Application of innovation strategies in the development of sustainable technologies for surface water remediation and smart materials against COVID-19

dc.contributor.advisorVargas Sáenz, Julio Césarspa
dc.contributor.advisorSinisterra Millán, Rubén Daríospa
dc.contributor.authorMartínez Andrade, Alfonsospa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000013192spa
dc.contributor.orcidMartínez Andrade, Alfonso [0000-0003-4361-5067]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2025-04-24T13:30:59Z
dc.date.available2025-04-24T13:30:59Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractLas estrategias de innovación aplicadas lideraron el desarrollo de tecnologías sostenibles para dos desafíos abordados en esta tesis. En primer lugar, para remediar aguas superficiales como las del río Doce y manantiales de Minas Gerais, Brasil, se examinó la posibilidad de utilizar residuos mineros de serpentinito natural y endocarpio de Macauba sometido a un tratamiento alcalino, como una alternativa sustentable para la remoción de aluminio(III), hierro(III), plomo(II) y manganeso(II). El estudio utilizó un diseño experimental Box-Behnken para examinar cómo la concentración inicial de metal, la dosis de adsorbato y el tiempo de adsorción afectan la efectividad de la adsorción de los metales. Los resultados demostraron un rendimiento importante, con tasas de remoción superiores al 80 % para Al(III), Fe(III) y Pb(II), y al 60 % para Mn(II). Este estudio profundizo en los mecanismos de adsorción, cinética, isotermas de adsorción y caracterización. Los resultados de las isotermas sugieren que la quimisorción es el principal mecanismo del endocarpio de Macauba químicamente tratado. Para el serpentinito se identificaron mecanismos de fisisorción y quimisorción en las que la formación de complejos con grupos OH- liberados y el intercambio iónico con Mg(II) del serpentinito emergieron como contribuyentes clave al proceso de adsorción. Además, se evaluaron los ciclos de adsorción de metales y regeneración de los adsorbentes, evidenciando para el serpentinito una capacidad de adsorción constante en cada ciclo y sin perdidas de su capacidad de adsorción después de la regeneración. Por el contrario, el endocarpio de Macauba químicamente tratado pierde el 50% de su capacidad de adsorción después del primer ciclo de regeneración. La capacidad de adsorción promedio del serpentinito y del endocarpio de Macauba químicamente tratado fue de 0.71 y 0.23 mg g-1, respectivamente. La Macauba químicamente tratada mostró una mayor selectividad para la adsorción de Mg(II) y Pb(II). La aplicación combinada de ambos materiales redujo con éxito el contenido de metales del río Doce y del agua de los manantiales hasta estándares de potabilidad. Se propone y evalúa un proceso discontinuo y continuo para escalar la adsorción de metales de los materiales. La evaluación de la tecnología con bases de datos de patentes y artículos mostró la novedad de la invención presentada. La valoración constata el bajo coste de esta tecnología. En general, este estudio muestra el potencial de ambos materiales como base para métodos sostenibles y rentables para tratar la contaminación de las aguas superficiales con Al(III), Fe(III), Pb(II) y Mn(II). El segundo desafío abordado fue el desarrollo de materiales inteligentes contra el COVID-19. El confinamiento por la pandemia inicio en Brasil en marzo del 2020, coincidiendo con el inicio de las actividades de esta tesis. En marzo de 2024, había 774 millones de casos confirmados y 7 millones de muertes por la pandemia de COVID-19 causada por el SARS-CoV-2. Este trabajo enfatiza la importancia de la colaboración multidisciplinaria en la creación de estrategias de monitoreo y nuevos materiales para controlar la propagación viral, especialmente a través de superficies contaminadas o fómites. La transmisión de fómites del SARS-CoV-2 aún no está clara. Se propone un nuevo sistema virucida que utiliza complejos de inclusión de clorhexidina (CHX) con β-ciclodextrina (βCD) impregnadas en matrices textiles o de celulosa para abordar esta dificultad. Los hallazgos muestran que estas matrices inactivan el SARS-CoV-2 y reducen los niveles virales en las superficies durante 30 días. Para la preparación de los compuestos de inclusión, se utilizó la liofilización y el secado por aspersión. Los análisis espectroscópicos y microscópicos mostraron la impregnación de los compuestos de inclusión CHX-βCD en las matrices. El escalonamiento de la producción usando secado por aspersión permitió obtener matrices virucidas en escala industrial. Esta opción virucida innovadora y duradera de desinfección de superficies producida en esta tesis es el resultado de un enfoque traslacional en respuesta a la pandemia (Texto tomado de la fuente).spa
dc.description.abstractInnovation strategies applied lead to the development of sustainable technologies for two challenges addressed in this thesis. First, to remediate surface water as the Doce River and spring waters from Minas Gerais, Brazil, examined the possibility of natural serpentinite mining tailings and alkaline treated Macauba endocarp, as a sustainable alternative for removing aluminum(III), iron(III), lead(II) and manganese(II). The study used a Box-Behnken experimental design to examine how initial metal concentration, adsorbate dosage, and adsorption time affect metal removal effectiveness. Results demonstrated impressive performance, with removal rates exceeding 80% for Al(III), Fe(III) and Pb(II), and 60% for Mn(II). This study searches deeper into the removal mechanisms, kinetics, adsorption isotherms and characterization. Isotherms results suggest chemisorption as the main mechanism of treated Macauba endocarp. For serpentinite it was identified physisorption and chemisorption pathways in which complex formation with released OH- surface groups and ion exchange with Mg(II) from serpentinite emerged as key contributors to the removal process. Furthermore, ion metal adsorption and regeneration cycles were assessed and exhibited sustained removal efficacy without notable capacity reduction for serpentinite. In contrast, the treated Macauba endocarp loses 50% of its adsorption capacity after the first regeneration cycle. The Average adsorption capacity of serpentinite and treated Macauba endocarp was 0.71 and 0.23 mg g-1, respectively. Treated Macauba showed greater selectivity for Mg(II) and Pb(II) adsorption. The combined application of both materials successfully lowered the metals content of the Doce River and spring water to drinkable standards. Batch and continuous processes were proposed and assessed for scaling-up material’s metal adsorption. The technology assessment with patent and articles databases showed the novelty of the solution presented and the valuation verifies the low cost of this technology. Overall, this study shows the potential of both materials as a foundation for sustainable and cost-effective methods to treat surface water contamination with Al(III), Fe(III), Pb(II) and Mn(II). The second challenge addressed was the development of smart materials against COVID-19. The lockdown due to the pandemic began in Brazil in March 2020, coinciding with the beginning of the activities of this thesis. As of March 2024, there were 774 million confirmed cases and 7 million deaths from the SARS-CoV-2-caused COVID-19 pandemic. This work emphasizes the importance of multidisciplinary collaboration in creating monitoring strategies and new materials to control viral propagation, especially through contaminated surfaces or fomites. SARS-CoV-2 fomite transmission is still unclear. A new virucidal system is proposed using chlorhexidine (CHX) inclusion complexes with β-cyclodextrin (βCD) impregnated into cellulose or textile matrices to address this difficulty. The findings show that these matrices inactivate SARS-CoV-2 and reduce viral levels on surfaces for 30 days. For inclusion compound preparation, lyophilization and spray-drying were used, and spectroscopic and microscopic analysis showed the impregnation of the CHX:βCD inclusion compounds in the matrices. Scaling up production with spray-drying enabled industrial-scale virucidal matrices. An innovative, long-lasting virucidal surface disinfection option produced in this thesis is the result of a translational approach to pandemic response.eng
dc.description.abstractA aplicação de estratégias de inovação levou ao desenvolvimento de tecnologias sustentáveis para dois desafios abordados nesta tese. A primeira tecnologia visava a remediação das águas superficiais, como as águas do Rio Doce ou das nascentes de Minas Gerais, Brasil. Foi examinada a possibilidade de usar os rejeitos da mineração de Serpentinito natural e o endocarpo de Macaúba após um tratamento alcalino, como alternativa sustentável para remoção de alumínio(III), ferro(III), chumbo(II), e manganês(II). O estudo utilizou um desenho experimental Box-Behnken para analisar o efeito da concentração inicial do metal, a dosagem do adsorvente e o tempo de adsorção, na eficácia da remoção dos metais. Os resultados demonstraram um desempenho expressivo, com taxas de remoção superiores a 80% para Al(III), Fe(III) e Pb(II) e 60% para Mn(II). Neste estudo aprofundou-se nos mecanismos de remoção, cinética, isotermas de adsorção e caracterização dos materiais. Os resultados das isotermas sugerem a quimissorção como o principal mecanismo do endocarpo de Macaúba tratado. Para o Serpentinito foram identificados mecanismos de fisissorção e quimissorção nas quais a formação de complexos com grupos OH- liberados e a troca iônica com Mg(II) do Serpentinito emergiram como principais contribuintes para o processo de remoção. Além disso, os ciclos de adsorção de íons metálicos e regeneração do adsorvente foram avaliados e exibem eficácia de remoção sustentada sem redução notável da capacidade do Serpentinito. Em contrapartida, o endocarpo de Macaúba tratado perde 50% da capacidade de adsorção após o primeiro ciclo de regeneração. A capacidade média de adsorção do Serpentinito e do endocarpo de Macaúba tratado foi de 0.71 e 0.23 mg g-1, respectivamente. A Macaúba tratada apresentou maior seletividade para adsorção de Mg(II) e Pb(II). O uso combinado de ambos os materiais reduziu com sucesso o teor de metais da água do Rio Doce e das nascentes até os padrões de água potável. Um processo descontínuo e contínuo é proposto e avaliado para escalonar a capacidade de adsorção dos materiais. A avaliação da tecnologia usando bases de dados de patentes e artigos mostrou a novidade da invenção apresentada. A valoração verificou o baixo custo desta tecnologia. No geral, este estudo mostra o potencial de ambos os materiais como base para métodos sustentáveis e econômicos para tratar a contaminação de águas superficiais com Al(III), Fe(III), Pb(II) e Mn(II). O segundo desafio abordado nesta tese foi o desenvolvimento de materiais inteligentes contra a COVID-19. O isolamento devido à pandemia começou no Brasil em março de 2020, coincidindo com o início das atividades desta tese. Em março de 2024, havia 774 milhões de casos confirmados e 7 milhões de mortes devido à pandemia de COVID-19, causada pelo SARS-CoV-2. Este trabalho enfatiza a importância da colaboração multidisciplinar na criação de estratégias de monitoramento e novos materiais para controlar a propagação viral, especialmente através de superfícies contaminadas ou fômites. A transmissão do fômite SARS-CoV-2 ainda não está clara. Um novo sistema virucida é proposto utilizando complexos de inclusão de clorexidina (CHX) com β-ciclodextrina (βCD) impregnados em matrizes de celulose ou têxteis para resolver esta dificuldade. As descobertas mostram que estas matrizes inativam o SARS-CoV-2 e reduzem os níveis virais nas superfícies durante 30 dias. Para a preparação dos compostos de inclusão foram utilizadas as metodologias de liofilização e spray-drying. As análises espectroscópicas e microscópicas mostraram a impregnação dos compostos de inclusão CHX-βCD nas matrizes. O escalonamento da produção do composto de inclusão usando spray-drying permitiu a produção em escala indústrial das matrizes virucidas. Esta opção inovadora e duradoura de desinfecção virucida de superfícies produzida nesta tese é o resultado de uma abordagem translacional em resposta à pandemia.por
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería Químicaspa
dc.description.notesThesis submitted as a partial requirement for PhD degree for graduate program of Technological Innovation, Concentration area: New Materials, Nanotechnology and Chemistry of Universidade Federal de Minas Gerais; and Graduated Program, Doctorate in Engineering - Chemical Engineering of Universidad Nacional de Colombia. Doctorate was completed under a co-tutela agreement of both Universities, UFMG-Brazil, and UN-Bogotá-Colombia
dc.description.researchareaProcesos de adsorción y sus aplicacionesspa
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)spa
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)spa
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)spa
dc.description.sponsorshipAgência Nacional de Águas e Saneamento Básico (ANA)spa
dc.description.sponsorshipFundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES)spa
dc.description.sponsorshipUniversidade Federal de Minas Gerais (UFMG)spa
dc.description.sponsorshipUniversidad Nacional de Colombia - Sede Bogotá (UN)spa
dc.format.extent180 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88109
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.placeBeolo Horizonte, Brasilspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesW. H. Organization, "Guidelines for Drinking-Water Quality: fourth edition incorporating the first addendum," United Nations, Geneva, 2017.spa
dc.relation.referencesU. Nations, "World Water Development Report: Leaving No One Behind," UNESCO, Paris, Francia, 2019.spa
dc.relation.referencesU. Nations, "Sustainable development goals," 2016. [Online]. Available: https://sustainabledevelopment.un.org/sdg6. [Accessed 29 Octubre 2019].spa
dc.relation.referencesF. Fonseca do Carmo, L. Yoshino, R. Tobias, I. Christina de Campos, F. Fonseca do Carmo, G. Silvino, K. J. d. S. Xavier de Castro, M. Leite Mauro and N. Alonso, "Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context," Perspectives in ecology and conservation, vol. 15, pp. 145-151, 2017, https://doi.org/10.1016/j.pecon.2017.06.002.spa
dc.relation.referencesC. Doria Argumedo and H. Deluque Viloria, "Niveles y distribución de metales pesados en el agua de la zona de playa de Riohacha, La Guajira, Colombia," Revista de Investigación Agraria y Ambiental, vol. 6, no. 1, pp. 123-131, 2015. https://doi.org/10.22490/21456453.1268.spa
dc.relation.referencesI. R. Astros Fonseca, Propuesta de Sistema de Alerta Temprana Bajo el Enfoque de Evaluación de Riesgo por Metales Vehiculados en Agua de Consumo Humano en Colombia, Bogotá, Colombia: Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesM. Geissdoerfer, P. Savaget, N. M. Bocken and E. J. Hultink, "The Circular Economy A new sustainability paradigm?," Journal of Cleaner Production, vol. 143, pp. 757-768, 2017. https://doi.org/10.1016/j.jclepro.2016.12.048.spa
dc.relation.referencesEuropean Parliament, "European Parliament," [Online]. Available: https://www.europarl.europa.eu/about-parliament/en. [Accessed 20 06 2022].spa
dc.relation.referencesO. R. Carmignano, S. S. Vieira, P. R. G. Brandão, A. C. Bertoli and R. M. Lago, "Serpentinites: Mineral Structure, Properties and Technological Applications," Journal Brazilian Chemical Society, vol. 31, no. 1, pp. 2-14, 2020, https://doi.org/10.21577/0103-5053.20190215.spa
dc.relation.referencesDepartamento Nacional de Produção Mineral. Brasil., Sumário Mineral 2014, Brasilia: ISSN 0101 2053, 2014.spa
dc.relation.referencesJ. E. Becerra and O. Pulido, "Rocas ornamentales," in Recursos minerales de Colombia, vol. 1., Bogotá: Servicio Geológico Colombiano., ISBN 978-958-52469-7-3, 2019, pp. 95-125.spa
dc.relation.referencesC. A. Colombo, L. H. Chorfi Berton, B. G. Diaz and R. A. Ferrari, "Macauba: a promising tropical palm for the production of vegetable oil," Oilseeds & fats Crops and Lipids, vol. 25, pp. 1-9, 2018. https://doi.org/10.1051/ocl/2017038.spa
dc.relation.referencesWorld Health Organization, Guidelines for Drinking-Water Quality: fourth edition incorporating the first addendum, Geneva: United Nations, ISBN: 978-92-4-154995-0, 2017.spa
dc.relation.referencesUNESCO World Water Assessment Programme, "The United Nations World Water Development Report 2019: Leaving No One Behind," UNESCO, Paris, Francia, 2019.spa
dc.relation.referencesC.-Y. Cao, C.-H. Liang, Y. Yin and L.-Y. Du, "Thermal activation of serpentine for adsorption of cadmium," Journal of Hazardous Materials, vol. 329, pp. 222-229, 2017, https://doi.org/10.1016/j.jhazmat.2017.01.042.spa
dc.relation.referencesP. Huang, Z. Li, M. Chen, H. Hu, Z. Lei, Q. Zhang and W. Yuan, "Mechanochemical activation of serpentine for recovering Cu (II) from wastewater," Applied Clay Science, vol. 149, pp. 1-7, 2017, https://doi.org/10.1016/j.clay.2017.08.030.spa
dc.relation.referencesZ. Li, P. Huang, H. Hu, Q. Zhang and M. Chen, "Efficient separation of Zn(II) from Cd(II) in sulfate solution by mechanochemically activated serpentine," Chemosphere, vol. 258, 2020, https://doi.org/10.1016/j.chemosphere.2020.127275.spa
dc.relation.referencesP. Petrounias, A. Rogkala, P. Giannalopoulou, P. Lampropoulou, P. Koutsovitis, N. Koukouzas , N. Laskaris, P. Pomonis and K. Hatzipanagiotou, "Removal of Cu (II) from Industrial Wastewater Using Mechanically Activated Serpentinite," Energies, vol. 13, no. 9, 2020, https://doi.org/10.3390/en13092228.spa
dc.relation.referencesM. Shaban, M. Abukhadra, Khan A and B. Jibali , "Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine," Journal of the Taiwan Institute of Chemical Engineers, vol. 82, pp. 102-116, 2018, https://doi.org/10.1016/j.jtice.2017.10.023.spa
dc.relation.referencesC. Cao, B. Yu, M. Wang, Y. Zhao and H. Zhao , "Adsorption properties of Pb2+ on thermal-activated serpentine," Separation Science and Technology, vol. 54, no. 18, pp. 3037-3045, 2019, https://doi.org/10.1080/01496395.2019.1565776.spa
dc.relation.referencesP. Petrounias, A. Rogkala, P. Giannakopoulou, K. Pyrgaki, P. Lampropoulou, P. Koutsovitis, H. Tsikos, P. Pomonis and N. Koukouzas, "Sustainable removal of uranium from acidic wastewater using various mineral raw materials," Journal of Environmental Management, vol. 330, no. 117159, 2023, https://doi.org/10.1016/j.jenvman.2022.117159.spa
dc.relation.referencesM. M. Farahat, M. M. Sanad and M. Abdel-khalek, "Decoration of serpentine with iron ore as an efficient low-cost magnetic adsorbent for Cr (VI) removal from tannery wastewater," Powder Technology, vol. 388, pp. 51-62, 2021 https://doi.org/10.1016/j.powtec.2021.04.061.spa
dc.relation.referencesX. Li, Wang, Q , Liu, L and S. Liu, "The performance of calcined serpentine to simultaneously remove fluoride, iron and manganese," Water Supply, vol. 22, no. 3, pp. 2750-2766, 2021, https://doi.org/10.2166/ws.2021.439.spa
dc.relation.referencesX. Li, X. Yu, L. Liu, J. Yang, S. Liu and T. Zhang, "Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese," Royal Society of Chemistry Advances, vol. 11, pp. 162012-16215, 2021, https://doi.org/10.1039/D1RA02028E.spa
dc.relation.referencesP. Petrounias, A. Rogkala, P. Giannakopoulou, B. Tsikouras, P. Lampropoulou, S. Kalaitzidis, K. Hatzipanagiotou, N. Lambrakis and M. Christopoulou, "An Experimental Study for the Remediation of Industrial Waste Water Using a Combination of Low Cost Mineral Raw Materials," Minerals, vol. 9, no. 4, 2019, https://doi.org/10.3390/min9040207.spa
dc.relation.referencesB. Barros Neto, I. Spacino Scarminio and R. E. Bruns, "Andando na superfície de resposta," in Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria, Campinas, SP, Brasil, Editora da Unicamp, 2001, pp. 251-296.spa
dc.relation.referencesG. Box and D. Behken, "Some new three level designs for the study of quantitative variables," Technometrics, vol. 2, pp. 455-475, 1960, https://doi.org/10.2307/1266454.spa
dc.relation.referencesR. Ferreira do Nascimento , A. C. Alves de Lima, C. Bastos Vidal, D. de Quadros Melo and G. S. Cabral Raulino, Adsorção, aspectos teóricos e aplicações ambientais, Fortaleza: Imprensa Universitária da Universidade Federal do Ceará, ISBN: 978-65-990722-7-7, 2014.spa
dc.relation.referencesEmmanuel D. Revellame, Dhan Lord Fortela, Wayne Sharp, Rafael Hernandez and Mark E. Zappi, "Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review," Cleaner Engineering and Technology, vol. 100032, pp. 1-13, 2020, https://doi.org/10.1016/j.clet.2020.100032.spa
dc.relation.referencesÉ. C. Lima, M. A. Adebayo and F. M. M. Machado Machado, "Chapter 3 Kinetic and Equilibrium Models of Adsorption," in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, 2015, https://doi.org/10.1007/978-3-319-18875-1_3, pp. 33-69.spa
dc.relation.referencesMinistério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador, "Portaria MS no 2.914/2011. Procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade," in Série E. Legislação de Saúde, Brasília, DF, Brasil, 2012.spa
dc.relation.referencesM. A. Rivero Crespo , D. Pereira Gómez, M. V. Villa García, J. M. Gallardo Amores and V. S. Escribano, "Characterization of Serpentines from Different Regions by Transmission Electron Microscopy, X-ray Diffraction, BET Specific Surface Area and Vibrational and Electronic Spectroscopy," Fibers, vol. 7, no. 47, pp. 1-11, 2019. https://doi.org/10.3390/fib7050047.spa
dc.relation.referencesJ. P. A. Clogston, "Zeta Potential Measurement," in Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, Human Press, 2011, pp. 63-70. https://doi.org/10.1007/978-1-60327-198-1_6.spa
dc.relation.referencesS. Vijayakumar Selvamani, "Chapter 15 - Stability Studies on Nanomaterials Used in Drugs," in In Micro and Nano Technologies, Characterization and Biology of Nanomaterials for Drug Delivery, Elsevier, 2019, pp. 425-444, https://doi.org/10.1016/B978-0-12-814031-4.00015-5.spa
dc.relation.referencesBogdan Z. Dlugogorski and Reydick D. Balucan, "Dehydroxylation of serpentine minerals: Implications for mineral carbonation," Renewable and Sustainable Energy Reviews, vol. 31, pp. 353-367, 2014, https://doi.org/10.1016/j.rser.2013.11.002.spa
dc.relation.referencesC. Viti, "Serpentine minerals discrimination by thermal analysis," American Mineralogist, vol. 95, pp. 631-638, 2010, https://doi.org/10.2138/am.2010.3366.spa
dc.relation.referencesN. Zulumyan, A. Isahakyan, H. Beglaryan and S. Melikyan, "A study of thermal decomposition of antigorite from dunite and lizardite from peridotite," Journal of Thermal Analysis and Calorimetry, vol. 131, p. 1201–1211, 2018, https://doi.org/10.1007/s10973-017-6705-6.spa
dc.relation.referencesM. Mellini, Y. Fuchs, C. Viti, C. Lemaire and J. Linares, "Insights into the antigorite structure from Mössbauer and FTIR spectroscopies," European Journal of Mineralogy, vol. 14, pp. 97-104, 2002, https://doi.org/10.1127/0935-1221/2002/0014-0097.spa
dc.relation.referencesJ. Lu, M. Sun, Z. Yuan, S. Qi, Z. Tong, L. Li and Q. Meng, "Innovative insight for sodium hexametaphosphate interaction with serpentine," Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp. 1-22, 2018, https://doi.org/10.1016/j.colsurfa.2018.09.076.spa
dc.relation.referencesA. Altomare, N. Corriero, C. Cuocci, A. Facicchio, A. Moliterni and R. Rizzi, "QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD," Journal of Applied Crystallography, vol. 48, pp. 598-603, 2015, https://doi.org/10.1107/S1600576715002319.spa
dc.relation.referencesJ. W. Anthony, R. A. Bideaux, K. W. Bladh and M. C. Nichols, "Handbook of Mineralogy," Mineralogical Society of America, Chantilly, VA 20151-1110, USA. [Online]. Available: http://www.handbookofmineralogy.org/. [Accessed 21 08 2023].spa
dc.relation.referencesK. S. W. Sink, R. A. W. Haul, R. A. Pierotti and T. Siemieniewska, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," Pure and Applied Chemistry, vol. 57, no. 4, pp. 603-619, 1985, https://doi.org/10.1351/pac198557040603.spa
dc.relation.referencesS. Annida, Inayati and F. Setiawati, "Chromium Metal Biosorption Using Peanut Shell Adsorbent," Equilibrium Journal of Chemical Engineering, vol. 2, 2018, https://doi.org/10.20961/equilibrium.v2i1.40428.spa
dc.relation.referencesC. M. Neculita and E. Rosa, "A review of the implications and challenges of manganese removal from mine drainage," Chemosphere, vol. 214, pp. 491-510, 2019, https://doi.org/10.1016/j.chemosphere.2018.09.106.spa
dc.relation.referencesN. T. Abdel-Ghani, G. A. El-Chaghaby and E. Mohamed Zahran, "Cost Effective Adsorption of Aluminium and Iron from Synthetic and Real Wastewater by Rice Hull Activated Carbon," American Journal of Analytical Chemistry, vol. 6, pp. 71-83, 2015, http://dx.doi.org/10.4236/ajac.2015.61007.spa
dc.relation.referencesP. Dim, L. Mustapha, M. Termtanun and J. Okafor, "Adsorption of chromium (VI) and iron (III) ions on to acid-modified kaolinite: Isotherm, kinetics and thermodynamics studies," Arabian Journal of Chemistry, vol. 14, no. 4, 2021, https://doi.org/10.1016/j.arabjc.2021.103064.spa
dc.relation.referencesA. Wilamas, S. Vinitnantharat and A. Pinisakul, "Manganese Adsorption onto Permanganate-Modified BambooBiochars from Groundwater," Sustainability, vol. 15, no. 6831, pp. 1-16, 2023, https://doi.org/10.3390/su15086831.spa
dc.relation.referencesA. Delle Site, "Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review," Journal of Physical and Chemical Reference, vol. 30, pp. 187-439, 2001, https://doi.org/10.1063/1.1347984.spa
dc.relation.referencesI. Persson, "Hydrated metal ions in aqueous solution: How regular are their structures?," Pure and Applied Chemistry, vol. 82, no. 10, p. 1901–1917, 2010, https://doi.org/10.1351/PAC-CON-09-10-22.spa
dc.relation.referencesJ. S. Rooney, M. S. Tarling, S. A. Smith and K. C. Gordon, "Submicron Raman spectroscopy mapping of serpentinite fault rocks," Journtal Raman Spectroscopy, vol. 49, p. 279–286, 2018, https://doi.org/10.1002/jrs.5277.spa
dc.relation.referencesM. Park, C. Lyeal Choi, Y. Jin Seo, S. Kak Yeo, J. Choi, S. Komarneni and J. Hee Lee, "Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide," Applied Clay Science, vol. 37, p. 143–148, 2007, https://doi.org/10.1016/j.clay.2006.12.006.spa
dc.relation.referencesB. Volesky, "Detoxification of metal-bearing effluents: biosorption for the next century," Hydrometallurgy, vol. 59, pp. 203-216, 2001. https://doi.org/10.1016/S0304-386X(00)00160-2.spa
dc.relation.referencesV. K. Gupta, A. Nayak and S. Agarwal, "Bioadsorbents for remediation of heavy metals: Current status and their future prospects," Environmental Engineering Research, vol. 20, pp. 1-18, 2015.https://doi.org/10.4491/eer.2015.018.spa
dc.relation.referencesM. E. Argun, S. Dursun and M. Karatas, "Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark," Desalination, vol. 249, pp. 519-527, 2009. https://doi.org/10.1016/j.desal.2009.01.020.spa
dc.relation.referencesS. Ferreira, R. Andrade, G. Andrade, O. Araújo, R. Lopes, E. Fairbairn, T. Grabois and N. Ukrainczyk, "Bond Behavior of a Bio-Aggregate Embedded in Cement-Based Matrix," Materials, vol. 15, no. 6151, 2022. https://doi.org/10.3390/ma15176151.spa
dc.relation.referencesW. T. Vieira, M. D. Bispo, S. d. M. Farias, A. d. S. V. d. Almeida, . T. L. d. Silva , M. G. A. Vieira, . J. I. Soletti and T. L. Balliano, "Activated carbon from macauba endocarp (Acrocomia aculeate) for removal of atrazine: Experimental and theoretical investigation using descriptors based on DFT," Journal of Environmental Chemical Engineering, vol. 9, no. 2, 2021. https://doi.org/10.1016/j.jece.2021.105155.spa
dc.relation.referencesR. D. F. Rios, P. J. B. Bueno, J. C. S. Terra and F. C. C. Moura, "Influence of the surface modification of granular-activated carbon synthesized from macauba on heavy metal sorption," Environmental Science and Pollution Research , vol. 30, p. 31881–31894, 2023. https://doi.org/10.1007/s11356-022-23736-9.spa
dc.relation.referencesF. C. C. Moura, R. D. F. Rios and B. R. L. Galvão, "Emerging contaminants removal by granular activated carbon obtainedfrom residual Macauba biomass," Environmental Science and Pollution Research, vol. 25, p. 26482–26492, 2018. https://doi.org/10.1007/s11356-018-2713-8.spa
dc.relation.referencesL. A. L. Queiroz, T. S. Araújo and M. H. Caño Andrade, "Macauba Pulp Oil Bleach Using Commercial Adsorbent and Activated Carbon from Endocarp of the Own Fruit," Journal of Chemical Engineering and Chemistry, vol. 2, no. 2, p. 57–69, 2016. https://doi.org/10.18540/2446941602022016057.spa
dc.relation.referencesS. N. Guilhen , S. Rovani , L. G. d. Araujo, J. A. Tenório and O. Mašek, "Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation," Environmental Pollution, vol. 272, 2021. https://doi.org/10.1016/j.envpol.2020.116022.spa
dc.relation.referencesV. d. S. Lacerda , J. B. López-Sotelo, A. Correa-Guimarães, S. Hernández-Navarro, M. Sánchez-Báscones, L. M. Navas-Gracia, P. Martín-Ramos and J. Martín-Gil, "Rhodamine B removal with activated carbons obtained from lignocellulosic waste," Journal of Environmental Management, vol. 155, pp. 67-76, 2015. https://doi.org/10.1016/j.jenvman.2015.03.007.spa
dc.relation.referencesG. G. d. Oliveira, M. S. Pereira and C. H. Ataíde, "Investigation of charcoal and activated charcoal for microwave absorbers," The Canadian Journal of Chemical Engineering, vol. 101, no. 1, pp. 516-528, 2023. https://doi.org/10.1002/cjce.24373.spa
dc.relation.referencesH. O. N. Altino, B. E. S. Costa and R. N. da Cunha, "Biosorption optimization of Ni(II) ions on Macauba (Acrocomia aculeata) oil extraction residue using fixed-bed column," Journal of Environmental Chemical Engineering, vol. 5, no. 5, pp. 4895-4905, 2017. https://doi.org/10.1016/j.jece.2017.09.025.spa
dc.relation.referencesY. Y. Giraldo-Bareño, A. D. Pinzón-García, D. V. Sousa, L. F. Bomfim Filho, D. H. Lopes , N. S. Cortés , M. C. Morávia , R. D. Sinisterra and R. M. Orlando, "Efficient and easily scaled-up biosorbent based on natural and chemically modified macauba (Acrocomia aculeata) to remove Al3+, Mn2+ and Fe3+ from surface water contaminated with iron mining tailings," Talanta, vol. 256, 2023. https://doi.org/10.1016/j.talanta.2023.124273.spa
dc.relation.referencesSharmeen Afroze, Tushar Kanti Sen and Ha Ming Ang, "Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics, mechanism and equilibrium study," Process Safety and Environmental Protection, vol. I02, pp. 336-352, 2016. https://doi.org/10.1016/j.psep.2016.04.009.spa
dc.relation.referencesF. Mashkoor and A. Nasar, "Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution," Journal of Molecular Liquids, vol. 274, pp. 315-327, 2019. https://doi.org/10.1016/j.molliq.2018.10.119.spa
dc.relation.referencesA. Lima, R. Nascimento, F. Sousa, J. Filho and A. Oliveira, "Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions," Chemical Engineering Journal, vol. 186, pp. 274-284, 2012. https://doi.org/10.1016/j.cej.2012.01.037.spa
dc.relation.referencesA. Correa, V. Carmona, J. Simão, F. Galvani, J. Marconcini and L. Mattoso, "Cellulose Nanocrystals from Fibers of Macauba (Acrocomia Aculeata) and Gravata (Bromelia Balansae) from Brazilian Pantanal," Polymers, vol. 11, no. 1785, pp. 1-19, 2019. https://doi.org/10.3390/polym11111785.spa
dc.relation.referencesM. Galbe and O. Wallberg, "Pretreatment for biorefineries: a review of common methods for effcient utilisation of lignocellulosic materials," Biotechnology for Biofuels, vol. 12, no. 294, pp. 1-26, 2019. https://doi.org/10.1186/s13068-019-1634-1.spa
dc.relation.referencesH. Yang, R. Yan, H. Chen, D. Lee and C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis," Fuel, vol. 86, pp. 1781-1788, 2007. https://doi.org/10.1016/j.fuel.2006.12.013.spa
dc.relation.referencesM. Asadieraghi and W. Wan Daoud, "Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions," Energy Conversion and Management, vol. 82, pp. 71-82, 2014. https://doi.org/10.1016/j.enconman.2014.03.007.spa
dc.relation.referencesN. Hassan and K. Bafri, "Lignin Recovery from Alkaline Hydrolysis and Glycerolysis of Oil Palm Fiber," in AIP Conference Proceedings, 2014. https://doi.org/10.1063/1.4895236.spa
dc.relation.referencesS. Vieira, Z. Magriotis, N. Santos, M. Cardoso and A. Saczk, "Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes," Chemical Engineering Journal, vol. 183, pp. 152-161, 2012. https://doi.org/10.1016/j.cej.2011.12.047.spa
dc.relation.referencesZ. Mayer, A. Apfelbacher and A. Hornung, "Effect of sample preparation on the thermal degradation of metal-added biomass," Journal of Analytical and Applied Pyrolysis, vol. 94, pp. 170-176, 2012. https://doi.org/10.1016/j.jaap.2011.12.008.spa
dc.relation.referencesS. Hirshorn and S. Jefferies, "Final Report of the NASA Technology Readiness Assessment (TRA) Study Team," NASA, 2016.spa
dc.relation.referencesS. Altuntas, T. Dereli and A. Kusiak, "Forecasting technology success based on patent data," Technological Forecasting & Social Change, vol. 96, pp. 202-214, 2015. https://doi.org/10.1016/j.techfore.2015.03.011.spa
dc.relation.referencesA. Scariot, E. Lleras and J. Hay, "Reproductive-Biology of the Plam Acrocomia-Aculeata in central Brazil," Biotropica, vol. 23, no. 1, pp. 12-22, 1991. https://doi.org/10.2307/2388683.spa
dc.relation.referencesS. S. Vieira, Z. M. Magriotis, N. A. Santos, M. d. G. Cardoso and A. A. Saczk, , "Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes," Chemical Engineering Journal, vol. 183, pp. 152-161, 2012. https://doi.org/10.1016/j.cej.2011.12.047.spa
dc.relation.referencesR. D. F. Rios, I. Binatti, J. D. Ardisson and F. C. C. Moura, "Compounds based on iron mining tailing dams and activated carbon from macauba palm for removal of emerging contaminants and phosphate from aqueous systems," Environmental Science and Pollution Research, vol. 30, p. 60212–60224, 2023. https://doi.org/10.1007/s11356-023-26643-9.spa
dc.relation.referencesM. Ottaviani and F. Venturi, "Physicochemical study on the adsorption properties of asbestos .1. EPR study on the adsorption of organic radicals," Journal of Physical Chemistry, vol. 100, no. 1, pp. 265-273, 1996. https://doi.org/10.1021/jp9515850.spa
dc.relation.referencesC. Silva, M. Schons Silva, M. Machado and C. Cara, "Mixture of vegetable oils (Glycine max, Jatropha curcas and Acrocomia aculeata) used as collector for flotation of minerals comprises mixture of soybean oils, Macauba and Jatropha in flotation of ores, in binary and tertiary compositions". Brasil Patent BR102019010264-A2, 31 12 2020.spa
dc.relation.referencesA. Machado de Castro, D. Guimaraes, O. D'avia, S. Da Silva, E. Goncalves , A. Araujo, M. Limoeiro and J. Greco, "Performing integrated process for production of biodiesel by enzymatic transesterification involves converting macauba oil to biodiesel through use of biocatalyst obtained by solid state fermentation of macauba cake". Brasil Patent BR102016020837-A2, 16 03 2019.spa
dc.relation.referencesM. Bispo, J. Soletti, T. Balliano, W. Vieira, G. Amaral , M. Farias, S. Carvalho, M. Araujo and R. Soletti, "Use of pyroligneous extract i.e. acidic, antimycotic extract obtained from pyroligneous extract of biomass of palm trees by pyrolysis in preparation of product, for treating skin and nail microbial infections". Brasil Patent BR102020013751(A2), 14 05 2022.spa
dc.relation.referencesP. Eisner, S. Mittermaier, I. Muranyi, G. Doer, S. Toledo , R. Aparecida, R. Martins, L. Bataglia and C. Colombo, "Protein ingredient useful in food, pet food and cosmetics, and as ingredient for performing technical applications e.g. for packing, prepared from seeds of macauba fruit". Germany Patent WO2021160877-A1, 28 12 2021.spa
dc.relation.referencesB. Souza, "Formulation for producing hair compound made with herbs, oils and minerals, comprises mix of mineral oils, white clay and rosemary fluid, where mix of minerals comprises almond and macauba oil, so as to result in treatment of hair loss". Brasil Patent BR102020016573-A2, 08 08 2021.spa
dc.relation.referencesG. Bonfim, "Organic abrasive used for sandblasting and cleaning plastic components and metal, such as propellers and wheels of aircraft, comprises abrasive material comprising particles of macauba coconut shell in different particle sizes". Brasil Patent BR201103557-A2, 04 01 2013.spa
dc.relation.referencesS. Marinho de Faria, "Producing activated charcoal used as adsorbent for gaseous and liquid media for purification of undesirable materials, involves crushing fruit endocarp of Acrocomia aculeata to obtain carbonaceous powder, and than drying carbonaceous powder". Brasil Patent BR102012032479-A2, 02 01 2015.spa
dc.relation.referencesM. Wang and H. Han, "Microorganism water treatment agent used for processing heavy metal organic waste water, comprises oyster shell, feldspar, forsterite, talcum, serpentine, chlorite, attapulgite, ammonium molybdate-modified bentonite and diatomite". China Patent CN106007006, 08 01 2016.spa
dc.relation.referencesX. Cao, "Multifunctional nano-material flocculant useful for e.g. treating water by removing turbidity and chemical oxygen demand, comprises nano-montmorillonite, nano-sepiolite, nano-serpentine, polyaluminum chloride and polyacrylamide". China Patent CN107673457-A, 18 05 2018.spa
dc.relation.referencesY. Kim and G. Lee, "Process for purifying muddy water in dam by using serpentine powder or plasticized powder as primary mineral, particularly concerned with using serpentine or olivine powder, or serpentine plasticized powder". South Korea Patent KR2006017302-A, 06 01 2006.spa
dc.relation.referencesJ. Cheng, W. Wan and J. Zhi, "Graphene nano purification system for treating medicinal sewage containing coronavirus comprises medicinal sewage collection and transportation devices, and sodium hypochlorite generator provided in first-stage sedimentation tank". China Patent CN111573933-A, 28 09 2020.spa
dc.relation.referencesX. Chen, M. Xia, T. Xia, Y. Ye, W. Qin and L. Qiu, "Layered mineral and polyphosphate carrying composite material used as variety of metal ion removal agent, formed by carrying phosphate ions on surface of layered mineral for the adsorption of variety of metal ions". China Patent CN105642224-A, 08 01 2016.spa
dc.relation.referencesQI F, "Electroplating wastewater treatment method by filtering electroplating wastewater, flowing into sedimentation tank, adjusting pH, adding ferric chloride, filtering, flowing into electrochemical cell, and adjusting pH with hydrochloric acid". China Patent CN105036476-A, 02 01 2015.spa
dc.relation.referencesJ. Li, M. Ma, D. Du, L. Shao, H. Wei and X. Song, "Preparing adsorbent that efficiently removes heavy metal ion in wastewater based on electrolytic manganese slag with high efficiency, involves mixing electrolytic manganese slag and ore, and adding mixture and de-ionized water". China Patent CN111939868-A, 18 01 2021.spa
dc.relation.referencesA. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino , G. Dotro, E. Cartmell and P. Campo, "Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater," Clean Technologies and Environmental Policy, vol. 20, pp. 393-402, 2018. https://doi.org/10.1007/s10098-017-1481-3.spa
dc.relation.referencesJ. Beltrán Heredia and J. Sánchez Martín, "Removing heavy metals from polluted surface water with a tannin-based flocculant agent," Hazardous Materials, vol. 165, pp. 1215-1218, 2009. https://doi.org/10.1016/j.jhazmat.2008.09.104.spa
dc.relation.referencesE. Samper, M. Rodríguez, M. A. De la Rubia and D. Prats, "Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS)," Separation and Purification Technology, vol. 65, pp. 337-342, 2009. https://doi.org/10.1016/j.seppur.2008.11.013.spa
dc.relation.referencesP. C. Wankat, Separation Process Engineering Includes Mass Transfer Analysis. Third Edition, United States of America: Prentice Hall, 2011.spa
dc.relation.referencesA. Dabrowski, Z. Hubicki, P. Podkoscielny and E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, vol. 56, pp. 91-106, 2004. https://doi.org/10.1016/j.chemosphere.2004.03.006.spa
dc.relation.referencesN. P. Raval, P. U. Shah and N. K. Shah , "Adsorptive removal of nickel(II) ions from aqueous environment: A review," Environmental Management, vol. 179, pp. 1-20, 2016. https://doi.org/10.1016/j.jenvman.2016.04.045.spa
dc.relation.referencesM. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Armand, J.-L. Hazemann, C. Chaneac and J.-P. Jolivet, "Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles: As(III) as a Probe of the Surface Structure and Heterogeneity," Langmuir, vol. 24, pp. 3215-3222, 2008. https://doi.org/10.1021/la702998x.spa
dc.relation.referencesK. Yang and . B. Xing, "Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application," Chemical Reviews, vol. 110, pp. 5989-6008, 2010. https://doi.org/10.1021/cr100059s.spa
dc.relation.referencesC. Yavuz, J. T. Mayo, W. Yu, A. Prakash, J. Falkner, S. Yean, L. Cong, H. Shipley, A. Kan, M. Tomson, D. Natelson and V. Colvin, "Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals," Science, vol. 314, pp. 964-966, 2006. https://doi.org/10.1126/science.1131475.spa
dc.relation.referencesQ. Li, S. Mahendra, D. Lyon, L. Brunet, M. Liga, D. Li and P. Alvarez, "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications," Water research, vol. 42, pp. 4591-4602, 2008. https://doi.org/10.1016/j.watres.2008.08.015.spa
dc.relation.referencesM. Elimelech and W. A. Phillip, "The Future of Seawater Desalination: Energy, Technology, and the Environment," Science, vol. 333, pp. 712-717, 2011. https://doi.org/10.1126/science.120048.spa
dc.relation.referencesD. Li and Y. Xia, "Electrospinning of Nanofibers: Reinventing the wheel?," Advanced Materials, vol. 16, pp. 1151-1170, 2004. https://doi.org/10.1002/adma.200400719.spa
dc.relation.referencesX. Qu, J. Brame, Q. Li and P. Alvarez, "Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse," Accounts of chemical research, vol. 46, no. 3, pp. 834-843, 2012. https://doi.org/10.1021/ar300029v.spa
dc.relation.referencesV. Stanlovic, M. Gorgievski, D. Bozic and G. Bogdanovic, "Mine waters purification by biosorption coupled with green energy production from wood and straw biomass," Chemical Industry & Chemical Engineering Quarterly, vol. 28, no. 4, p. 255−264, 2022. https://doi.org/10.2298/CICEQ210617037S.spa
dc.relation.referencesA. Raouf and A. Raheim, "Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review," Journal of Pollution Effects & Control, vol. 5, no. 1, pp. 1-13, 2017, https://doi.org/10.4172/2375-4397.1000180.spa
dc.relation.referencesE. Björkman and B. Strömberg, "Release of Chlorine from Biomass at Pyrolysis and Gasification Conditions," Energy Fuels, vol. 11, no. 5, pp. 1026-1032, 1997. https://doi.org/10.1021/ef970031o.spa
dc.relation.referencesW. Jerzak, M. Wądrzyk, I. Kalemba-Rec, A. Bieniek and A. Magdziarz, "Release of chlorine during oat straw pyrolysis doped with char and ammonium chloride," Renewable Energy, vol. 215, 2023. https://doi.org/10.1016/j.renene.2023.118923.spa
dc.relation.referencesYou Wei and Yang Yanzoing, "Heavy metal wastewater adsorption tower". China Patent CN206255881, 16 06 2017.spa
dc.relation.referencesW. P. Addiego, B. Y. Johnson and L. Wang, "Filter and methods for heavy metal remediation of water". Unitated States Patent US9,776,891, 3 Octubre 2017.spa
dc.relation.referencesXiaohui Zhang and Luo Weiming, "Heavy Metal Waste Water Treatment Device Of Layer -Stepping Adsorption Tower". China Patent CN208022863, 30 10 2018.spa
dc.relation.referencesN. Sinisterra Cortés, Escalonamento e panorama no cenário brasileiro da aplicação de coluna de adsorção de metais com endocarpo de Macaúba, Belo Horizonte, Universidade Federal de Minas Gerais: Trabalho de Conclusão de Curso (TCC), 2019.spa
dc.relation.referencesFortune Business Insights, "Water and Sludge Treatment/ Water Purifier Market," Junho 2020. [Online]. Available: https://www.fortunebusinessinsights.com/water-purifier-market-103118. [Accessed May 2024].spa
dc.relation.referencesAllied Market Research, "Water Purifier Market by Technology, Distribution Channel, Portability, and End User: Global Opportunity Analysis and Industry Forecast, 2019 - 2025," Junho 2019. [Online]. Available: https://www.alliedmarketresearch.com/water-purifier-market. [Accessed May 2024].spa
dc.relation.referencesMarkets and Markets, "(Single & Dual Phase, Multimedia, Cartridge), End-Use Industry (Municipal, Industrial (Oil & Gas, Chemicals & Petrochemicals, Food & Beverages, and Pharmaceuticals)), and Region - Global Forecast to 2023," Media Type, Decembro 2018. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/water-filter-market-256063580.html. [Accessed Março 2021].spa
dc.relation.referencesButler Consultants, "Free Industry Statistics – Sorted by Highest Gross Margin," Business Plan Writers, [Online]. Available: https://financial-projections.com/resources/free-business-research/free-industry-statistics/free-industry-statistics-2/. [Accessed May 2024].spa
dc.relation.referencesWorld Intellectual Property Oganization (WIPO), A Practical Guide for Valuing Intangible Assets, Geneva: WIPO, 2016.spa
dc.relation.referencesCompanhia Energética de Minas Gerais CEMIG, "VALORES DE TARIFAS E SERVIÇOS," Energy, 2024. [Online]. Available: https://www.cemig.com.br/atendimento/valores-de-tarifas-e-servicos/. [Accessed May 2024].spa
dc.relation.referencesWorld Health Organization (WHO), "Advice for the public: Coronavirus disease (COVID-19)," World Health Organization (WHO), March 2023. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/. [Accessed March 2024].spa
dc.relation.referencesG. S. Jacinto, L. F. G. Dias, J. Tsukamoto , P. N. Lisboa-Filho, M. T. Souza, A. P. de Moraes and C. W. Arns, "Insight into the role of copper-based materials against the coronaviruses MHV-3, a model for SARS-CoV-2, during the COVID-19 pandemic," Biometals, 2024. https://doi.org/10.1007/s10534-024-00585-2.spa
dc.relation.referencesA. B. Garcia, A. P. de Moraes, D. M. Rodrigues, R. Gilioli, E. F. de Oliveira-Filho, R. Durães-Carvalho and C. W. Arns, "Coding-Complete Genome Sequence of Murine Hepatitis Virus Strain 3 from Brazil," Microbiology Resource Announcements, vol. 10, no. 15, 2021. https://doi.org/10.1128/mra.00248-21.spa
dc.relation.referencesY. Yamada, T. Goto, S. Shiota, M. Sohma and J. Akedo, "Chlorhexidine-filled porous ceramic coating fabricated by the aerosol deposition method for immediate and long-term enveloped virus inactivation," Journal of Asian Ceramic Societies, vol. 10, no. 2, p. 465–472, 2022. https://doi.org/10.1080/21870764.2022.2072081.spa
dc.relation.referencesJ. Cai, W. Sun, J. Huang, M. Gamber, J. Wu and G. He, "Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020," Emerging Infectious Diseases, vol. 26, no. 6, pp. 1343-1345, 2020. https://doi.org/10.3201/eid2606.200412.spa
dc.relation.referencesS. H. Bae, H. Shin, . H.-Y. Koo, S. W. Lee, J. M. Yang and D. K. Yon, "Asymptomatic Transmission of SARS-CoV-2 on Evacuation Flight," Emerging Infectious Diseases, vol. 26, no. 11, pp. 2705-2708, 2020. https://doi.org/10.3201/eid2611.203353.spa
dc.relation.referencesJ. Barker, I. Vipond and S. Bloomfield , "Effects of cleaning and disinfection in reducing the spread of Norovirus contamination via environmental surfaces," Journal of Hospital Infection, vol. 58, no. 1, pp. 42-49, 2004. https://doi.org/10.1016/j.jhin.2004.04.021.spa
dc.relation.referencesB. Winther, F. G. Hayden and J. Owen Hendley, "Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season," Journal of Medical Virology, vol. 78, no. 5, pp. 644-650, 2006. https://doi.org/10.1002/jmv.20588.spa
dc.relation.referencesH. M. Wu , M. Fornek, K. J. Schwab, A. R. Chapin, K. Gibson, E. Schwab, C. Spencer and K. Henning, "A norovirus outbreak at a long-term-care facility: the role of environmental surface contamination," Infection Control and Hospital Epidemiology, vol. 26, no. 10, pp. 802-810, 2005. https://doi.org/10.1086/502497.spa
dc.relation.referencesP. D. Rakowska, M. Tiddia, N. Faruqui, C. Bankier, Y. Pei, A. J. Pollard, J. Zhang and I. S. Gilmore, "Antiviral surfaces and coatings and their mechanisms of action," Communications Material, vol. 2, no. 53, 2021. https://doi.org/10.1038/s43246-021-00153-y.spa
dc.relation.referencesP. Vasickova, I. Pavlik, M. Verani and A. Carducci, "Issues Concerning Survival of Viruses on Surfaces," Food and Environmental Virology, vol. 2, pp. 2-34, 2010. https://doi.org/10.1007/s12560-010-9025-6.spa
dc.relation.referencesNational Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases, "Scientific Brief: SARS-CoV-2 Transmission.," 7 May 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK570442/. [Accessed March 2024].spa
dc.relation.referencesV. Tiong, P. Hassandarvish, S. Abu Bakar, N. Azmawati Mohamed, W. S. Wan Sulaiman, N. Baharom , F. N. Abdul Samad and I. Isahak , "The effectiveness of various gargle formulations and salt water against SARS-CoV-2," Scientific Reports, Nature, vol. 11, no. 20502, 2021. https://doi.org/10.1038/s41598-021-99866-w.spa
dc.relation.referencesNational Institutes of Health, USA, "COVID-19 Treatment Guidelines," February 2024. [Online]. Available: https://www.covid19treatmentguidelines.nih.gov/. [Accessed March 2024].spa
dc.relation.referencesM. dos Santos Fernandez, . M. I. Florindo Guedes, G. P. José Langa, C. Kuchenbecker Rösing, J. Cavagni and F. W. Mustafa Gomes Muniz, "Virucidal efficacy of chlorhexidine: a systematic review," Odontology, vol. 110, pp. 376-392, 2022. https://doi.org/10.1007/s10266-021-00660-x.spa
dc.relation.referencesY. Zhou, N. F. Fletcher, N. Zhang, J. Hassan and M. D. t. Gilchris, "Enhancement of Antiviral Effect of Plastic Film against SARS-CoV-2: Combining Nanomaterials and Nanopatterns with Scalability for Mass Manufacturing," Nano Letters, vol. 21, pp. 10149-10456, 2021. https://doi.org/10.1021/acs.nanolett.1c02266.spa
dc.relation.referencesC. Deng , F. Seidi , Q. Yong , X. Jin , C. Li , X. Zhang , J. Han, Y. Liu , Y. Huang , Y. Wang , Z. Yuan and H. Xiao , "Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution," Journal of Hazardous Materials, vol. 424, 2022. https://doi.org/10.1016/j.jhazmat.2021.127391.spa
dc.relation.referencesC. Deng, F. Seidi, Q. Yong, X. Jin, C. Li, L. Zheng, Z. Yuan and H. Xiao, "Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic," JournalofAdvancedResearch, vol. 39, pp. 147-156, 2022. https://doi.org/10.1016/j.jare.2021.11.002.spa
dc.relation.referencesD. Žigrayová, V. Mikušová and P. Mikuš, "Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers," Viruses, vol. 15, no. 647, 2023. https://doi.org/10.3390/v15030647.spa
dc.relation.referencesR. Delshadi , A. Bahrami, D. J. McClements, M. D. Moore and L. Williams, "Development of nanoparticle-delivery systems for antiviral agents: A review," Journal of Controlled Release, vol. 331, pp. 30-44, 2021. https://doi.org/10.1016/j.jconrel.2021.01.017.spa
dc.relation.referencesN. Losada-Garcia, A. Vazquez-Calvo, A. Alcami and J. M. Palomo, "Preparation of Highly Stable and Cost-Efficient Antiviral Materials for Reducing Infections and Avoiding the Transmission of Viruses such as SARS-CoV-2," ACS Applied Materials & Interfaces, vol. 15, no. 18, pp. 22580-22589, 2023. https://doi.org/10.1021/acsami.3c03357.spa
dc.relation.referencesA. Nefedova, K. Rausalu, E. Zusinaite , V. Kisand, M. Kook , K. Smits, A. Vanetsev and A. Ivask , "Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions," Heliyon, vol. e20067, 2023. https://doi.org/10.1016/j.heliyon.2023.e20067.spa
dc.relation.referencesO. O Ogbole, T. E. Akinleye, P. A. Segun, T. C. Faleye and A. J. Adeniji, "In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses," Virology Journal, vol. 15, no. 110, 2018. https://doi.org/10.1186/s12985-018-1022-7.spa
dc.relation.referencesN. Lavoine, C. Givord, N. Tabary, I. Desloges, B. Martel and J. Bras , "Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose," Innovative Food Science and Emerging Technologies, vol. 26, pp. 330-340, 2014. http://dx.doi.org/10.1016/j.ifset.2014.06.006.spa
dc.relation.referencesN. Lavoine, N. Tabary, I. Desloges , B. Martel and J. Bras , "Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose," Colloids Surf B Biointerfaces, vol. 1, no. 121, pp. 196-205, 2014. https://doi.org/10.1016/j.colsurfb.2014.06.021.spa
dc.relation.referencesF. Aubert-Viard, A. Mogrovejo-Valdivia, N. Tabary, M. Maton, F. Chai, C. Neut, B. Martel and N. Blanchemain, "Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application," Materials Science & Engineering C, vol. 100, pp. 554-563, 2019. https://doi.org/10.1016/j.msec.2019.03.044.spa
dc.relation.referencesA. C. d. S. P. Andrade, G. H. Campolina-Silva, C. M. Queiroz-Junior, L. C. Oliveira, L. d. S. B. Lacerda, J. C. P. Gaggino, F. R. O. Souza, I. d. M. Chaves, I. B. Passos, D. C. Teixeira, P. G. Bittencourt-Silva, P. A. C. Valadão, L. Rossi-Oliveira, M. M. Antunes, A. F. A. Figueiredo, N. T. Wnuk, J. R. Temerozo, A. C. Ferreira, A. Cramer, C. A. Oliveira, R. Durães-Carvalho, C. W. Arns, P. P. G. Guimarães, G. M. J. Costa, G. B. Menezes, C. Guatimosim, G. S. F. da Silva, T. M. L. Souza, B. R. Barrioni, M. d. M. Pereira, L. P. Sousa, M. M. Teixeira and V. V. Costa, "A Biosafety Level 2 Mouse Model for Studying Betacoronavirus-Induced Acute Lung Damage and Systemic Manifestations," Journal of Virology, vol. 95, no. 22, 2021. https://doi.org/10.1128/JVI.01276-21.spa
dc.relation.referencesL. Reed and H. Muench, "A simple method of estimating fifty per cent endpoints," American Journal of Epidemiology, vol. 27, no. 3, pp. 493-497, 1938. https://doi.org/10.1093/oxfordjournals.aje.a118408.spa
dc.relation.referencesM. E. Cortés, R. D. Sinisterra, M. J. Avila-Campos, N. Tortamano and R. G. Rocha, "The Chlorhexidine:β-Cyclodextrin Inclusion Compound: Preparation, Characterization and Microbiological Evaluation," Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 40, pp. 297-302, 2001. https://doi.org/10.1023/A:1012788432106.spa
dc.relation.referencesS. Vahur, A. Teearu, P. Peets, L. Joosu and I. Leito, "ATR-FT-IR spectral collection of conservation materialsin the extended region of 4000-80 cm–1," Analytical and Bioanalytical Chemistry, vol. 408, pp. 3373-3379, 2016. https://doi.org/10.1007/s00216-016-9411-5.spa
dc.relation.referencesE. H. Portella, D. Romanzinib, C. C. Angrizanib, S. C. Amicob and A. J. Zattera, "Influence of Stacking Sequence on the Mechanical and Dynamic Mechanical Properties of Cotton/Glass Fiber Reinforced Polyester Composites," Materials Research, vol. 19, no. 3, pp. 542-547, 2016. https://doi.org/10.1590/1980-5373-MR-2016-0058.spa
dc.relation.referencesJ. Zięba-Palus, "The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes," Forensic Science and Criminology, vol. 2, no. 2, pp. 1-9, 2017. https://doi.org/10.15761/FSC.1000112.spa
dc.relation.referencesR. Vehring, "Pharmaceutical Particle Engineering via Spray Drying," Pharmaceutical Research, vol. 25, no. 5, pp. 999-1022, 2008. https://doi.org/10.1007/s11095-007-9475-1.spa
dc.relation.referencesT. Goto, Y. Yamada, T. Ueda and S. Shio, "Chlorhexidine-filled porous ceramic coating fabricated by the aerosol deposition method for immediate and long-term enveloped virus inactivation," Journal of Asian Ceramic Societies, vol. 10, no. 2, pp. 465-472, 2022. https://doi.org/10.1080/21870764.2022.2072081.spa
dc.relation.referencesF. Carrouel, L. Gonçalves, M. Conte, G. Campus, J. Fisher, L. Fraticelli, E. Gadea-Deschamps, L. Ottoleng and D. Bourgeois, "Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2," Journal of Dental Research, vol. 100, no. 2, pp. 124-132, 2021. https://doi.org/0.1177/0022034520967933.spa
dc.relation.referencesQ. Lin, J. Y. C. Lim, K. Xue, P. Y. M. Yew, C. Owh, P. L. Chee and X. J. Loh, "Sanitizing agents for virus inactivation and disinfection," View (Beijing), vol. 1, no. 2, 2020. https://doi.org/10.1002/viw2.16.spa
dc.relation.referencesBritish Standards Institute, "Chemical disinfectants and antiseptics. Quantitative suspension test for the evaluation of virucidal activity in the medical area. Test method and requirements (Phase 2/Step 1).," BS EN 14476:2013+A2:2019, 2019.spa
dc.relation.referencesK. I. R. Teixeira, A. M. L. Denadai, R. D. Sinisterra and M. E. Cortés, "Cyclodextrin modulates the cytotoxic effects of chlorhexidine on microrganisms and cells in vitro," Drug Delivery, vol. 22, no. 3, pp. 444-453, 2015. https://doi.org/10.3109/10717544.2013.879679.spa
dc.relation.referencesK. I. R. Teixeira, P. V. Araújo, . B. R. A. Neves, G. A. B. Mahecha, R. D. Sinisterra and M. E. Cortés, "Ultrastructural changes in bacterial membranes induced by nano-assemblies β-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation," Pharmaceutical Development and Technology, vol. 18, no. 3, pp. 600-608, 2013. https://doi.org/10.3109/10837450.2011.649853.spa
dc.relation.referencesA. Cid-Samamed, J. Rakmai , J. C. Mejuto, J. Simal-Gandara and G. Astray, "Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications," Food Chemistry, vol. 384, 2022. https://doi.org/10.1016/j.foodchem.2022.132467.spa
dc.relation.referencesJ. J. Passos, F. B. De Sousab, I. M. Mundim, R. R. Bonfim, R. Melo, A. F. Viana, E. D. Stolz, M. Borsoie, S. M. Rates and R. D. Sinisterra, "Double continuous injection preparation method of cyclodextrin inclusion compounds by spray drying," Chemical Engineering Journal, vol. 228, pp. 345-351, 2013. https://doi.org/10.1016/j.cej.2013.04.074.spa
dc.relation.referencesR. S. Blackburn, A. Harvey, L. L. Kettle, A. P. Manian, J. D. Payne and S. J. Russell, "Sorption of Chlorhexidine on Cellulose: Mechanism of Binding and Molecular Recognition," The Journal of Physical Chemistry B, vol. 111, no. 30, pp. 8775-8784, 2007. https://doi.org/10.1021/jp070856r.spa
dc.relation.referencesP. Ball, "From academic discovery to industrial applications: Innovation and success in materials science and engineering," MRS Bulletin, vol. 40, pp. 1177-1185, 2015. https://doi.org/10.1557/mrs.2015.275.spa
dc.relation.referencesA. M. L. Denadai, K. I. Teixeira, M. M. Santoro, A. M. C. Pimenta, M. E. Cortés and R. D. Sinisterra, "Supramolecular self-assembly of beta-cyclodextrin: an effective carrier of the antimicrobial agent chlorhexidine," Carbohydrate Research, vol. 342, no. 15, pp. 2286-2296, 2007. https://doi.org/10.1016/j.carres.2007.05.002.spa
dc.relation.referencesE. d. C. França, Efeito de um Sistema de Liberação Controlada de Clorexidina para o Controle de Placa e Gengivite, Belo Horizonte, MG, Brazil: Universidade Federal de Minas Gerais, 2012.spa
dc.relation.referencesA. L. Pataro, M. E. Cortés, M. V. F. Araújo and R. D. Sinisterra, "Processo de preparação de composições farmacêuticas de liberação controlada compreendendo antimicrobiano e ciclodextrina". Brazil Patent PI0206336 B1, 13 June 2017.spa
dc.relation.referencesK. K. Wan, D. Davis, T. N. Lee, S. L. Ford-Scheimer, A. L. Andreu, F. Bietrix, J. Bryans, M. T. Castro, N. Chiba, J. M. Faupel-Badger, B. Haynes, R. Hirasawa, C. M. Morel, T. M. L. Souza, D. Morrow, T. Munro , S. Newman, A. E. Ussi, P. B. Zorzal, M. D. Hall, D. C. Lo and C. M. Cutillo, "Translation Together, a transnational consortium of translational research organizations, reflects on successes and challenges in regional COVID-19 pandemic responses and proposes five priorities to improve preparedness for future global public health cri," Nature Reviews Drug Discovery, vol. 21, pp. 165-166, 2022. https://doi.org/10.1038/d41573-022-00020-6.spa
dc.relation.referencesR. D. Sinisterra , M. E. Cortés, A. Martínez, D. A. Grajales and R. Silva, "Mesh Materials for Controlled Release of Antivirals, Method and Use". WIPO Patent WO/2022/018689, 22 07 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::608 - Patentesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadasspa
dc.subject.ddc610 - Medicina y salud::613 - Salud y seguridad personalspa
dc.subject.lembINGENIERIA QUIMICA-PROCESAMIENTO DE DATOSspa
dc.subject.lembChemical engineering - data processingeng
dc.subject.lembROCAS METAMORFICASspa
dc.subject.lembRocks, metamorphiceng
dc.subject.lembCUARCITAspa
dc.subject.lembQuartziteeng
dc.subject.lembLIGNINAspa
dc.subject.lembLignineng
dc.subject.lembLIGNOCELULOSAspa
dc.subject.lembLignocelluloseeng
dc.subject.lembINVESTIGACION CIENTIFICAspa
dc.subject.lembResearcheng
dc.subject.lembDISEÑO EXPERIMENTALspa
dc.subject.lembExperimental designeng
dc.subject.lembINTERCAMBIO IONICOspa
dc.subject.lembIon exchangeeng
dc.subject.lembPURIFICACION DE AGUAS RESIDUALES-PROCESO DE INTERCAMBIO IONICOspa
dc.subject.lembSewage - Purification - Ion exchange processeng
dc.subject.proposalSerpentiniteeng
dc.subject.proposalMacaubaeng
dc.subject.proposalAluminumeng
dc.subject.proposalIroneng
dc.subject.proposalManganeseeng
dc.subject.proposalLeadeng
dc.subject.proposalWatereng
dc.subject.proposalRemediationeng
dc.subject.proposalSustainabilityeng
dc.subject.proposalChlorhexidineeng
dc.subject.proposalInclusion-compoundseng
dc.subject.proposalCyclodextrineng
dc.subject.proposalSARS-CoV-2eng
dc.subject.proposalLong-lasting virucidaleng
dc.subject.proposalCellulose matriceseng
dc.subject.proposalSerpentinitospa
dc.subject.proposalMacaubaspa
dc.subject.proposalAluminiospa
dc.subject.proposalHierrospa
dc.subject.proposalManganesospa
dc.subject.proposalPlomospa
dc.subject.proposalAguaspa
dc.subject.proposalRemediaciónspa
dc.subject.proposalSostenibilidadspa
dc.subject.proposalClorhexidinaspa
dc.subject.proposalCompuestos de inclusiónspa
dc.subject.proposalCiclodextrinaspa
dc.subject.proposalSARS-CoV-2spa
dc.subject.proposalVirucida de larga duraciónspa
dc.subject.proposalMatrices de celulosaspa
dc.subject.proposalFerropor
dc.subject.proposalManganêspor
dc.subject.proposalChumbopor
dc.subject.proposalRemediaçãopor
dc.subject.proposalSustentabilidadepor
dc.subject.proposalCompostos de inclusãopor
dc.subject.proposalVirucida de longa duraçãopor
dc.subject.proposalMatrizes de celulosepor
dc.titleApplication of innovation strategies in the development of sustainable technologies for surface water remediation and smart materials against COVID-19eng
dc.title.translatedAplicación de estrategias de innovación en el desarrollo de tecnologías sostenibles para la remediación de aguas superficiales y materiales inteligentes frente al COVID-19spa
dc.title.translatedAplicação de estratégias de inovação no desenvolvimento de tecnologias sustentáveis para remediação de águas superficiais e materiais inteligentes contra a COVID-19por
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleNetwork for the study, development and application of technologies based on sustainable nanomaterials for the recovery of water from the Doce River basin (N◦06/2016, APQ-03623-17)spa
oaire.fundernameFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)spa
oaire.fundernameConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)spa
oaire.fundernameCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)spa
oaire.fundernameAgência Nacional de Águas e Saneamento Básico (ANA)spa
oaire.fundernameFundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121859744.2024.pdf
Tamaño:
15.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: