., Buitrago, D., & Galindo, C. (2018). Hardware Libre : una tecnología democrática. Procedings of ARNA 2017 Congress, (June 2018). Retrieved from https://www.researchgate.net/publication/326092332_Hardware_Libre_una_tecnolog ia_democratica Eckart, J. (2012). Flexible Urban Drainage Systems in New Land-Use Areas. University of South Florida, (January), 604. Ellis, J. B. (2010). Managing Urban Runoff - Handbook of Catchment Management. In R. C. Ferrier & J. Alan (Eds.), British Journal of Psychiatry (First, Vol. 112). https://doi.org/10.1192/bjp.112.483.211-a Estebanjmz. (2016). Explicación protocolo 1-Wire. Farnell, & Newark. (2019). Datasheet Arduino Uno. Retrieved from https://www.farnell.com/datasheets/1682209.pdf Figueroa Ortiz, C. A. (2016). Caracterización del campo de precipitación sobre la microcuenca urbana del campus Universidad Nacional de Colombia - sede Bogotá. Universidad Nacional de Colombia. Franco Támara, N. (2017). Selección, evaluación e implementación de plantas nativas y sustratos en techos verdes. Universidad de los Andes. Getter, K. L., Rowe, D. B., & Andresen, J. A. (2007). Quantifying the effect of slope on extensive green roof stormwater retention. Ecological Engineering, 31(4), 225–231. https://doi.org/10.1016/j.ecoleng.2007.06.004 Gómez Cubillos, A. (2016). Propuesta de Mejoramiento Tecnológico de Techos Verdes para el Clima Tropical Andino. 1–225. Google Earth Pro. (n.d.). Mapa de Google Earth. Retrieved November 15, 2019, from https://earth.google.com/web/ Gorani, G. (2017). Assessing the impact of urbanisation on surface runoff peak flows in Bogota. Division of Water Resources Engineering Department of Building & Environmental Technology Lund University. Gutiérrez Pulido, H., & de la Vara Salazar, R. (2008). Análisis y diseño de experimentos. In S. A. McGRAW-HILL/INTERAMERICANA EDITORES (Ed.), Turkish Journal of Medical Sciences (Segunda). Retrieved from http://gc.initelabs.com/recursos/files/r161r/w19537w/analisis_y_diseno_experimento s.pdf Guzmán, J. L., Rodríguez, F., Berenguel, M., & Dormido, S. (2005). Laboratorio Virtual para la enseñanza de control climático de invernaderos. Revista Iberoamericana de Automática e Informatica Industrial, 2, 82–92. https://doi.org/1697-7912 HBM Company. (2019a). The Different Types of Load Cells Supplied By HBM – The World’s Leading Load Cell Manufacturer. Retrieved from HBM Company website: https://www.hbm.com/en/7231/the-different-types-of-load-cells-supplied-by-hbm/ HBM Company. (2019b). The Working Principle of a Compression Load Cell. Retrieved from HBM Company website: https://www.hbm.com/en/7325/the-working-principleof- a-compression-load-cell/ Hui, S. C. M., & Chu, C. H. T. (2009). Green roofs for stormwater mitigation in Hong Kong. Proceedings of the Joint Symposium, (November), 1–15. Johnston, J., & Newton, J. (2004). Building Green. A guide to using plants on roofs,walls and pavements. (May), 121. Retrieved from https://brightonandhovebuildinggreen.files.wordpress.com/2017/07/johnstone-andnewton- building-green.pdf%0Ahttp://books.google.co.uk/books?id=KnxRAAAAMAAJ Kasmin, H., & Musa, S. (2012). Green roof: As a potential Sustainable structure for runoff reduction. ISBEIA 2012 - IEEE Symposium on Business, Engineering and Industrial Applications, 889–893. https://doi.org/10.1109/ISBEIA.2012.6423020 Kasmin, H., Stovin, V. R., & Hathway, E. A. (2010). Towards a generic rainfall-runoff model for green roofs. Water Science and Technology, 62(4), 898–905. https://doi.org/10.2166/wst.2010.352 Kok, K. H., Mohd Sidek, L., Chow, M. F., Zainal Abidin, M. R., Basri, H., & Hayder, G. (2016). Evaluation of green roof performances for urban stormwater quantity and quality controls. International Journal of River Basin Management, 14(1), 1–7. https://doi.org/10.1080/15715124.2015.1048456 Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583–621. Retrieved from http://webspace.ship.edu/pgmarr/Geo441/Readings/Kruskal and Wallis 1952 - Use of Ranks in One-Criterion Variance Analysis.pdf Last Minute Engineers. (2019). Interfacing DS18B20 1-Wire Digital Temperature Sensor with Arduino. Retrieved from https://lastminuteengineers.com/ds18b20-arduinotutorial/ Leantec. (2019). DS3231 MODULO RTC RELOJ TIEMPO REAL AVR ARM ARDUINO RASPBERRY PI. Retrieved from Leantec website: https://leantec.es/tienda/ds3231- modulo-rtc-reloj-tiempo-real-avr-arm-arduino-raspberry-pi/ León Fandiño, E. A. (2014). Evaluación de una cubierta verde como sistema de drenaje urbano sostenible (Universidad Nacional deColombia). Retrieved from http://www.bdigital.unal.edu.co/46267/ Li, Y., & Babcock, R. W. (2014). Green roof hydrologic performance and modeling: A review. Water Science and Technology, 69(4), 727–738. https://doi.org/10.2166/wst.2013.770 Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Bergen Jensen, M., & Binning, P. J. (2014). Modelling of green roof hydrological performance for urban drainage applications. Journal of Hydrology, 519(PD), 3237–3248. https://doi.org/10.1016/j.jhydrol.2014.10.030 Malerba, F., Nelson, R., Orsenigo, L., & Winter, S. (2001). Competition and industrial policies in a ‘ history friendly ’ model of the evolution of the computer industry q. International Journal of Industrial Organization, 19, 635–664. Retrieved from http://dimetic.dime-eu.org/dimetic_files/1284.pdf Mantech Electronics. (2001). LOAD CELL ALX-50KG SPECIFICATIONS. Retrieved from http://www.mantech.co.za/datasheets/products/ALX-50KG-R0.pdf Mantech Electronics. (2019). MODEL : YF-S201 Datasheet. Retrieved from http://www.mantech.co.za/Datasheets/Products/YF-S201_SEA.pdf Mentens, J., Raes, D., & Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77(3), 217–226. https://doi.org/10.1016/j.landurbplan.2005.02.010 Minke, G. (1992). Techos verdes. Planificación, ejecucion, consejos prácticos. In Editorial Fin de Siglo, Alemania. Mockus, V., Hjelmfelt, A. T., & Service Natural Resources Conservation. (2004). Chapter 10 Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook Hydrology (p. 79). Retrieved from https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17752.wba Mouser Electronics. (2019). Ultrasonic Ranging Module HC - SR04. Retrieved from https://www.mouser.com/datasheet/2/813/HCSR04-1022824.pdf Nagase, A., & Dunnett, N. (2012). Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104(3–4), 356–363. https://doi.org/10.1016/j.landurbplan.2011.11.001 Nardini, A., Andri, S., & Crasso, M. (2012). Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs : shrubs versus herbaceous plants. 697–708. https://doi.org/10.1007/s11252-011-0220-5 National Instruments. (2018). What is a Data Adquisition? Retrieved from National Instruments website: http://www.ni.com/data-acquisition/what-is/esa/ Naylamp Mechatronics. (2015). Tutorial trasmisor de celda de carga HX711, Balanza Digital. Retrieved from Naylamp Mechatronics website: https://naylampmechatronics.com/blog/25_Tutorial-trasmisor-de-celda-de-carga- HX711-Ba.html Naylamp Mechatronics. (2016). Tutorial sensor de flujo de agua. Retrieved from Naylamp Mechatronics website: https://naylampmechatronics.com/blog/47_tutorial-sensor-deflujo- de-agua.html Niemczynowicz, J. (1999). Urban hydrology and water management - present and future challenges. Urban Water, 1(1), 1–14. Retrieved from http://www.sciencedirect.com/science/article/pii/S1462075899000096 Parkinson, J. N., Goldenfum, J. A., & Tucci, C. E. M. (2010). Integrated Urban Water Management: Humid Tropics. In U. W. S.- UNESCO-IHP (Ed.), The British Journal of Psychiatry (Vol. 6). https://doi.org/10.1192/bjp.111.479.1009-a Peck, S., & Kuhn, M. (2003). Design guidelines for green roofs. Retrieved from https://scholar.google.com/scholar?hl=en&q=design+guildlins+for+green+roof&btnG =&as_sdt=1%2C5&as_sdtp=#1 Peck, S. W., & Callaghan, C. (1999). Greenbacks from Green Roofs: Forging a new industry in Canada. In Canada Mortage and Housing Corporation. Perales Momparler, S., & Doménech, I. A. (2007). LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLE: UNA ALTERNATIVA A LA GESTIÓN DEL AGUA DE LLUVIA. Equipamiento y Servicios Municipales, 1(1), 15. https://doi.org/10.20555/kokugoka.71.0_80 Perales Momparles, S. (2008). Sistemas Urbanos de Drenaje Sostenib le ( SUDS ). Expo Zaragoza, 11. Retrieved from http://www.zaragoza.mobi/contenidos/medioambiente/cajaAzul/33S8-P3-Sara PeralesACC.pdf Pérez, A. (2018). Conociendo El Microcontrolador Núcleo (Core) Atmega328p De Arduino Uno. (MIC019S). Retrieved from Instituto Newton C. Braga - INCB website: https://www.incb.com.mx/index.php/articulos/78-microcontroladores-y-dsps/2546- conociendo-el-microcontrolador-nucleo-core-atmega328p-de-arduino-uno-mic019s Poë, S., Stovin, V., & Berretta, C. (2015). Parameters influencing the regeneration of a green roof’s retention capacity via evapotranspiration. Journal of Hydrology, 523, 356–367. https://doi.org/10.1016/j.jhydrol.2015.02.002 Puentes Suavita, A. P. (2014). Techos verdes utilizados como elementos de regulación de la escorrentía en Bogotá (Pontificia Universidad Javeriana Facultad). Retrieved from http://repository.javeriana.edu.co/handle/10554/17077 Quick-teck Electronics Components datasheet. (2018). DS18B20 Waterproof Temperature Sensor Cable. Retrieved from https://www.elementzonline.com/downloads/DS18B20.pdf Rodrigo, J. (2011). Libreria para Arduino del modulo Ultrasonic Ranging HC-SR04. Retrieved from Ardublog website: http://www.ardublog.com/library-for-arduinoultrasonic- ranging-hc-sr04/#comment-3084 Rodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization (Taylor & Francis Group, Ed.). Boca Raton: CRC Press. Rodríguez Bayón, J., Rodríguez Hernández, J., Gómez-Ullate, E., & Castro Fresno, D. (2005). Sistemas Urbanos de Drenaje Sostenible (SUDS). In Grupo de Investigación de Tecnología de la Construcción (Vol. 30). Retrieved from http://www.caminospaisvasco.com/Profesion/Publicaciones de nuestros colegiados/suds Rodríguez Díaz, H. A. (2013). Drenaje Urbano Elementos de Diseño. Drenaje urbano no convencional (Escuela Colombiana de Ingeniería Julio Garavito, Ed.). Bogotá. Sánchez, M. (2018). Echeveria Elegans.pdf. Retrieved October 15, 2019, from JardineriaOn website: https://www.jardineriaon.com/echeveria-elegans.html Sañudo-Fontaneda, L. A., Rodriguez-Hernandez, J., & Castro-Fresno, D. (2012). Diseño y Construcción de Sistemas Urbanos de Drenaje Sostenible (SUDS). (August 2015), 137. https://doi.org/10.13140/RG.2.1.1647.6003/1 SAWE Multi-disciplinary Engineers. (2002). Stormwater Management Planning and Desing Guidelines for New Developments (1.0, Vol. 1; B. Wood, Ed.). Retrieved from http://observatoriaigua.uib.es/repositori/suds_sudafrica_guidelines.pdf Schroll, E., Lambrinos, J., Righetti, T., & Sandrock, D. (2011). The role of vegetation in regulating stormwater runoff from green roofs in a winter rainfall climate. Ecological Engineering, 37(4), 595–600. https://doi.org/10.1016/j.ecoleng.2010.12.020 Sela, I., & García, R. (2016). Curso de Cubiertas Verdes. Bogotá: Red Colombiana de Infraestructura Vegetada - RECIVE. Sierra Instruments. (2018). Water Flow Meters – How They Work. Retrieved from Azo Materials website: https://www.azom.com/article.aspx?ArticleID=15058 Simmons, M. T., Gardiner, B., Windhager, S., & Tinsley, J. (2008). Green roofs are not created equal: The hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosystems, 11(4), 339–348. https://doi.org/10.1007/s11252-008-0069-4 Southeast Michigan Council of Governments - Semcog. (2008). Low Impact Development Manual for Michigan A Design Guide for Implementers and Reviewers. Retrieved from file:///C:/Users/ncort/Downloads/LowImpactDevelopmentManualforMichiganSeptemb er2008.pdf Speak, A. F., Rothwell, J. J., Lindley, S. J., & Smith, C. L. (2013). Rainwater runoff retention on an aged intensive green roof. Science of the Total Environment, 461– 462, 28–38. https://doi.org/10.1016/j.scitotenv.2013.04.085 Stovin, V., Poë, S., & Berretta, C. (2013). A modelling study of long term green roof retention performance. Journal of Environmental Management, 131, 206–215. https://doi.org/10.1016/j.jenvman.2013.09.026 Swan Robotics. (2016). HC-SR04 Project. Retrieved from Swan Robotics website: https://www.swanrobotics.com/projects/hc-sr04_project/ Teemusk, A., & Mander, Ü. (2007). Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events. Ecological Engineering, 30(3), 271–277. https://doi.org/10.1016/j.ecoleng.2007.01.009 The Low Impact Development Center Inc. (2010). Low Impact Development Manual for Southern California: Technical Guidance and Site Planning Strategies. In Carolina Stormwater Quality Association. https://doi.org/10.1192/bjp.112.483.211-a The R Foundation for Statistical Computing. (2019). RStudio. Retrieved from https://www.rstudio.com The Roof-Greening Working Group. (2002). Guidelines for the Planning , Execution and Upkeep of Green-roof sites. Retrieved from http://www.greenroofsouth.co.uk/FLL Guidelines.pdf Trapote Jaume, A., & Fernández Rodríguez, H. (2016). Memoria del proyecto: Técnicas de Drenaje Urbano Sostenible. Tredennick, N. (1995). Technology and business forces driving microprocessor evolution.pdf. IEEE, 83, 1641–1652. https://doi.org/9415185 VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., & Xiao, L. (2005). Green roof stormwater retention: Effects of roof surface, slope, and media depth. Journal of Environmental Quality, 34(3), 1036–1044. https://doi.org/10.2134/jeq2004.0364 Versini, P. A., Gires, A., Tchinguirinskaia, I., & Schertzer, D. (2016). Toward an operational tool to simulate green roof hydrological impact at the basin scale: A new version of the distributed rainfall-runoff model Multi-Hydro. Water Science and Technology, 74(8), 1845–1854. https://doi.org/10.2166/wst.2016.310 Villarreal, E. L., & Bengtsson, L. (2005). Response of a Sedum green-roof to individual rain events. Ecological Engineering, 25(1), 1–7. https://doi.org/10.1016/j.ecoleng.2004.11.008 Voyde, E., Fassman, E., & Simcock, R. (2010). Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. Journal of Hydrology, 394(3–4), 384–395. https://doi.org/10.1016/j.jhydrol.2010.09.013 Wilder, J. (2015). A beginner’s guide to microcontrollers. Retrieved from Microcontroller Tips - An EE Wordl Online Resource website: https://www.microcontrollertips.com/abeginners- guide-to-microcontrollers-faq/ Wong, G. K. L., & Jim, C. Y. (2014). Quantitative hydrologic performance of extensive green roof under humid-tropical rainfall regime. Ecological Engineering, 70, 366– 378. https://doi.org/10.1016/j.ecoleng.2014.06.025 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.proposal | Sustainable urban drainage systems | eng |
dc.subject.proposal | Montaje experimental | spa |
dc.subject.proposal | Green roofs | eng |
dc.subject.proposal | Sistemas urbanos de drenaje sostenible | spa |
dc.subject.proposal | Experimental assembly | eng |
dc.subject.proposal | Techos verdes | spa |
dc.subject.proposal | Heavy rainstorm | eng |
dc.subject.proposal | Precipitaciones de alta intensidad | spa |
dc.subject.proposal | Atenuación caudal pico | spa |
dc.subject.proposal | Peak flow attenuation | eng |
dc.subject.proposal | Reducción volumen escorrentía | spa |
dc.subject.proposal | Runoff volume reduction | eng |
dc.title | Evaluación experimental de la escorrentía y la evapotranspiración en techos verdes | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |