Application of innovation strategies in the development of sustainable technologies for surface water remediation and smart materials against COVID-19
dc.contributor.advisor | Vargas Sáenz, Julio César | spa |
dc.contributor.advisor | Sinisterra Millán, Rubén Darío | spa |
dc.contributor.author | Martínez Andrade, Alfonso | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000013192 | spa |
dc.contributor.orcid | Martínez Andrade, Alfonso [0000-0003-4361-5067] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.date.accessioned | 2025-04-24T13:30:59Z | |
dc.date.available | 2025-04-24T13:30:59Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías a color | spa |
dc.description.abstract | Las estrategias de innovación aplicadas lideraron el desarrollo de tecnologías sostenibles para dos desafíos abordados en esta tesis. En primer lugar, para remediar aguas superficiales como las del río Doce y manantiales de Minas Gerais, Brasil, se examinó la posibilidad de utilizar residuos mineros de serpentinito natural y endocarpio de Macauba sometido a un tratamiento alcalino, como una alternativa sustentable para la remoción de aluminio(III), hierro(III), plomo(II) y manganeso(II). El estudio utilizó un diseño experimental Box-Behnken para examinar cómo la concentración inicial de metal, la dosis de adsorbato y el tiempo de adsorción afectan la efectividad de la adsorción de los metales. Los resultados demostraron un rendimiento importante, con tasas de remoción superiores al 80 % para Al(III), Fe(III) y Pb(II), y al 60 % para Mn(II). Este estudio profundizo en los mecanismos de adsorción, cinética, isotermas de adsorción y caracterización. Los resultados de las isotermas sugieren que la quimisorción es el principal mecanismo del endocarpio de Macauba químicamente tratado. Para el serpentinito se identificaron mecanismos de fisisorción y quimisorción en las que la formación de complejos con grupos OH- liberados y el intercambio iónico con Mg(II) del serpentinito emergieron como contribuyentes clave al proceso de adsorción. Además, se evaluaron los ciclos de adsorción de metales y regeneración de los adsorbentes, evidenciando para el serpentinito una capacidad de adsorción constante en cada ciclo y sin perdidas de su capacidad de adsorción después de la regeneración. Por el contrario, el endocarpio de Macauba químicamente tratado pierde el 50% de su capacidad de adsorción después del primer ciclo de regeneración. La capacidad de adsorción promedio del serpentinito y del endocarpio de Macauba químicamente tratado fue de 0.71 y 0.23 mg g-1, respectivamente. La Macauba químicamente tratada mostró una mayor selectividad para la adsorción de Mg(II) y Pb(II). La aplicación combinada de ambos materiales redujo con éxito el contenido de metales del río Doce y del agua de los manantiales hasta estándares de potabilidad. Se propone y evalúa un proceso discontinuo y continuo para escalar la adsorción de metales de los materiales. La evaluación de la tecnología con bases de datos de patentes y artículos mostró la novedad de la invención presentada. La valoración constata el bajo coste de esta tecnología. En general, este estudio muestra el potencial de ambos materiales como base para métodos sostenibles y rentables para tratar la contaminación de las aguas superficiales con Al(III), Fe(III), Pb(II) y Mn(II). El segundo desafío abordado fue el desarrollo de materiales inteligentes contra el COVID-19. El confinamiento por la pandemia inicio en Brasil en marzo del 2020, coincidiendo con el inicio de las actividades de esta tesis. En marzo de 2024, había 774 millones de casos confirmados y 7 millones de muertes por la pandemia de COVID-19 causada por el SARS-CoV-2. Este trabajo enfatiza la importancia de la colaboración multidisciplinaria en la creación de estrategias de monitoreo y nuevos materiales para controlar la propagación viral, especialmente a través de superficies contaminadas o fómites. La transmisión de fómites del SARS-CoV-2 aún no está clara. Se propone un nuevo sistema virucida que utiliza complejos de inclusión de clorhexidina (CHX) con β-ciclodextrina (βCD) impregnadas en matrices textiles o de celulosa para abordar esta dificultad. Los hallazgos muestran que estas matrices inactivan el SARS-CoV-2 y reducen los niveles virales en las superficies durante 30 días. Para la preparación de los compuestos de inclusión, se utilizó la liofilización y el secado por aspersión. Los análisis espectroscópicos y microscópicos mostraron la impregnación de los compuestos de inclusión CHX-βCD en las matrices. El escalonamiento de la producción usando secado por aspersión permitió obtener matrices virucidas en escala industrial. Esta opción virucida innovadora y duradera de desinfección de superficies producida en esta tesis es el resultado de un enfoque traslacional en respuesta a la pandemia (Texto tomado de la fuente). | spa |
dc.description.abstract | Innovation strategies applied lead to the development of sustainable technologies for two challenges addressed in this thesis. First, to remediate surface water as the Doce River and spring waters from Minas Gerais, Brazil, examined the possibility of natural serpentinite mining tailings and alkaline treated Macauba endocarp, as a sustainable alternative for removing aluminum(III), iron(III), lead(II) and manganese(II). The study used a Box-Behnken experimental design to examine how initial metal concentration, adsorbate dosage, and adsorption time affect metal removal effectiveness. Results demonstrated impressive performance, with removal rates exceeding 80% for Al(III), Fe(III) and Pb(II), and 60% for Mn(II). This study searches deeper into the removal mechanisms, kinetics, adsorption isotherms and characterization. Isotherms results suggest chemisorption as the main mechanism of treated Macauba endocarp. For serpentinite it was identified physisorption and chemisorption pathways in which complex formation with released OH- surface groups and ion exchange with Mg(II) from serpentinite emerged as key contributors to the removal process. Furthermore, ion metal adsorption and regeneration cycles were assessed and exhibited sustained removal efficacy without notable capacity reduction for serpentinite. In contrast, the treated Macauba endocarp loses 50% of its adsorption capacity after the first regeneration cycle. The Average adsorption capacity of serpentinite and treated Macauba endocarp was 0.71 and 0.23 mg g-1, respectively. Treated Macauba showed greater selectivity for Mg(II) and Pb(II) adsorption. The combined application of both materials successfully lowered the metals content of the Doce River and spring water to drinkable standards. Batch and continuous processes were proposed and assessed for scaling-up material’s metal adsorption. The technology assessment with patent and articles databases showed the novelty of the solution presented and the valuation verifies the low cost of this technology. Overall, this study shows the potential of both materials as a foundation for sustainable and cost-effective methods to treat surface water contamination with Al(III), Fe(III), Pb(II) and Mn(II). The second challenge addressed was the development of smart materials against COVID-19. The lockdown due to the pandemic began in Brazil in March 2020, coinciding with the beginning of the activities of this thesis. As of March 2024, there were 774 million confirmed cases and 7 million deaths from the SARS-CoV-2-caused COVID-19 pandemic. This work emphasizes the importance of multidisciplinary collaboration in creating monitoring strategies and new materials to control viral propagation, especially through contaminated surfaces or fomites. SARS-CoV-2 fomite transmission is still unclear. A new virucidal system is proposed using chlorhexidine (CHX) inclusion complexes with β-cyclodextrin (βCD) impregnated into cellulose or textile matrices to address this difficulty. The findings show that these matrices inactivate SARS-CoV-2 and reduce viral levels on surfaces for 30 days. For inclusion compound preparation, lyophilization and spray-drying were used, and spectroscopic and microscopic analysis showed the impregnation of the CHX:βCD inclusion compounds in the matrices. Scaling up production with spray-drying enabled industrial-scale virucidal matrices. An innovative, long-lasting virucidal surface disinfection option produced in this thesis is the result of a translational approach to pandemic response. | eng |
dc.description.abstract | A aplicação de estratégias de inovação levou ao desenvolvimento de tecnologias sustentáveis para dois desafios abordados nesta tese. A primeira tecnologia visava a remediação das águas superficiais, como as águas do Rio Doce ou das nascentes de Minas Gerais, Brasil. Foi examinada a possibilidade de usar os rejeitos da mineração de Serpentinito natural e o endocarpo de Macaúba após um tratamento alcalino, como alternativa sustentável para remoção de alumínio(III), ferro(III), chumbo(II), e manganês(II). O estudo utilizou um desenho experimental Box-Behnken para analisar o efeito da concentração inicial do metal, a dosagem do adsorvente e o tempo de adsorção, na eficácia da remoção dos metais. Os resultados demonstraram um desempenho expressivo, com taxas de remoção superiores a 80% para Al(III), Fe(III) e Pb(II) e 60% para Mn(II). Neste estudo aprofundou-se nos mecanismos de remoção, cinética, isotermas de adsorção e caracterização dos materiais. Os resultados das isotermas sugerem a quimissorção como o principal mecanismo do endocarpo de Macaúba tratado. Para o Serpentinito foram identificados mecanismos de fisissorção e quimissorção nas quais a formação de complexos com grupos OH- liberados e a troca iônica com Mg(II) do Serpentinito emergiram como principais contribuintes para o processo de remoção. Além disso, os ciclos de adsorção de íons metálicos e regeneração do adsorvente foram avaliados e exibem eficácia de remoção sustentada sem redução notável da capacidade do Serpentinito. Em contrapartida, o endocarpo de Macaúba tratado perde 50% da capacidade de adsorção após o primeiro ciclo de regeneração. A capacidade média de adsorção do Serpentinito e do endocarpo de Macaúba tratado foi de 0.71 e 0.23 mg g-1, respectivamente. A Macaúba tratada apresentou maior seletividade para adsorção de Mg(II) e Pb(II). O uso combinado de ambos os materiais reduziu com sucesso o teor de metais da água do Rio Doce e das nascentes até os padrões de água potável. Um processo descontínuo e contínuo é proposto e avaliado para escalonar a capacidade de adsorção dos materiais. A avaliação da tecnologia usando bases de dados de patentes e artigos mostrou a novidade da invenção apresentada. A valoração verificou o baixo custo desta tecnologia. No geral, este estudo mostra o potencial de ambos os materiais como base para métodos sustentáveis e econômicos para tratar a contaminação de águas superficiais com Al(III), Fe(III), Pb(II) e Mn(II). O segundo desafio abordado nesta tese foi o desenvolvimento de materiais inteligentes contra a COVID-19. O isolamento devido à pandemia começou no Brasil em março de 2020, coincidindo com o início das atividades desta tese. Em março de 2024, havia 774 milhões de casos confirmados e 7 milhões de mortes devido à pandemia de COVID-19, causada pelo SARS-CoV-2. Este trabalho enfatiza a importância da colaboração multidisciplinar na criação de estratégias de monitoramento e novos materiais para controlar a propagação viral, especialmente através de superfícies contaminadas ou fômites. A transmissão do fômite SARS-CoV-2 ainda não está clara. Um novo sistema virucida é proposto utilizando complexos de inclusão de clorexidina (CHX) com β-ciclodextrina (βCD) impregnados em matrizes de celulose ou têxteis para resolver esta dificuldade. As descobertas mostram que estas matrizes inativam o SARS-CoV-2 e reduzem os níveis virais nas superfícies durante 30 dias. Para a preparação dos compostos de inclusão foram utilizadas as metodologias de liofilização e spray-drying. As análises espectroscópicas e microscópicas mostraram a impregnação dos compostos de inclusão CHX-βCD nas matrizes. O escalonamento da produção do composto de inclusão usando spray-drying permitiu a produção em escala indústrial das matrizes virucidas. Esta opção inovadora e duradoura de desinfecção virucida de superfícies produzida nesta tese é o resultado de uma abordagem translacional em resposta à pandemia. | por |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería Química | spa |
dc.description.notes | Thesis submitted as a partial requirement for PhD degree for graduate program of Technological Innovation, Concentration area: New Materials, Nanotechnology and Chemistry of Universidade Federal de Minas Gerais; and Graduated Program, Doctorate in Engineering - Chemical Engineering of Universidad Nacional de Colombia. Doctorate was completed under a co-tutela agreement of both Universities, UFMG-Brazil, and UN-Bogotá-Colombia | |
dc.description.researcharea | Procesos de adsorción y sus aplicaciones | spa |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | spa |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | spa |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | spa |
dc.description.sponsorship | Agência Nacional de Águas e Saneamento Básico (ANA) | spa |
dc.description.sponsorship | Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) | spa |
dc.description.sponsorship | Universidade Federal de Minas Gerais (UFMG) | spa |
dc.description.sponsorship | Universidad Nacional de Colombia - Sede Bogotá (UN) | spa |
dc.format.extent | 180 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88109 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.place | Beolo Horizonte, Brasil | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.references | W. H. Organization, "Guidelines for Drinking-Water Quality: fourth edition incorporating the first addendum," United Nations, Geneva, 2017. | spa |
dc.relation.references | U. Nations, "World Water Development Report: Leaving No One Behind," UNESCO, Paris, Francia, 2019. | spa |
dc.relation.references | U. Nations, "Sustainable development goals," 2016. [Online]. Available: https://sustainabledevelopment.un.org/sdg6. [Accessed 29 Octubre 2019]. | spa |
dc.relation.references | F. Fonseca do Carmo, L. Yoshino, R. Tobias, I. Christina de Campos, F. Fonseca do Carmo, G. Silvino, K. J. d. S. Xavier de Castro, M. Leite Mauro and N. Alonso, "Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context," Perspectives in ecology and conservation, vol. 15, pp. 145-151, 2017, https://doi.org/10.1016/j.pecon.2017.06.002. | spa |
dc.relation.references | C. Doria Argumedo and H. Deluque Viloria, "Niveles y distribución de metales pesados en el agua de la zona de playa de Riohacha, La Guajira, Colombia," Revista de Investigación Agraria y Ambiental, vol. 6, no. 1, pp. 123-131, 2015. https://doi.org/10.22490/21456453.1268. | spa |
dc.relation.references | I. R. Astros Fonseca, Propuesta de Sistema de Alerta Temprana Bajo el Enfoque de Evaluación de Riesgo por Metales Vehiculados en Agua de Consumo Humano en Colombia, Bogotá, Colombia: Universidad Nacional de Colombia, 2019. | spa |
dc.relation.references | M. Geissdoerfer, P. Savaget, N. M. Bocken and E. J. Hultink, "The Circular Economy A new sustainability paradigm?," Journal of Cleaner Production, vol. 143, pp. 757-768, 2017. https://doi.org/10.1016/j.jclepro.2016.12.048. | spa |
dc.relation.references | European Parliament, "European Parliament," [Online]. Available: https://www.europarl.europa.eu/about-parliament/en. [Accessed 20 06 2022]. | spa |
dc.relation.references | O. R. Carmignano, S. S. Vieira, P. R. G. Brandão, A. C. Bertoli and R. M. Lago, "Serpentinites: Mineral Structure, Properties and Technological Applications," Journal Brazilian Chemical Society, vol. 31, no. 1, pp. 2-14, 2020, https://doi.org/10.21577/0103-5053.20190215. | spa |
dc.relation.references | Departamento Nacional de Produção Mineral. Brasil., Sumário Mineral 2014, Brasilia: ISSN 0101 2053, 2014. | spa |
dc.relation.references | J. E. Becerra and O. Pulido, "Rocas ornamentales," in Recursos minerales de Colombia, vol. 1., Bogotá: Servicio Geológico Colombiano., ISBN 978-958-52469-7-3, 2019, pp. 95-125. | spa |
dc.relation.references | C. A. Colombo, L. H. Chorfi Berton, B. G. Diaz and R. A. Ferrari, "Macauba: a promising tropical palm for the production of vegetable oil," Oilseeds & fats Crops and Lipids, vol. 25, pp. 1-9, 2018. https://doi.org/10.1051/ocl/2017038. | spa |
dc.relation.references | World Health Organization, Guidelines for Drinking-Water Quality: fourth edition incorporating the first addendum, Geneva: United Nations, ISBN: 978-92-4-154995-0, 2017. | spa |
dc.relation.references | UNESCO World Water Assessment Programme, "The United Nations World Water Development Report 2019: Leaving No One Behind," UNESCO, Paris, Francia, 2019. | spa |
dc.relation.references | C.-Y. Cao, C.-H. Liang, Y. Yin and L.-Y. Du, "Thermal activation of serpentine for adsorption of cadmium," Journal of Hazardous Materials, vol. 329, pp. 222-229, 2017, https://doi.org/10.1016/j.jhazmat.2017.01.042. | spa |
dc.relation.references | P. Huang, Z. Li, M. Chen, H. Hu, Z. Lei, Q. Zhang and W. Yuan, "Mechanochemical activation of serpentine for recovering Cu (II) from wastewater," Applied Clay Science, vol. 149, pp. 1-7, 2017, https://doi.org/10.1016/j.clay.2017.08.030. | spa |
dc.relation.references | Z. Li, P. Huang, H. Hu, Q. Zhang and M. Chen, "Efficient separation of Zn(II) from Cd(II) in sulfate solution by mechanochemically activated serpentine," Chemosphere, vol. 258, 2020, https://doi.org/10.1016/j.chemosphere.2020.127275. | spa |
dc.relation.references | P. Petrounias, A. Rogkala, P. Giannalopoulou, P. Lampropoulou, P. Koutsovitis, N. Koukouzas , N. Laskaris, P. Pomonis and K. Hatzipanagiotou, "Removal of Cu (II) from Industrial Wastewater Using Mechanically Activated Serpentinite," Energies, vol. 13, no. 9, 2020, https://doi.org/10.3390/en13092228. | spa |
dc.relation.references | M. Shaban, M. Abukhadra, Khan A and B. Jibali , "Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine," Journal of the Taiwan Institute of Chemical Engineers, vol. 82, pp. 102-116, 2018, https://doi.org/10.1016/j.jtice.2017.10.023. | spa |
dc.relation.references | C. Cao, B. Yu, M. Wang, Y. Zhao and H. Zhao , "Adsorption properties of Pb2+ on thermal-activated serpentine," Separation Science and Technology, vol. 54, no. 18, pp. 3037-3045, 2019, https://doi.org/10.1080/01496395.2019.1565776. | spa |
dc.relation.references | P. Petrounias, A. Rogkala, P. Giannakopoulou, K. Pyrgaki, P. Lampropoulou, P. Koutsovitis, H. Tsikos, P. Pomonis and N. Koukouzas, "Sustainable removal of uranium from acidic wastewater using various mineral raw materials," Journal of Environmental Management, vol. 330, no. 117159, 2023, https://doi.org/10.1016/j.jenvman.2022.117159. | spa |
dc.relation.references | M. M. Farahat, M. M. Sanad and M. Abdel-khalek, "Decoration of serpentine with iron ore as an efficient low-cost magnetic adsorbent for Cr (VI) removal from tannery wastewater," Powder Technology, vol. 388, pp. 51-62, 2021 https://doi.org/10.1016/j.powtec.2021.04.061. | spa |
dc.relation.references | X. Li, Wang, Q , Liu, L and S. Liu, "The performance of calcined serpentine to simultaneously remove fluoride, iron and manganese," Water Supply, vol. 22, no. 3, pp. 2750-2766, 2021, https://doi.org/10.2166/ws.2021.439. | spa |
dc.relation.references | X. Li, X. Yu, L. Liu, J. Yang, S. Liu and T. Zhang, "Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese," Royal Society of Chemistry Advances, vol. 11, pp. 162012-16215, 2021, https://doi.org/10.1039/D1RA02028E. | spa |
dc.relation.references | P. Petrounias, A. Rogkala, P. Giannakopoulou, B. Tsikouras, P. Lampropoulou, S. Kalaitzidis, K. Hatzipanagiotou, N. Lambrakis and M. Christopoulou, "An Experimental Study for the Remediation of Industrial Waste Water Using a Combination of Low Cost Mineral Raw Materials," Minerals, vol. 9, no. 4, 2019, https://doi.org/10.3390/min9040207. | spa |
dc.relation.references | B. Barros Neto, I. Spacino Scarminio and R. E. Bruns, "Andando na superfície de resposta," in Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria, Campinas, SP, Brasil, Editora da Unicamp, 2001, pp. 251-296. | spa |
dc.relation.references | G. Box and D. Behken, "Some new three level designs for the study of quantitative variables," Technometrics, vol. 2, pp. 455-475, 1960, https://doi.org/10.2307/1266454. | spa |
dc.relation.references | R. Ferreira do Nascimento , A. C. Alves de Lima, C. Bastos Vidal, D. de Quadros Melo and G. S. Cabral Raulino, Adsorção, aspectos teóricos e aplicações ambientais, Fortaleza: Imprensa Universitária da Universidade Federal do Ceará, ISBN: 978-65-990722-7-7, 2014. | spa |
dc.relation.references | Emmanuel D. Revellame, Dhan Lord Fortela, Wayne Sharp, Rafael Hernandez and Mark E. Zappi, "Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review," Cleaner Engineering and Technology, vol. 100032, pp. 1-13, 2020, https://doi.org/10.1016/j.clet.2020.100032. | spa |
dc.relation.references | É. C. Lima, M. A. Adebayo and F. M. M. Machado Machado, "Chapter 3 Kinetic and Equilibrium Models of Adsorption," in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, 2015, https://doi.org/10.1007/978-3-319-18875-1_3, pp. 33-69. | spa |
dc.relation.references | Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador, "Portaria MS no 2.914/2011. Procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade," in Série E. Legislação de Saúde, Brasília, DF, Brasil, 2012. | spa |
dc.relation.references | M. A. Rivero Crespo , D. Pereira Gómez, M. V. Villa García, J. M. Gallardo Amores and V. S. Escribano, "Characterization of Serpentines from Different Regions by Transmission Electron Microscopy, X-ray Diffraction, BET Specific Surface Area and Vibrational and Electronic Spectroscopy," Fibers, vol. 7, no. 47, pp. 1-11, 2019. https://doi.org/10.3390/fib7050047. | spa |
dc.relation.references | J. P. A. Clogston, "Zeta Potential Measurement," in Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, Human Press, 2011, pp. 63-70. https://doi.org/10.1007/978-1-60327-198-1_6. | spa |
dc.relation.references | S. Vijayakumar Selvamani, "Chapter 15 - Stability Studies on Nanomaterials Used in Drugs," in In Micro and Nano Technologies, Characterization and Biology of Nanomaterials for Drug Delivery, Elsevier, 2019, pp. 425-444, https://doi.org/10.1016/B978-0-12-814031-4.00015-5. | spa |
dc.relation.references | Bogdan Z. Dlugogorski and Reydick D. Balucan, "Dehydroxylation of serpentine minerals: Implications for mineral carbonation," Renewable and Sustainable Energy Reviews, vol. 31, pp. 353-367, 2014, https://doi.org/10.1016/j.rser.2013.11.002. | spa |
dc.relation.references | C. Viti, "Serpentine minerals discrimination by thermal analysis," American Mineralogist, vol. 95, pp. 631-638, 2010, https://doi.org/10.2138/am.2010.3366. | spa |
dc.relation.references | N. Zulumyan, A. Isahakyan, H. Beglaryan and S. Melikyan, "A study of thermal decomposition of antigorite from dunite and lizardite from peridotite," Journal of Thermal Analysis and Calorimetry, vol. 131, p. 1201–1211, 2018, https://doi.org/10.1007/s10973-017-6705-6. | spa |
dc.relation.references | M. Mellini, Y. Fuchs, C. Viti, C. Lemaire and J. Linares, "Insights into the antigorite structure from Mössbauer and FTIR spectroscopies," European Journal of Mineralogy, vol. 14, pp. 97-104, 2002, https://doi.org/10.1127/0935-1221/2002/0014-0097. | spa |
dc.relation.references | J. Lu, M. Sun, Z. Yuan, S. Qi, Z. Tong, L. Li and Q. Meng, "Innovative insight for sodium hexametaphosphate interaction with serpentine," Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp. 1-22, 2018, https://doi.org/10.1016/j.colsurfa.2018.09.076. | spa |
dc.relation.references | A. Altomare, N. Corriero, C. Cuocci, A. Facicchio, A. Moliterni and R. Rizzi, "QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD," Journal of Applied Crystallography, vol. 48, pp. 598-603, 2015, https://doi.org/10.1107/S1600576715002319. | spa |
dc.relation.references | J. W. Anthony, R. A. Bideaux, K. W. Bladh and M. C. Nichols, "Handbook of Mineralogy," Mineralogical Society of America, Chantilly, VA 20151-1110, USA. [Online]. Available: http://www.handbookofmineralogy.org/. [Accessed 21 08 2023]. | spa |
dc.relation.references | K. S. W. Sink, R. A. W. Haul, R. A. Pierotti and T. Siemieniewska, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," Pure and Applied Chemistry, vol. 57, no. 4, pp. 603-619, 1985, https://doi.org/10.1351/pac198557040603. | spa |
dc.relation.references | S. Annida, Inayati and F. Setiawati, "Chromium Metal Biosorption Using Peanut Shell Adsorbent," Equilibrium Journal of Chemical Engineering, vol. 2, 2018, https://doi.org/10.20961/equilibrium.v2i1.40428. | spa |
dc.relation.references | C. M. Neculita and E. Rosa, "A review of the implications and challenges of manganese removal from mine drainage," Chemosphere, vol. 214, pp. 491-510, 2019, https://doi.org/10.1016/j.chemosphere.2018.09.106. | spa |
dc.relation.references | N. T. Abdel-Ghani, G. A. El-Chaghaby and E. Mohamed Zahran, "Cost Effective Adsorption of Aluminium and Iron from Synthetic and Real Wastewater by Rice Hull Activated Carbon," American Journal of Analytical Chemistry, vol. 6, pp. 71-83, 2015, http://dx.doi.org/10.4236/ajac.2015.61007. | spa |
dc.relation.references | P. Dim, L. Mustapha, M. Termtanun and J. Okafor, "Adsorption of chromium (VI) and iron (III) ions on to acid-modified kaolinite: Isotherm, kinetics and thermodynamics studies," Arabian Journal of Chemistry, vol. 14, no. 4, 2021, https://doi.org/10.1016/j.arabjc.2021.103064. | spa |
dc.relation.references | A. Wilamas, S. Vinitnantharat and A. Pinisakul, "Manganese Adsorption onto Permanganate-Modified BambooBiochars from Groundwater," Sustainability, vol. 15, no. 6831, pp. 1-16, 2023, https://doi.org/10.3390/su15086831. | spa |
dc.relation.references | A. Delle Site, "Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review," Journal of Physical and Chemical Reference, vol. 30, pp. 187-439, 2001, https://doi.org/10.1063/1.1347984. | spa |
dc.relation.references | I. Persson, "Hydrated metal ions in aqueous solution: How regular are their structures?," Pure and Applied Chemistry, vol. 82, no. 10, p. 1901–1917, 2010, https://doi.org/10.1351/PAC-CON-09-10-22. | spa |
dc.relation.references | J. S. Rooney, M. S. Tarling, S. A. Smith and K. C. Gordon, "Submicron Raman spectroscopy mapping of serpentinite fault rocks," Journtal Raman Spectroscopy, vol. 49, p. 279–286, 2018, https://doi.org/10.1002/jrs.5277. | spa |
dc.relation.references | M. Park, C. Lyeal Choi, Y. Jin Seo, S. Kak Yeo, J. Choi, S. Komarneni and J. Hee Lee, "Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide," Applied Clay Science, vol. 37, p. 143–148, 2007, https://doi.org/10.1016/j.clay.2006.12.006. | spa |
dc.relation.references | B. Volesky, "Detoxification of metal-bearing effluents: biosorption for the next century," Hydrometallurgy, vol. 59, pp. 203-216, 2001. https://doi.org/10.1016/S0304-386X(00)00160-2. | spa |
dc.relation.references | V. K. Gupta, A. Nayak and S. Agarwal, "Bioadsorbents for remediation of heavy metals: Current status and their future prospects," Environmental Engineering Research, vol. 20, pp. 1-18, 2015.https://doi.org/10.4491/eer.2015.018. | spa |
dc.relation.references | M. E. Argun, S. Dursun and M. Karatas, "Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark," Desalination, vol. 249, pp. 519-527, 2009. https://doi.org/10.1016/j.desal.2009.01.020. | spa |
dc.relation.references | S. Ferreira, R. Andrade, G. Andrade, O. Araújo, R. Lopes, E. Fairbairn, T. Grabois and N. Ukrainczyk, "Bond Behavior of a Bio-Aggregate Embedded in Cement-Based Matrix," Materials, vol. 15, no. 6151, 2022. https://doi.org/10.3390/ma15176151. | spa |
dc.relation.references | W. T. Vieira, M. D. Bispo, S. d. M. Farias, A. d. S. V. d. Almeida, . T. L. d. Silva , M. G. A. Vieira, . J. I. Soletti and T. L. Balliano, "Activated carbon from macauba endocarp (Acrocomia aculeate) for removal of atrazine: Experimental and theoretical investigation using descriptors based on DFT," Journal of Environmental Chemical Engineering, vol. 9, no. 2, 2021. https://doi.org/10.1016/j.jece.2021.105155. | spa |
dc.relation.references | R. D. F. Rios, P. J. B. Bueno, J. C. S. Terra and F. C. C. Moura, "Influence of the surface modification of granular-activated carbon synthesized from macauba on heavy metal sorption," Environmental Science and Pollution Research , vol. 30, p. 31881–31894, 2023. https://doi.org/10.1007/s11356-022-23736-9. | spa |
dc.relation.references | F. C. C. Moura, R. D. F. Rios and B. R. L. Galvão, "Emerging contaminants removal by granular activated carbon obtainedfrom residual Macauba biomass," Environmental Science and Pollution Research, vol. 25, p. 26482–26492, 2018. https://doi.org/10.1007/s11356-018-2713-8. | spa |
dc.relation.references | L. A. L. Queiroz, T. S. Araújo and M. H. Caño Andrade, "Macauba Pulp Oil Bleach Using Commercial Adsorbent and Activated Carbon from Endocarp of the Own Fruit," Journal of Chemical Engineering and Chemistry, vol. 2, no. 2, p. 57–69, 2016. https://doi.org/10.18540/2446941602022016057. | spa |
dc.relation.references | S. N. Guilhen , S. Rovani , L. G. d. Araujo, J. A. Tenório and O. Mašek, "Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation," Environmental Pollution, vol. 272, 2021. https://doi.org/10.1016/j.envpol.2020.116022. | spa |
dc.relation.references | V. d. S. Lacerda , J. B. López-Sotelo, A. Correa-Guimarães, S. Hernández-Navarro, M. Sánchez-Báscones, L. M. Navas-Gracia, P. Martín-Ramos and J. Martín-Gil, "Rhodamine B removal with activated carbons obtained from lignocellulosic waste," Journal of Environmental Management, vol. 155, pp. 67-76, 2015. https://doi.org/10.1016/j.jenvman.2015.03.007. | spa |
dc.relation.references | G. G. d. Oliveira, M. S. Pereira and C. H. Ataíde, "Investigation of charcoal and activated charcoal for microwave absorbers," The Canadian Journal of Chemical Engineering, vol. 101, no. 1, pp. 516-528, 2023. https://doi.org/10.1002/cjce.24373. | spa |
dc.relation.references | H. O. N. Altino, B. E. S. Costa and R. N. da Cunha, "Biosorption optimization of Ni(II) ions on Macauba (Acrocomia aculeata) oil extraction residue using fixed-bed column," Journal of Environmental Chemical Engineering, vol. 5, no. 5, pp. 4895-4905, 2017. https://doi.org/10.1016/j.jece.2017.09.025. | spa |
dc.relation.references | Y. Y. Giraldo-Bareño, A. D. Pinzón-García, D. V. Sousa, L. F. Bomfim Filho, D. H. Lopes , N. S. Cortés , M. C. Morávia , R. D. Sinisterra and R. M. Orlando, "Efficient and easily scaled-up biosorbent based on natural and chemically modified macauba (Acrocomia aculeata) to remove Al3+, Mn2+ and Fe3+ from surface water contaminated with iron mining tailings," Talanta, vol. 256, 2023. https://doi.org/10.1016/j.talanta.2023.124273. | spa |
dc.relation.references | Sharmeen Afroze, Tushar Kanti Sen and Ha Ming Ang, "Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics, mechanism and equilibrium study," Process Safety and Environmental Protection, vol. I02, pp. 336-352, 2016. https://doi.org/10.1016/j.psep.2016.04.009. | spa |
dc.relation.references | F. Mashkoor and A. Nasar, "Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution," Journal of Molecular Liquids, vol. 274, pp. 315-327, 2019. https://doi.org/10.1016/j.molliq.2018.10.119. | spa |
dc.relation.references | A. Lima, R. Nascimento, F. Sousa, J. Filho and A. Oliveira, "Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions," Chemical Engineering Journal, vol. 186, pp. 274-284, 2012. https://doi.org/10.1016/j.cej.2012.01.037. | spa |
dc.relation.references | A. Correa, V. Carmona, J. Simão, F. Galvani, J. Marconcini and L. Mattoso, "Cellulose Nanocrystals from Fibers of Macauba (Acrocomia Aculeata) and Gravata (Bromelia Balansae) from Brazilian Pantanal," Polymers, vol. 11, no. 1785, pp. 1-19, 2019. https://doi.org/10.3390/polym11111785. | spa |
dc.relation.references | M. Galbe and O. Wallberg, "Pretreatment for biorefineries: a review of common methods for effcient utilisation of lignocellulosic materials," Biotechnology for Biofuels, vol. 12, no. 294, pp. 1-26, 2019. https://doi.org/10.1186/s13068-019-1634-1. | spa |
dc.relation.references | H. Yang, R. Yan, H. Chen, D. Lee and C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis," Fuel, vol. 86, pp. 1781-1788, 2007. https://doi.org/10.1016/j.fuel.2006.12.013. | spa |
dc.relation.references | M. Asadieraghi and W. Wan Daoud, "Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions," Energy Conversion and Management, vol. 82, pp. 71-82, 2014. https://doi.org/10.1016/j.enconman.2014.03.007. | spa |
dc.relation.references | N. Hassan and K. Bafri, "Lignin Recovery from Alkaline Hydrolysis and Glycerolysis of Oil Palm Fiber," in AIP Conference Proceedings, 2014. https://doi.org/10.1063/1.4895236. | spa |
dc.relation.references | S. Vieira, Z. Magriotis, N. Santos, M. Cardoso and A. Saczk, "Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes," Chemical Engineering Journal, vol. 183, pp. 152-161, 2012. https://doi.org/10.1016/j.cej.2011.12.047. | spa |
dc.relation.references | Z. Mayer, A. Apfelbacher and A. Hornung, "Effect of sample preparation on the thermal degradation of metal-added biomass," Journal of Analytical and Applied Pyrolysis, vol. 94, pp. 170-176, 2012. https://doi.org/10.1016/j.jaap.2011.12.008. | spa |
dc.relation.references | S. Hirshorn and S. Jefferies, "Final Report of the NASA Technology Readiness Assessment (TRA) Study Team," NASA, 2016. | spa |
dc.relation.references | S. Altuntas, T. Dereli and A. Kusiak, "Forecasting technology success based on patent data," Technological Forecasting & Social Change, vol. 96, pp. 202-214, 2015. https://doi.org/10.1016/j.techfore.2015.03.011. | spa |
dc.relation.references | A. Scariot, E. Lleras and J. Hay, "Reproductive-Biology of the Plam Acrocomia-Aculeata in central Brazil," Biotropica, vol. 23, no. 1, pp. 12-22, 1991. https://doi.org/10.2307/2388683. | spa |
dc.relation.references | S. S. Vieira, Z. M. Magriotis, N. A. Santos, M. d. G. Cardoso and A. A. Saczk, , "Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes," Chemical Engineering Journal, vol. 183, pp. 152-161, 2012. https://doi.org/10.1016/j.cej.2011.12.047. | spa |
dc.relation.references | R. D. F. Rios, I. Binatti, J. D. Ardisson and F. C. C. Moura, "Compounds based on iron mining tailing dams and activated carbon from macauba palm for removal of emerging contaminants and phosphate from aqueous systems," Environmental Science and Pollution Research, vol. 30, p. 60212–60224, 2023. https://doi.org/10.1007/s11356-023-26643-9. | spa |
dc.relation.references | M. Ottaviani and F. Venturi, "Physicochemical study on the adsorption properties of asbestos .1. EPR study on the adsorption of organic radicals," Journal of Physical Chemistry, vol. 100, no. 1, pp. 265-273, 1996. https://doi.org/10.1021/jp9515850. | spa |
dc.relation.references | C. Silva, M. Schons Silva, M. Machado and C. Cara, "Mixture of vegetable oils (Glycine max, Jatropha curcas and Acrocomia aculeata) used as collector for flotation of minerals comprises mixture of soybean oils, Macauba and Jatropha in flotation of ores, in binary and tertiary compositions". Brasil Patent BR102019010264-A2, 31 12 2020. | spa |
dc.relation.references | A. Machado de Castro, D. Guimaraes, O. D'avia, S. Da Silva, E. Goncalves , A. Araujo, M. Limoeiro and J. Greco, "Performing integrated process for production of biodiesel by enzymatic transesterification involves converting macauba oil to biodiesel through use of biocatalyst obtained by solid state fermentation of macauba cake". Brasil Patent BR102016020837-A2, 16 03 2019. | spa |
dc.relation.references | M. Bispo, J. Soletti, T. Balliano, W. Vieira, G. Amaral , M. Farias, S. Carvalho, M. Araujo and R. Soletti, "Use of pyroligneous extract i.e. acidic, antimycotic extract obtained from pyroligneous extract of biomass of palm trees by pyrolysis in preparation of product, for treating skin and nail microbial infections". Brasil Patent BR102020013751(A2), 14 05 2022. | spa |
dc.relation.references | P. Eisner, S. Mittermaier, I. Muranyi, G. Doer, S. Toledo , R. Aparecida, R. Martins, L. Bataglia and C. Colombo, "Protein ingredient useful in food, pet food and cosmetics, and as ingredient for performing technical applications e.g. for packing, prepared from seeds of macauba fruit". Germany Patent WO2021160877-A1, 28 12 2021. | spa |
dc.relation.references | B. Souza, "Formulation for producing hair compound made with herbs, oils and minerals, comprises mix of mineral oils, white clay and rosemary fluid, where mix of minerals comprises almond and macauba oil, so as to result in treatment of hair loss". Brasil Patent BR102020016573-A2, 08 08 2021. | spa |
dc.relation.references | G. Bonfim, "Organic abrasive used for sandblasting and cleaning plastic components and metal, such as propellers and wheels of aircraft, comprises abrasive material comprising particles of macauba coconut shell in different particle sizes". Brasil Patent BR201103557-A2, 04 01 2013. | spa |
dc.relation.references | S. Marinho de Faria, "Producing activated charcoal used as adsorbent for gaseous and liquid media for purification of undesirable materials, involves crushing fruit endocarp of Acrocomia aculeata to obtain carbonaceous powder, and than drying carbonaceous powder". Brasil Patent BR102012032479-A2, 02 01 2015. | spa |
dc.relation.references | M. Wang and H. Han, "Microorganism water treatment agent used for processing heavy metal organic waste water, comprises oyster shell, feldspar, forsterite, talcum, serpentine, chlorite, attapulgite, ammonium molybdate-modified bentonite and diatomite". China Patent CN106007006, 08 01 2016. | spa |
dc.relation.references | X. Cao, "Multifunctional nano-material flocculant useful for e.g. treating water by removing turbidity and chemical oxygen demand, comprises nano-montmorillonite, nano-sepiolite, nano-serpentine, polyaluminum chloride and polyacrylamide". China Patent CN107673457-A, 18 05 2018. | spa |
dc.relation.references | Y. Kim and G. Lee, "Process for purifying muddy water in dam by using serpentine powder or plasticized powder as primary mineral, particularly concerned with using serpentine or olivine powder, or serpentine plasticized powder". South Korea Patent KR2006017302-A, 06 01 2006. | spa |
dc.relation.references | J. Cheng, W. Wan and J. Zhi, "Graphene nano purification system for treating medicinal sewage containing coronavirus comprises medicinal sewage collection and transportation devices, and sodium hypochlorite generator provided in first-stage sedimentation tank". China Patent CN111573933-A, 28 09 2020. | spa |
dc.relation.references | X. Chen, M. Xia, T. Xia, Y. Ye, W. Qin and L. Qiu, "Layered mineral and polyphosphate carrying composite material used as variety of metal ion removal agent, formed by carrying phosphate ions on surface of layered mineral for the adsorption of variety of metal ions". China Patent CN105642224-A, 08 01 2016. | spa |
dc.relation.references | QI F, "Electroplating wastewater treatment method by filtering electroplating wastewater, flowing into sedimentation tank, adjusting pH, adding ferric chloride, filtering, flowing into electrochemical cell, and adjusting pH with hydrochloric acid". China Patent CN105036476-A, 02 01 2015. | spa |
dc.relation.references | J. Li, M. Ma, D. Du, L. Shao, H. Wei and X. Song, "Preparing adsorbent that efficiently removes heavy metal ion in wastewater based on electrolytic manganese slag with high efficiency, involves mixing electrolytic manganese slag and ore, and adding mixture and de-ionized water". China Patent CN111939868-A, 18 01 2021. | spa |
dc.relation.references | A. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino , G. Dotro, E. Cartmell and P. Campo, "Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater," Clean Technologies and Environmental Policy, vol. 20, pp. 393-402, 2018. https://doi.org/10.1007/s10098-017-1481-3. | spa |
dc.relation.references | J. Beltrán Heredia and J. Sánchez Martín, "Removing heavy metals from polluted surface water with a tannin-based flocculant agent," Hazardous Materials, vol. 165, pp. 1215-1218, 2009. https://doi.org/10.1016/j.jhazmat.2008.09.104. | spa |
dc.relation.references | E. Samper, M. Rodríguez, M. A. De la Rubia and D. Prats, "Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS)," Separation and Purification Technology, vol. 65, pp. 337-342, 2009. https://doi.org/10.1016/j.seppur.2008.11.013. | spa |
dc.relation.references | P. C. Wankat, Separation Process Engineering Includes Mass Transfer Analysis. Third Edition, United States of America: Prentice Hall, 2011. | spa |
dc.relation.references | A. Dabrowski, Z. Hubicki, P. Podkoscielny and E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, vol. 56, pp. 91-106, 2004. https://doi.org/10.1016/j.chemosphere.2004.03.006. | spa |
dc.relation.references | N. P. Raval, P. U. Shah and N. K. Shah , "Adsorptive removal of nickel(II) ions from aqueous environment: A review," Environmental Management, vol. 179, pp. 1-20, 2016. https://doi.org/10.1016/j.jenvman.2016.04.045. | spa |
dc.relation.references | M. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Armand, J.-L. Hazemann, C. Chaneac and J.-P. Jolivet, "Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles: As(III) as a Probe of the Surface Structure and Heterogeneity," Langmuir, vol. 24, pp. 3215-3222, 2008. https://doi.org/10.1021/la702998x. | spa |
dc.relation.references | K. Yang and . B. Xing, "Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application," Chemical Reviews, vol. 110, pp. 5989-6008, 2010. https://doi.org/10.1021/cr100059s. | spa |
dc.relation.references | C. Yavuz, J. T. Mayo, W. Yu, A. Prakash, J. Falkner, S. Yean, L. Cong, H. Shipley, A. Kan, M. Tomson, D. Natelson and V. Colvin, "Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals," Science, vol. 314, pp. 964-966, 2006. https://doi.org/10.1126/science.1131475. | spa |
dc.relation.references | Q. Li, S. Mahendra, D. Lyon, L. Brunet, M. Liga, D. Li and P. Alvarez, "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications," Water research, vol. 42, pp. 4591-4602, 2008. https://doi.org/10.1016/j.watres.2008.08.015. | spa |
dc.relation.references | M. Elimelech and W. A. Phillip, "The Future of Seawater Desalination: Energy, Technology, and the Environment," Science, vol. 333, pp. 712-717, 2011. https://doi.org/10.1126/science.120048. | spa |
dc.relation.references | D. Li and Y. Xia, "Electrospinning of Nanofibers: Reinventing the wheel?," Advanced Materials, vol. 16, pp. 1151-1170, 2004. https://doi.org/10.1002/adma.200400719. | spa |
dc.relation.references | X. Qu, J. Brame, Q. Li and P. Alvarez, "Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse," Accounts of chemical research, vol. 46, no. 3, pp. 834-843, 2012. https://doi.org/10.1021/ar300029v. | spa |
dc.relation.references | V. Stanlovic, M. Gorgievski, D. Bozic and G. Bogdanovic, "Mine waters purification by biosorption coupled with green energy production from wood and straw biomass," Chemical Industry & Chemical Engineering Quarterly, vol. 28, no. 4, p. 255−264, 2022. https://doi.org/10.2298/CICEQ210617037S. | spa |
dc.relation.references | A. Raouf and A. Raheim, "Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review," Journal of Pollution Effects & Control, vol. 5, no. 1, pp. 1-13, 2017, https://doi.org/10.4172/2375-4397.1000180. | spa |
dc.relation.references | E. Björkman and B. Strömberg, "Release of Chlorine from Biomass at Pyrolysis and Gasification Conditions," Energy Fuels, vol. 11, no. 5, pp. 1026-1032, 1997. https://doi.org/10.1021/ef970031o. | spa |
dc.relation.references | W. Jerzak, M. Wądrzyk, I. Kalemba-Rec, A. Bieniek and A. Magdziarz, "Release of chlorine during oat straw pyrolysis doped with char and ammonium chloride," Renewable Energy, vol. 215, 2023. https://doi.org/10.1016/j.renene.2023.118923. | spa |
dc.relation.references | You Wei and Yang Yanzoing, "Heavy metal wastewater adsorption tower". China Patent CN206255881, 16 06 2017. | spa |
dc.relation.references | W. P. Addiego, B. Y. Johnson and L. Wang, "Filter and methods for heavy metal remediation of water". Unitated States Patent US9,776,891, 3 Octubre 2017. | spa |
dc.relation.references | Xiaohui Zhang and Luo Weiming, "Heavy Metal Waste Water Treatment Device Of Layer -Stepping Adsorption Tower". China Patent CN208022863, 30 10 2018. | spa |
dc.relation.references | N. Sinisterra Cortés, Escalonamento e panorama no cenário brasileiro da aplicação de coluna de adsorção de metais com endocarpo de Macaúba, Belo Horizonte, Universidade Federal de Minas Gerais: Trabalho de Conclusão de Curso (TCC), 2019. | spa |
dc.relation.references | Fortune Business Insights, "Water and Sludge Treatment/ Water Purifier Market," Junho 2020. [Online]. Available: https://www.fortunebusinessinsights.com/water-purifier-market-103118. [Accessed May 2024]. | spa |
dc.relation.references | Allied Market Research, "Water Purifier Market by Technology, Distribution Channel, Portability, and End User: Global Opportunity Analysis and Industry Forecast, 2019 - 2025," Junho 2019. [Online]. Available: https://www.alliedmarketresearch.com/water-purifier-market. [Accessed May 2024]. | spa |
dc.relation.references | Markets and Markets, "(Single & Dual Phase, Multimedia, Cartridge), End-Use Industry (Municipal, Industrial (Oil & Gas, Chemicals & Petrochemicals, Food & Beverages, and Pharmaceuticals)), and Region - Global Forecast to 2023," Media Type, Decembro 2018. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/water-filter-market-256063580.html. [Accessed Março 2021]. | spa |
dc.relation.references | Butler Consultants, "Free Industry Statistics – Sorted by Highest Gross Margin," Business Plan Writers, [Online]. Available: https://financial-projections.com/resources/free-business-research/free-industry-statistics/free-industry-statistics-2/. [Accessed May 2024]. | spa |
dc.relation.references | World Intellectual Property Oganization (WIPO), A Practical Guide for Valuing Intangible Assets, Geneva: WIPO, 2016. | spa |
dc.relation.references | Companhia Energética de Minas Gerais CEMIG, "VALORES DE TARIFAS E SERVIÇOS," Energy, 2024. [Online]. Available: https://www.cemig.com.br/atendimento/valores-de-tarifas-e-servicos/. [Accessed May 2024]. | spa |
dc.relation.references | World Health Organization (WHO), "Advice for the public: Coronavirus disease (COVID-19)," World Health Organization (WHO), March 2023. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/. [Accessed March 2024]. | spa |
dc.relation.references | G. S. Jacinto, L. F. G. Dias, J. Tsukamoto , P. N. Lisboa-Filho, M. T. Souza, A. P. de Moraes and C. W. Arns, "Insight into the role of copper-based materials against the coronaviruses MHV-3, a model for SARS-CoV-2, during the COVID-19 pandemic," Biometals, 2024. https://doi.org/10.1007/s10534-024-00585-2. | spa |
dc.relation.references | A. B. Garcia, A. P. de Moraes, D. M. Rodrigues, R. Gilioli, E. F. de Oliveira-Filho, R. Durães-Carvalho and C. W. Arns, "Coding-Complete Genome Sequence of Murine Hepatitis Virus Strain 3 from Brazil," Microbiology Resource Announcements, vol. 10, no. 15, 2021. https://doi.org/10.1128/mra.00248-21. | spa |
dc.relation.references | Y. Yamada, T. Goto, S. Shiota, M. Sohma and J. Akedo, "Chlorhexidine-filled porous ceramic coating fabricated by the aerosol deposition method for immediate and long-term enveloped virus inactivation," Journal of Asian Ceramic Societies, vol. 10, no. 2, p. 465–472, 2022. https://doi.org/10.1080/21870764.2022.2072081. | spa |
dc.relation.references | J. Cai, W. Sun, J. Huang, M. Gamber, J. Wu and G. He, "Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020," Emerging Infectious Diseases, vol. 26, no. 6, pp. 1343-1345, 2020. https://doi.org/10.3201/eid2606.200412. | spa |
dc.relation.references | S. H. Bae, H. Shin, . H.-Y. Koo, S. W. Lee, J. M. Yang and D. K. Yon, "Asymptomatic Transmission of SARS-CoV-2 on Evacuation Flight," Emerging Infectious Diseases, vol. 26, no. 11, pp. 2705-2708, 2020. https://doi.org/10.3201/eid2611.203353. | spa |
dc.relation.references | J. Barker, I. Vipond and S. Bloomfield , "Effects of cleaning and disinfection in reducing the spread of Norovirus contamination via environmental surfaces," Journal of Hospital Infection, vol. 58, no. 1, pp. 42-49, 2004. https://doi.org/10.1016/j.jhin.2004.04.021. | spa |
dc.relation.references | B. Winther, F. G. Hayden and J. Owen Hendley, "Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season," Journal of Medical Virology, vol. 78, no. 5, pp. 644-650, 2006. https://doi.org/10.1002/jmv.20588. | spa |
dc.relation.references | H. M. Wu , M. Fornek, K. J. Schwab, A. R. Chapin, K. Gibson, E. Schwab, C. Spencer and K. Henning, "A norovirus outbreak at a long-term-care facility: the role of environmental surface contamination," Infection Control and Hospital Epidemiology, vol. 26, no. 10, pp. 802-810, 2005. https://doi.org/10.1086/502497. | spa |
dc.relation.references | P. D. Rakowska, M. Tiddia, N. Faruqui, C. Bankier, Y. Pei, A. J. Pollard, J. Zhang and I. S. Gilmore, "Antiviral surfaces and coatings and their mechanisms of action," Communications Material, vol. 2, no. 53, 2021. https://doi.org/10.1038/s43246-021-00153-y. | spa |
dc.relation.references | P. Vasickova, I. Pavlik, M. Verani and A. Carducci, "Issues Concerning Survival of Viruses on Surfaces," Food and Environmental Virology, vol. 2, pp. 2-34, 2010. https://doi.org/10.1007/s12560-010-9025-6. | spa |
dc.relation.references | National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases, "Scientific Brief: SARS-CoV-2 Transmission.," 7 May 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK570442/. [Accessed March 2024]. | spa |
dc.relation.references | V. Tiong, P. Hassandarvish, S. Abu Bakar, N. Azmawati Mohamed, W. S. Wan Sulaiman, N. Baharom , F. N. Abdul Samad and I. Isahak , "The effectiveness of various gargle formulations and salt water against SARS-CoV-2," Scientific Reports, Nature, vol. 11, no. 20502, 2021. https://doi.org/10.1038/s41598-021-99866-w. | spa |
dc.relation.references | National Institutes of Health, USA, "COVID-19 Treatment Guidelines," February 2024. [Online]. Available: https://www.covid19treatmentguidelines.nih.gov/. [Accessed March 2024]. | spa |
dc.relation.references | M. dos Santos Fernandez, . M. I. Florindo Guedes, G. P. José Langa, C. Kuchenbecker Rösing, J. Cavagni and F. W. Mustafa Gomes Muniz, "Virucidal efficacy of chlorhexidine: a systematic review," Odontology, vol. 110, pp. 376-392, 2022. https://doi.org/10.1007/s10266-021-00660-x. | spa |
dc.relation.references | Y. Zhou, N. F. Fletcher, N. Zhang, J. Hassan and M. D. t. Gilchris, "Enhancement of Antiviral Effect of Plastic Film against SARS-CoV-2: Combining Nanomaterials and Nanopatterns with Scalability for Mass Manufacturing," Nano Letters, vol. 21, pp. 10149-10456, 2021. https://doi.org/10.1021/acs.nanolett.1c02266. | spa |
dc.relation.references | C. Deng , F. Seidi , Q. Yong , X. Jin , C. Li , X. Zhang , J. Han, Y. Liu , Y. Huang , Y. Wang , Z. Yuan and H. Xiao , "Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution," Journal of Hazardous Materials, vol. 424, 2022. https://doi.org/10.1016/j.jhazmat.2021.127391. | spa |
dc.relation.references | C. Deng, F. Seidi, Q. Yong, X. Jin, C. Li, L. Zheng, Z. Yuan and H. Xiao, "Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic," JournalofAdvancedResearch, vol. 39, pp. 147-156, 2022. https://doi.org/10.1016/j.jare.2021.11.002. | spa |
dc.relation.references | D. Žigrayová, V. Mikušová and P. Mikuš, "Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers," Viruses, vol. 15, no. 647, 2023. https://doi.org/10.3390/v15030647. | spa |
dc.relation.references | R. Delshadi , A. Bahrami, D. J. McClements, M. D. Moore and L. Williams, "Development of nanoparticle-delivery systems for antiviral agents: A review," Journal of Controlled Release, vol. 331, pp. 30-44, 2021. https://doi.org/10.1016/j.jconrel.2021.01.017. | spa |
dc.relation.references | N. Losada-Garcia, A. Vazquez-Calvo, A. Alcami and J. M. Palomo, "Preparation of Highly Stable and Cost-Efficient Antiviral Materials for Reducing Infections and Avoiding the Transmission of Viruses such as SARS-CoV-2," ACS Applied Materials & Interfaces, vol. 15, no. 18, pp. 22580-22589, 2023. https://doi.org/10.1021/acsami.3c03357. | spa |
dc.relation.references | A. Nefedova, K. Rausalu, E. Zusinaite , V. Kisand, M. Kook , K. Smits, A. Vanetsev and A. Ivask , "Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions," Heliyon, vol. e20067, 2023. https://doi.org/10.1016/j.heliyon.2023.e20067. | spa |
dc.relation.references | O. O Ogbole, T. E. Akinleye, P. A. Segun, T. C. Faleye and A. J. Adeniji, "In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses," Virology Journal, vol. 15, no. 110, 2018. https://doi.org/10.1186/s12985-018-1022-7. | spa |
dc.relation.references | N. Lavoine, C. Givord, N. Tabary, I. Desloges, B. Martel and J. Bras , "Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose," Innovative Food Science and Emerging Technologies, vol. 26, pp. 330-340, 2014. http://dx.doi.org/10.1016/j.ifset.2014.06.006. | spa |
dc.relation.references | N. Lavoine, N. Tabary, I. Desloges , B. Martel and J. Bras , "Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose," Colloids Surf B Biointerfaces, vol. 1, no. 121, pp. 196-205, 2014. https://doi.org/10.1016/j.colsurfb.2014.06.021. | spa |
dc.relation.references | F. Aubert-Viard, A. Mogrovejo-Valdivia, N. Tabary, M. Maton, F. Chai, C. Neut, B. Martel and N. Blanchemain, "Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application," Materials Science & Engineering C, vol. 100, pp. 554-563, 2019. https://doi.org/10.1016/j.msec.2019.03.044. | spa |
dc.relation.references | A. C. d. S. P. Andrade, G. H. Campolina-Silva, C. M. Queiroz-Junior, L. C. Oliveira, L. d. S. B. Lacerda, J. C. P. Gaggino, F. R. O. Souza, I. d. M. Chaves, I. B. Passos, D. C. Teixeira, P. G. Bittencourt-Silva, P. A. C. Valadão, L. Rossi-Oliveira, M. M. Antunes, A. F. A. Figueiredo, N. T. Wnuk, J. R. Temerozo, A. C. Ferreira, A. Cramer, C. A. Oliveira, R. Durães-Carvalho, C. W. Arns, P. P. G. Guimarães, G. M. J. Costa, G. B. Menezes, C. Guatimosim, G. S. F. da Silva, T. M. L. Souza, B. R. Barrioni, M. d. M. Pereira, L. P. Sousa, M. M. Teixeira and V. V. Costa, "A Biosafety Level 2 Mouse Model for Studying Betacoronavirus-Induced Acute Lung Damage and Systemic Manifestations," Journal of Virology, vol. 95, no. 22, 2021. https://doi.org/10.1128/JVI.01276-21. | spa |
dc.relation.references | L. Reed and H. Muench, "A simple method of estimating fifty per cent endpoints," American Journal of Epidemiology, vol. 27, no. 3, pp. 493-497, 1938. https://doi.org/10.1093/oxfordjournals.aje.a118408. | spa |
dc.relation.references | M. E. Cortés, R. D. Sinisterra, M. J. Avila-Campos, N. Tortamano and R. G. Rocha, "The Chlorhexidine:β-Cyclodextrin Inclusion Compound: Preparation, Characterization and Microbiological Evaluation," Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 40, pp. 297-302, 2001. https://doi.org/10.1023/A:1012788432106. | spa |
dc.relation.references | S. Vahur, A. Teearu, P. Peets, L. Joosu and I. Leito, "ATR-FT-IR spectral collection of conservation materialsin the extended region of 4000-80 cm–1," Analytical and Bioanalytical Chemistry, vol. 408, pp. 3373-3379, 2016. https://doi.org/10.1007/s00216-016-9411-5. | spa |
dc.relation.references | E. H. Portella, D. Romanzinib, C. C. Angrizanib, S. C. Amicob and A. J. Zattera, "Influence of Stacking Sequence on the Mechanical and Dynamic Mechanical Properties of Cotton/Glass Fiber Reinforced Polyester Composites," Materials Research, vol. 19, no. 3, pp. 542-547, 2016. https://doi.org/10.1590/1980-5373-MR-2016-0058. | spa |
dc.relation.references | J. Zięba-Palus, "The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes," Forensic Science and Criminology, vol. 2, no. 2, pp. 1-9, 2017. https://doi.org/10.15761/FSC.1000112. | spa |
dc.relation.references | R. Vehring, "Pharmaceutical Particle Engineering via Spray Drying," Pharmaceutical Research, vol. 25, no. 5, pp. 999-1022, 2008. https://doi.org/10.1007/s11095-007-9475-1. | spa |
dc.relation.references | T. Goto, Y. Yamada, T. Ueda and S. Shio, "Chlorhexidine-filled porous ceramic coating fabricated by the aerosol deposition method for immediate and long-term enveloped virus inactivation," Journal of Asian Ceramic Societies, vol. 10, no. 2, pp. 465-472, 2022. https://doi.org/10.1080/21870764.2022.2072081. | spa |
dc.relation.references | F. Carrouel, L. Gonçalves, M. Conte, G. Campus, J. Fisher, L. Fraticelli, E. Gadea-Deschamps, L. Ottoleng and D. Bourgeois, "Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2," Journal of Dental Research, vol. 100, no. 2, pp. 124-132, 2021. https://doi.org/0.1177/0022034520967933. | spa |
dc.relation.references | Q. Lin, J. Y. C. Lim, K. Xue, P. Y. M. Yew, C. Owh, P. L. Chee and X. J. Loh, "Sanitizing agents for virus inactivation and disinfection," View (Beijing), vol. 1, no. 2, 2020. https://doi.org/10.1002/viw2.16. | spa |
dc.relation.references | British Standards Institute, "Chemical disinfectants and antiseptics. Quantitative suspension test for the evaluation of virucidal activity in the medical area. Test method and requirements (Phase 2/Step 1).," BS EN 14476:2013+A2:2019, 2019. | spa |
dc.relation.references | K. I. R. Teixeira, A. M. L. Denadai, R. D. Sinisterra and M. E. Cortés, "Cyclodextrin modulates the cytotoxic effects of chlorhexidine on microrganisms and cells in vitro," Drug Delivery, vol. 22, no. 3, pp. 444-453, 2015. https://doi.org/10.3109/10717544.2013.879679. | spa |
dc.relation.references | K. I. R. Teixeira, P. V. Araújo, . B. R. A. Neves, G. A. B. Mahecha, R. D. Sinisterra and M. E. Cortés, "Ultrastructural changes in bacterial membranes induced by nano-assemblies β-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation," Pharmaceutical Development and Technology, vol. 18, no. 3, pp. 600-608, 2013. https://doi.org/10.3109/10837450.2011.649853. | spa |
dc.relation.references | A. Cid-Samamed, J. Rakmai , J. C. Mejuto, J. Simal-Gandara and G. Astray, "Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications," Food Chemistry, vol. 384, 2022. https://doi.org/10.1016/j.foodchem.2022.132467. | spa |
dc.relation.references | J. J. Passos, F. B. De Sousab, I. M. Mundim, R. R. Bonfim, R. Melo, A. F. Viana, E. D. Stolz, M. Borsoie, S. M. Rates and R. D. Sinisterra, "Double continuous injection preparation method of cyclodextrin inclusion compounds by spray drying," Chemical Engineering Journal, vol. 228, pp. 345-351, 2013. https://doi.org/10.1016/j.cej.2013.04.074. | spa |
dc.relation.references | R. S. Blackburn, A. Harvey, L. L. Kettle, A. P. Manian, J. D. Payne and S. J. Russell, "Sorption of Chlorhexidine on Cellulose: Mechanism of Binding and Molecular Recognition," The Journal of Physical Chemistry B, vol. 111, no. 30, pp. 8775-8784, 2007. https://doi.org/10.1021/jp070856r. | spa |
dc.relation.references | P. Ball, "From academic discovery to industrial applications: Innovation and success in materials science and engineering," MRS Bulletin, vol. 40, pp. 1177-1185, 2015. https://doi.org/10.1557/mrs.2015.275. | spa |
dc.relation.references | A. M. L. Denadai, K. I. Teixeira, M. M. Santoro, A. M. C. Pimenta, M. E. Cortés and R. D. Sinisterra, "Supramolecular self-assembly of beta-cyclodextrin: an effective carrier of the antimicrobial agent chlorhexidine," Carbohydrate Research, vol. 342, no. 15, pp. 2286-2296, 2007. https://doi.org/10.1016/j.carres.2007.05.002. | spa |
dc.relation.references | E. d. C. França, Efeito de um Sistema de Liberação Controlada de Clorexidina para o Controle de Placa e Gengivite, Belo Horizonte, MG, Brazil: Universidade Federal de Minas Gerais, 2012. | spa |
dc.relation.references | A. L. Pataro, M. E. Cortés, M. V. F. Araújo and R. D. Sinisterra, "Processo de preparação de composições farmacêuticas de liberação controlada compreendendo antimicrobiano e ciclodextrina". Brazil Patent PI0206336 B1, 13 June 2017. | spa |
dc.relation.references | K. K. Wan, D. Davis, T. N. Lee, S. L. Ford-Scheimer, A. L. Andreu, F. Bietrix, J. Bryans, M. T. Castro, N. Chiba, J. M. Faupel-Badger, B. Haynes, R. Hirasawa, C. M. Morel, T. M. L. Souza, D. Morrow, T. Munro , S. Newman, A. E. Ussi, P. B. Zorzal, M. D. Hall, D. C. Lo and C. M. Cutillo, "Translation Together, a transnational consortium of translational research organizations, reflects on successes and challenges in regional COVID-19 pandemic responses and proposes five priorities to improve preparedness for future global public health cri," Nature Reviews Drug Discovery, vol. 21, pp. 165-166, 2022. https://doi.org/10.1038/d41573-022-00020-6. | spa |
dc.relation.references | R. D. Sinisterra , M. E. Cortés, A. Martínez, D. A. Grajales and R. Silva, "Mesh Materials for Controlled Release of Antivirals, Method and Use". WIPO Patent WO/2022/018689, 22 07 2021. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::546 - Química inorgánica | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::608 - Patentes | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.ddc | 660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadas | spa |
dc.subject.ddc | 610 - Medicina y salud::613 - Salud y seguridad personal | spa |
dc.subject.lemb | INGENIERIA QUIMICA-PROCESAMIENTO DE DATOS | spa |
dc.subject.lemb | Chemical engineering - data processing | eng |
dc.subject.lemb | ROCAS METAMORFICAS | spa |
dc.subject.lemb | Rocks, metamorphic | eng |
dc.subject.lemb | CUARCITA | spa |
dc.subject.lemb | Quartzite | eng |
dc.subject.lemb | LIGNINA | spa |
dc.subject.lemb | Lignin | eng |
dc.subject.lemb | LIGNOCELULOSA | spa |
dc.subject.lemb | Lignocellulose | eng |
dc.subject.lemb | INVESTIGACION CIENTIFICA | spa |
dc.subject.lemb | Research | eng |
dc.subject.lemb | DISEÑO EXPERIMENTAL | spa |
dc.subject.lemb | Experimental design | eng |
dc.subject.lemb | INTERCAMBIO IONICO | spa |
dc.subject.lemb | Ion exchange | eng |
dc.subject.lemb | PURIFICACION DE AGUAS RESIDUALES-PROCESO DE INTERCAMBIO IONICO | spa |
dc.subject.lemb | Sewage - Purification - Ion exchange process | eng |
dc.subject.proposal | Serpentinite | eng |
dc.subject.proposal | Macauba | eng |
dc.subject.proposal | Aluminum | eng |
dc.subject.proposal | Iron | eng |
dc.subject.proposal | Manganese | eng |
dc.subject.proposal | Lead | eng |
dc.subject.proposal | Water | eng |
dc.subject.proposal | Remediation | eng |
dc.subject.proposal | Sustainability | eng |
dc.subject.proposal | Chlorhexidine | eng |
dc.subject.proposal | Inclusion-compounds | eng |
dc.subject.proposal | Cyclodextrin | eng |
dc.subject.proposal | SARS-CoV-2 | eng |
dc.subject.proposal | Long-lasting virucidal | eng |
dc.subject.proposal | Cellulose matrices | eng |
dc.subject.proposal | Serpentinito | spa |
dc.subject.proposal | Macauba | spa |
dc.subject.proposal | Aluminio | spa |
dc.subject.proposal | Hierro | spa |
dc.subject.proposal | Manganeso | spa |
dc.subject.proposal | Plomo | spa |
dc.subject.proposal | Agua | spa |
dc.subject.proposal | Remediación | spa |
dc.subject.proposal | Sostenibilidad | spa |
dc.subject.proposal | Clorhexidina | spa |
dc.subject.proposal | Compuestos de inclusión | spa |
dc.subject.proposal | Ciclodextrina | spa |
dc.subject.proposal | SARS-CoV-2 | spa |
dc.subject.proposal | Virucida de larga duración | spa |
dc.subject.proposal | Matrices de celulosa | spa |
dc.subject.proposal | Ferro | por |
dc.subject.proposal | Manganês | por |
dc.subject.proposal | Chumbo | por |
dc.subject.proposal | Remediação | por |
dc.subject.proposal | Sustentabilidade | por |
dc.subject.proposal | Compostos de inclusão | por |
dc.subject.proposal | Virucida de longa duração | por |
dc.subject.proposal | Matrizes de celulose | por |
dc.title | Application of innovation strategies in the development of sustainable technologies for surface water remediation and smart materials against COVID-19 | eng |
dc.title.translated | Aplicación de estrategias de innovación en el desarrollo de tecnologías sostenibles para la remediación de aguas superficiales y materiales inteligentes frente al COVID-19 | spa |
dc.title.translated | Aplicação de estratégias de inovação no desenvolvimento de tecnologias sustentáveis para remediação de águas superficiais e materiais inteligentes contra a COVID-19 | por |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Network for the study, development and application of technologies based on sustainable nanomaterials for the recovery of water from the Doce River basin (N◦06/2016, APQ-03623-17) | spa |
oaire.fundername | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | spa |
oaire.fundername | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | spa |
oaire.fundername | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | spa |
oaire.fundername | Agência Nacional de Águas e Saneamento Básico (ANA) | spa |
oaire.fundername | Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1121859744.2024.pdf
- Tamaño:
- 15.55 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: