Development of an integrated multi-enzyme – membrane system for gluconic acid production
| dc.contributor.advisor | Higuita Vasquez, Juan Carlos | spa |
| dc.contributor.author | Ruales Salcedo, Angela Viviana | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Aplicación de Nuevas Tecnologías (G.I.A.N.T.) | spa |
| dc.date.accessioned | 2020-08-20T18:01:20Z | spa |
| dc.date.available | 2020-08-20T18:01:20Z | spa |
| dc.date.issued | 2020 | spa |
| dc.description.abstract | El desarrollo de bioprocesos es un tema de gran interés para la ingeniería de procesos, ya que necesita mejorar e implementar prácticas en la industria que garanticen un futuro sostenible. En general, la aplicabilidad de estos procesos a escala comercial está limitada por la complejidad de los biosistemas y las tecnologías de baja eficiencia, lo que conduce a que sean económicamente inviables. Por lo tanto, es necesario un profundo conocimiento del proceso y su operatividad para proponer tecnologías innovadoras que contribuyan a superar las restricciones mencionadas, mejorando así la incorporación de los bioprocesos en la industria. En esta disertación, se desarrolló un proceso intensificado para la producción y extracción de ácido glucónico utilizando un sistema multi-enzimático combinado con una extracción in situ mediante un nuevo proceso de membrana líquida. Este proceso se desarrolló utilizando celulosa microcristalina como fuente de carbono. Además, el proceso se evaluó utilizando el pseudotallo de plátano, ya que es un sustrato económico y de alta disponibilidad en Colombia. El sistema intensificado se desarrolló en tres etapas: el diseño del sistema multi-enzimático para la producción de ácido glucónico, la configuración del sistema de extracción del ácido glucónico empleando una membrana líquida en flujo de Taylor y la integración de los dos sistemas. En el sistema multi-enzimático, se propuso el uso de cuatro enzimas (i.e., celulasa, -glucosidasa, glucosa oxidasa y catalasa) para la producción de ácido glucónico a partir de celulosa. El sistema fue evaluado exitosamente. Primero se identificó una ventana operativa común para las cuatro enzimas, en términos de pH y temperatura y se evaluó el desempeño de las enzimas bajo las condiciones seleccionadas. Con esta información se estimó el modelo cinético para cada enzima individual. Posteriormente, se propuso y evaluó experimentalmente el sistema multi-enzimático, empleando las cuatro enzimas en un solo reactor (one-pot). El desempeño del sistema demostró que es técnicamente viable obtener ácido glucónico a partir de celulosa. Este concepto se validó aún más utilizando el pseudotallo de plátano como fuente de carbono, donde se encontró un desempeño similar de la enzima en comparación con la materia prima sintética. Se implementaron simulaciones de procesos para comparar los modelos cinéticos desarrollados previamente con el desempeño del sistema experimental multi-enzimático. Se descubrió que existe una desviación de los resultados de la simulación, por lo tanto, se deben hacer más esfuerzos para extender los modelos y recalibrar los parámetros del modelo para reproducir evidencia experimental. La segunda etapa es la configuración y análisis de la membrana líquida en un régimen de flujo de Taylor para la recuperación de ácido glucónico. Trioctilamina/1-dodecanol se eligió como la membrana líquida, debido a su afinidad hacia el ácido glucónico y su bajo transporte de agua. Para comprender mejor la extracción reactiva del ácido glucónico con la membrana, se propuso un modelo de equilibrio líquido-líquido a partir de datos experimentales. Posteriormente, se analizó el desempeño de la membrana líquida en el régimen de flujo de Taylor en busca de variables operativas. Los resultados de los experimentos mostraron gran influencia del tiempo de espera (delay time) entre la inyección de las fases donadora y aceptora y la concentración de la fase aceptora. Anticipándose a la integración del sistema de membrana líquida con el reactor multi-enzimático, se realizaron experimentos adicionales utilizando buffer acetato de sodio. Como inconveniente, se encontró que la membrana líquida tiene mayor selectividad por el acetato que por el ácido glucónico. Como consecuencia, para el diseño del proceso integrado se cambió el buffer acetato empleado en el sistema multi-enzimático por el buffer gluconato. La última etapa fue el desarrollo y análisis del sistema integrado para la producción de ácido glucónico combinando los dos procesos diseñados previamente. Para integrar los sistemas, se implementó una estrategia de control de pH en circuito abierto donde la extracción del producto in situ permitió regular el pH del reactor. La productividad del sistema integrado fue más alta que la obtenida con el sistema multi-enzimático one-pot. Esta mejora del sistema integrado se atribuye principalmente a la reducción de la fuerza iónica del caldo debido al transporte acoplado de iones de bicarbonato y ácido glucónico, y en una extensión inferior a la eliminación in situ del ácido glucónico. El desempeño obtenido con el sistema integrado muestra el potencial de la tecnología desarrollada y es la fuerza impulsora para continuar investigando la optimización del proceso intensificado (Texto tomado de la fuente) | spa |
| dc.description.abstract | Bioprocess development is a topic of high interest to process engineering since more improved practices need to be implemented in the industry to guarantee a sustainable future. In general, the applicability of these processes to a commercial scale is limited by the biosystems complexity and low-efficiency technologies leading to their economic infeasibility. Therefore, a deep process and operability understanding are necessary to propose innovative technologies that contribute to overcome the mentioned restrictions, thus improve the permeation of bioprocesses in the industry. In this dissertation, an intensified process for gluconic acid production and extraction was developed using a multi-enzyme system combined with an in situ extraction by a novel liquid membrane process. This process was developed using microcrystalline cellulose as carbon source. Additionally, the process was evaluated using plantain pseudostem since it is a cheap and highly available substrate in developing countries. The intensified system was developed in three stages: the multi-enzyme system design for gluconic acid production, the set-up of the gluconic acid extraction system using liquid membrane in Taylor flow, and the integration of both systems. For the multi-enzyme system, four enzymes were proposed to produce gluconic acid from cellulose (i.e., cellulase, -glucosidase, glucose oxidase, and catalase). Experimentally, the system was evaluated and proved to successfully produce gluconic acid. Initially, a common operative window in terms of pH and temperature for the enzymes was identified and their performance evaluated under those conditions. This information was used to estimate the kinetic models for the individual enzymes. Exploiting the generated process understanding, a one-pot multi-enzyme system was proposed and experimentally evaluated. The system performance proved it was technically viable to obtain gluconic acid from cellulose. This concept was further validated using plantain pseudostem as a carbon source, finding analogous enzyme performance compared to the synthetic raw material. Process simulations were implemented to compare the previously developed kinetic models with the performance of the experimental multi-enzyme system. It was found that there is a deviation of the simulation results, thus further efforts must be made to extend the models and recalibrate model parameters to reproduce experimental evidence. The second stage is the analysis and set up of gluconic acid recovery using liquid membrane in a Taylor flow regime. Trioctylamine/1-dodecanol was chosen as the liquid membrane, due to its affinity towards gluconic acid and low water transport. To have a better understanding of the reactive gluconic acid extraction by the membrane, a liquid-liquid equilibrium model was proposed from experimental data. Afterward, the performance of the liquid membrane in Taylor flow regime was analyzed for operative variables. Experiment results showed the high influence of the delay time between the injection of the donor and acceptor phases and the receiving phase concentration. Anticipating the integration of the membrane system with the multi-enzyme reactor, further experiments using a buffer solution of sodium acetate were performed. As a drawback, it was found that there is a higher selectivity towards acetate transport than for gluconic acid, implying the change of the buffer for the enzyme system for the integrated process design. The last stage was the development and analysis of the integrated system for gluconic acid production by combining the two processes designed previously. In order to integrate the systems, a pH open-loop control strategy was implemented where the in situ product extraction allowed regulating the reactor pH. The integrated system productivity was higher than the conventional one-pot multi-enzyme performance. This improvement of the integrated system is attributed mainly to the reduced ionic strength of the broth due to the coupled transport of bicarbonate ions and gluconic acid and in a lower extension to the gluconic acid in situ removal. The obtained performance of the integrated system shows the potential of the developed technology and is the driving force to continue investigating the optimization of the intensified process. | eng |
| dc.description.additional | Tesis presentada como requisito parcial para optar al título de Doctorado en Ingeniería - Ingeniería Química. | spa |
| dc.description.comments | Debido a la estructura de mi tesis doctoral, cada capítulo cuenta con su lista de referencias, así que pueden haber referencias repetidas entre capítulos. Por este motivo en el presente plataforma solo se incluyeron las referencias del capítulo 1. Como sugerencia, recomiendo que la biblioteca analice mejor el ítem donde se solicitan las referencias en esta plataforma, ya que resulta incómodo e ineficiente cuando una tesis está construida con una estructura tipo artículo. Otras sugerencia es que se de reconocimiento también el co-director de las tesis. Particularmente, mi co-director tuvo contribuciones importantes en el desarrollo de mi tesis y considero que también debería tener visibilidad por medio de esta plataforma, que es el mecanismo de divulgación que la universidad tiene. | spa |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.project | 647 – 2014 | spa |
| dc.description.sponsorship | Colciencias | spa |
| dc.format.extent | 119 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Ruales-Salcedo, Angela V. (2020). Development of an integrated multi-enzyme – membrane system for gluconic acid production (PhD Thesis). Universidad Nacional de Colombia, Manizales, Colombia | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78114 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
| dc.publisher.department | Departamento de Ingeniería Química | spa |
| dc.publisher.program | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química | spa |
| dc.relation.references | Agreda V. H., Partin L. R., Heise W. H. 1990. High-purity methyl acetate via reactive distillation. Chemical Engineering Progress. 86(2): 40 – 46. | spa |
| dc.relation.references | Ahmed A. S., Farag S. S., Hassan I. A., Botros, H. W. 2015. Production of gluconic acid by using some irradiated microorganisms. Journal of Radiation Research and Applied Sciences. 8(3): 374 – 380. | spa |
| dc.relation.references | Anastassiadis S., Morgunov I. G. 2007. Gluconic Acid Production. Recent Patents on Biotechnology. 1: 167 – 180. | spa |
| dc.relation.references | Arora M. B., Hestekin J. A., Snyder S. W., Martin E. J. St., Lin Y. J., Donnelly M. I., Millard C. S. 2007. The separative bioreactor: a continuous separation process for the simultaneous production and direct capture of organic acids. Separation Science and Technology. 42(11): 2519 – 2538. | spa |
| dc.relation.references | Banerjee S., Kumar R., Pal P. 2018. Fermentative production of gluconic acid: A membrane-integrated Green process. Journal of the Taiwan Institute of Chemical Engineers. 84: 76 – 84. | spa |
| dc.relation.references | Burgard A., Burk M. J., Osterhout R., Dien S. V., Yim H. 2016. Development of a commercial scale process for production of 1,4-butanediol from sugar. Current Opinion in Biotechnology. 42: 118 – 125. | spa |
| dc.relation.references | Cañete-Rodriguez A. M., Santos-Dueñas I. M., Jiménez-Hornero J. E., Ehrenreich A., Liebl W., García-García I. 2016. Gluconic acid: properties, production methods and applications –An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochemistry. 51(12): 1891 – 1903. | spa |
| dc.relation.references | Chotani G. K., Dodge T. C., Peres C. M., Moslemy P., Arbige M. V. 2017. Industrial Biotechnology: Discovery to Delivery. In J. A. Kent, T. Bommaraju, S. D. Barnicki (Eds.). Handbook of Industrial Chemistry and Biotechnology (pp. 1495 – 1570). Springer. | spa |
| dc.relation.references | Escalante H., Orduz J., Zapata H. J., Cardona M. C., Duarte M. 2011. Atlas del potencial energético de la biomasa residual en Colombia. | spa |
| dc.relation.references | Fontalvo J., Pérez A. D. Membrana líquida y proceso para realizarlo. Colombian patent, 15131023. | spa |
| dc.relation.references | Garg N., Woodley J. M., Gani R., Kontogeorgis G. M. 2019. Sustainable solutions by integrating process synthesis-intensification. Computers and Chemical Engineering. 126: 499 – 519. | spa |
| dc.relation.references | Gerven T. V, Stankiewicz A. 2009. Structure, energy, synergy, time – The fundamentals of process intensification. Industrial and Engineering Chemistry Research. 48(5): 2465 – 2474. | spa |
| dc.relation.references | Godjevargova T., Dayal R., Turmanova S. 2004. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. Macromolecular Bioscience. 4: 950 – 956. | spa |
| dc.relation.references | Hestekin J., Lin Y., Frank J., Snyder S., St Martin E. 2002. Electrochemical enhancement of glucose oxidase kinetics: gluconic acid production with anion exchange membrane reactor. Journal of Applied Electrochemistry. 32: 1049 – 1052. | spa |
| dc.relation.references | Inci I. 2002. Extraction of Gluconic Acid with Organic Solutions of Alamine 336. 2002. Chemical and Biochemical Engineering Quarterly. 16(4): 185 – 189. | spa |
| dc.relation.references | Inci I., Uslu H., Ayhan S. T. 2005. Partitioning of gluconic acid between water and trioctyl methylammonium chloride and organic solvents. Journal of Chemical & Engineering Data. 50: 961 – 965. | spa |
| dc.relation.references | López-Garzón C. S., Straathof A. J. J. 2014. Recovery of carboxylic acids produced by fermentation. Biotechnology Advances. 32: 873 - 904. | spa |
| dc.relation.references | Mafra A. C., Furlan F. F., Badino A. C., Tardioli P. W. 2015. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system. Bioprocess Biosystems Engineering. 38(4): 671 – 680. | spa |
| dc.relation.references | Minagricultura. 2014. Anuario estadística del sector agropecuario 2013. Bogotá, Colombia. | spa |
| dc.relation.references | Morthensen S. T., Meyer A. S., Jørgensen H., Pinelo M. 2017. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems. Biochemical Engineering Journal. 117: 41 – 47. | spa |
| dc.relation.references | Morthensen S. T., Luo J., Meyer A. S., Jørgensen H., Pinelo M. 2015. High performance separation of xylose and glucose by enzyme assisted nanofiltration. Journal of Membrane Science. 492: 107 – 115. | spa |
| dc.relation.references | Mu Q., Cui Y., Tian Y., Hu M., Tao Y., Wu B. (2019) (in press). Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design. International Journal of Biological Macromolecules. | spa |
| dc.relation.references | Nakao K., Kiefner A., Furumoto K., Harada T. 1997. Production of gluconic acid with immobilized glucose oxidase in airlift reactors. Chemical Engineering Science. 52: 4127 – 4133. | spa |
| dc.relation.references | Novalic S., Kongbangkerd T., Kulbe K. D. 2000. Recovery of organic acids with high molecular weight using a combined electrodialytic process. Journal of Membrane Science. 166: 99 – 104. | spa |
| dc.relation.references | Pal P., Kumar R., Banerjee S. 2016. Manufacture of gluconic acid: A review towards process intensification for green production. Chemical Engineering and Processing. 104: 160 – 171. | spa |
| dc.relation.references | Pal P., Kumar R., Nayak J., Banerjee S. 2017. Fermentative production of gluconic acid in membrane-integrated hybrid reactor system: Analysis of process intensification. Chemical Engineering and Processing. 122: 258 – 268. | spa |
| dc.relation.references | Pérez, A. D., Bruggen B. V. B., Fontalvo J. 2018. Study of overall transfer coefficients in a liquid membrane in Taylor flow regime: Calculation and correlation. | spa |
| dc.relation.references | Pérez A. D., Rodríguez-Barona S., Fontalvo J. 2016. Liquid-liquid equilibria for trioctylamine/1-dodecanol/lactic acid/wáter system at 306.1, 310.1 and 316.1 K: experimental data and prediction. Journal of Chemical & Engineering Data. 61(7): 2269 – 2276. | spa |
| dc.relation.references | Prado-Rubio O. A., Morales-Rodríguez R., Andrade-Santacoloma P., Hernández-Escoto H. 2016. Process intensification in biotechnology applications. In Process Intensification in Chemical Engineering. Ed. J.G. Segovia-Hernández, A. Bonilla-Petriciolet. Springer International Publishing Switzerland. DOI 10.1007/978-3-319-28392-0_7. | spa |
| dc.relation.references | Ramachandran S., Fontanille P., Pandey A., Larroche C. 2006. Gluconic acid: properties, applications and microbial production. Food Technology and Biotechnology. 44(2): 185 – 195. | spa |
| dc.relation.references | Rogers P., Chen J. S., Zidwick M. J. 2013. Organic acid and solvent production: acetic, lactic, gluconic, succinic, and polyhydroxyalkanoic acids. In E. Rosenberg et al. (eds.), The Prokaryotes – Applied Bacteriology and Biotechnology (pp. 4 – 75). Berlin Heidelberg, Germany: Springer. | spa |
| dc.relation.references | Ruales-Salcedo A. V., Higuita J. C., Fontalvo J., Woodley J. M. 2019. Design of enzymatic cascade processes for the production of low-priced chemicals. Verlag der Zeitschrift für Naturforschung C. 74(3–4):77 – 84. | spa |
| dc.relation.references | Schlosser S., Kertész R., Marták J. 2005. Recovery and separation of organic acids by membrane-based solvent extraction and pertraction. An overview with a case study on recovery of MPCA. Separation and Purification Technology, 41: 237 - 266. | spa |
| dc.relation.references | Sheu D. C., Lio P. J., Chen S. T., Lin C. T., Duan K. J. 2001. Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnology Letters, 23: 1499 - 1503. | spa |
| dc.relation.references | Silva A. R., Tomotani E. J., Vitolo M. 2011. Invertase, glucose oxidase and catalase for converting sucrose to fructose and gluconic acid through batch and membrane-continuous reactors. Brazilian Journal of Pharmaceutical Sciences. 47: 399 – 407. | spa |
| dc.relation.references | Singh O. V., Kumar R. 2007. Biotechnological production of gluconic acid: future implications. Applied Microbiology and Biotechnology. 75: 713 – 722. | spa |
| dc.relation.references | Straathof A. J. J. 2011. The proportion of downstream costs in fermentative production processes. In: Moo-Young M, editor. Comprehensive biotechnology. 2nd ed. Elsevier; p. 811–4. | spa |
| dc.relation.references | Sun W. J. Yun Q. Q., Zhou Y. Z., Cui F. J., Yu S. L., Zhou Q., Sun L. 2013. Continuous 2-keto-gluconic acid (2KGA) production from corn starch hydrolysate by Pseudomonas fluorescens AR4. Biochemical Engineering Journal. 77: 97 – 102. | spa |
| dc.relation.references | Tian Y., Demirel S. E., Hasan M. M. F., Pistikopoulos E. N. 2018. An overview of process systems engineering approaches for process intensification: State of the art. Chemical Engineeting & Processing: Process Intensification. 133: 160 – 210. | spa |
| dc.relation.references | Tufvesson P., Lima-Ramos J., Nordblad M., Woodley J. M. 2011. Guidelines and cost analysis for catalyst production in biocatalytic processes. Organic Process Research & Development. 15: 266 – 274. | spa |
| dc.relation.references | Varnicic M., Vidakovc-Koch T., Sundmacher K. 2015. Gluconic acid synthesis in an electroenzymatic reactor. Electrochimica Acta. 174: 480 – 487. | spa |
| dc.relation.references | Wang X., Wang Y., Zhang X., Feng H., Xu T. 2013. In-situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: continuous operation. Bioresource Technology, 147: 442 - 8. | spa |
| dc.relation.references | Woodley M. J. 2017. Bioprocess intensification for the effective production of chemical products. Computers and Chemical Engineering. 105: 297–307. | spa |
| dc.relation.references | Xue R., Woodley J. M. 2012. Process technology for multi-enzymatic reaction systems. Bioresource Technology, 115: 183 – 195. | spa |
| dc.relation.references | Zhang H., Zhang J., Bao J. 2016. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification. Bioresource Technology. 203: 211 – 21. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.proposal | Enzyme cascade | eng |
| dc.subject.proposal | Cascada enzimática | spa |
| dc.subject.proposal | Hybrid system | eng |
| dc.subject.proposal | sistema híbrido | spa |
| dc.subject.proposal | Liquid membrane | eng |
| dc.subject.proposal | Membrana líquida | spa |
| dc.subject.proposal | Pseudotallo de plátano | spa |
| dc.subject.proposal | Plantain pseudostem | eng |
| dc.subject.proposal | Gluconic acid - production | eng |
| dc.subject.proposal | Ácido glucónico | spa |
| dc.subject.proposal | Ácido glucónico - producción | spa |
| dc.title | Development of an integrated multi-enzyme – membrane system for gluconic acid production | spa |
| dc.title.alternative | Desarrollo de un sistema integrado multi-enzima – membrana para la producción de ácido glucónico | spa |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1115063456.2020.pdf
- Tamaño:
- 12.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

