Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia

dc.contributor.advisorRincón Santamaria, Alejandro
dc.contributor.advisorCandelo Becerra, John Edwin
dc.contributor.authorAristizabal Jaramillo, Diego Alejandro
dc.contributor.researchgroupGrupo de Investigación en Tecnologías Aplicadas Gitaspa
dc.date.accessioned2024-04-16T13:19:04Z
dc.date.available2024-04-16T13:19:04Z
dc.date.issued2024-01
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLas fuentes de energía renovables no convencionales representan en la actualidad un importante aporte de la generación de energía eléctrica en los sistemas eléctricos de potencia a nivel mundial, el enfoque de integrar estas fuentes alternativas como unidades principales de la red puede conducir a la inestabilidad de los sistemas. Considerando la necesidad de inclusiones de fuentes de energía renovables no convencionales (FERNC) a los sistemas de transmisión, se hace necesario la implementación de dispositivos que den soportabilidad similar a la que tienen los generadores síncronos, al mismo tiempo se requiere que estos dispositivos de inyecciones de inercia virtual cuenten con un sistema de control que sea acorde a las necesidades del sistema. Para el caso descripto previamente se propone la implementación de un sistema de control para un generador síncrono virtual (VSG) implementado en un sistema de potencia mediante la herramienta DIgSILENT Power Factory, con el objetivo de que este dispositivo inyecte inercia en la red ante diferentes eventos, de tal forma que mejore y mantenga la estabilidad de frecuencia del sistema de potencia interconectado, principalmente cuando se tenga alta penetración de las FERNC. Al final del trabajo podemos evidenciar como la conservación de la inercia a través del VSG hace que el sistema tenga mejor respuesta ante eventos de aumento y disminución de carga, dando una mayor soportabilidad al sistema, al compararlo con sola la inclusión de fuentes solares sin ninguna tecnología adicional. (Tomado de la fuente)spa
dc.description.abstractNon-conventional renewable energy sources currently represent an important contribution to the generation of electrical energy in electrical power systems worldwide, the approach of integrating these alternative sources as main units of the network can lead to the instability of the systems. Considering the need to include non-conventional renewable energy sources (FERNC) in the transmission systems, it is necessary to implement devices that provide supportability similar to that of synchronous generators, at the same time it is required that these injection devices of virtual inertia have a control system that is consistent with the needs of the system. For the case described previously, the implementation of a control system for a virtual synchronous generator (VSG) implemented in a power system using the DIgSILENT Power Factory tool is proposed, with the objective of this device injecting inertia into the network in the event of different events. , in such a way that it improves and maintains the frequency stability of the interconnected power system, mainly when there is high penetration of FERNC. At the end of the work we can show how the conservation of inertia through the VSG makes the system have a better response to load increase and decrease events, giving greater supportability to the system, when compared with just the inclusion of solar sources without any additional technology.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.researchareaAnálisis, operación y control en sistemas de energía eléctrica Sistemas de potenciaspa
dc.format.extent1 recursos en línea (81 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85920
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesQ. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011, doi: 10.1109/TIE.2010.2048839.spa
dc.relation.referencesSalama, H. S., Bakeer, A., Magdy, G., & Vokony, I. (2021). Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 44, 103466.spa
dc.relation.referencesM. Ashabani and Y. A. I. Mohamed, "Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller With Self-Synchronization Capability," in IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 805-814, March 2014, doi: 10.1109/TPWRS.2013.2280659.spa
dc.relation.referencesCheema, K. M., Chaudhary, N. I., Tahir, M. F., Mehmood, K., Mudassir, M., Kamran, M., ... & Elbarbary, Z. S. (2022). Virtual synchronous generator: Modifications, stability assessment and future applications. Energy Reports, 8, 1704-1717.spa
dc.relation.referencesZhu, Y., Wang, H., & Zhu, Z. (2021). Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors. Energy Reports, 7, 6820-6832.spa
dc.relation.referencesChen, J., Liu, M., Milano, F., & O'Donnell, T. (2020). 100% Converter-Interfaced generation using virtual synchronous generator control: A case study based on the irish system. Electric Power Systems Research, 187, 106475.spa
dc.relation.referencesZhang, B., Zhao, P., & Zhao, J. (2022). Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 8, 283-290.spa
dc.relation.referencesHirase, Y., Ohara, Y., & Bevrani, H. (2020). Virtual synchronous generator based frequency control in interconnected microgrids. Energy Reports, 6, 97-103.spa
dc.relation.referencesWan, X., Ding, X., Hu, H., & Yu, Y. (2021). An enhanced second-order-consensus-based distributed secondary frequency controller of virtual synchronous generators for isolated AC microgrids. Energy Reports, 7, 5228-5238.spa
dc.relation.referencesLi, P., Hu, W., Xu, X., Huang, Q., Liu, Z., & Chen, Z. (2019). A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control. Energy, 189, 116389.spa
dc.relation.referencesD. Li, Q. Zhu, S. Lin and X. Y. Bian, "A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397-398, March 2017, doi: 10.1109/TEC.2016.2623982.spa
dc.relation.referencesTan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191.spa
dc.relation.referencesCheema, K. M., Milyani, A. H., El-Sherbeeny, A. M., & El-Meligy, M. A. (2021). Modification in active power-frequency loop of virtual synchronous generator to improve the transient stability. International Journal of Electrical Power & Energy Systems, 128, 106668.spa
dc.relation.referencesX. Wang, M. Yue y E. Muljadi, "Mejora de la generación fotovoltaica con un emulador de inercia virtual para proporcionar una respuesta inercial a la red", 2014 IEEE Energy Conversion Congress and Exposition (ECCE) , 2014, pp. 17-23, doi : 10.1109/ECCE.2014.6953370spa
dc.relation.referencesKerdphol, T., Rahman, F. S., & Mitani, Y. (2018). Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies, 11(4), 981.spa
dc.relation.referencesFarmer, W. J., & Rix, A. J. (2020). Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation. IET Renewable Power Generation, 14(15), 2820-2829.spa
dc.relation.referencesTamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual inertia: Current trends and future directions. Applied Sciences, 7(7), 654.spa
dc.relation.referencesKerdphol, T., Rahman, F. S., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability, 9(5), 773.spa
dc.relation.referencesWeedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B.; Strbac, G. Electric Power System, 5th ed.; John Wiley & Sons: London, UK, 2012.spa
dc.relation.referencesBevrani, H. Robust Power System Frequency Control; Springer: Cham, Switzerland, 2014.spa
dc.relation.referencesKundur P., Paserba J., Ajjarapu V. et al.: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387– 1401spa
dc.relation.referencesBayer E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 1– 48spa
dc.relation.referencesJuankorena X., Esandi I., Lopez J. et al.: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495– 500spa
dc.relation.referencesWang X., Yue M., Muljadi E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014spa
dc.relation.referencesJ.H Eto et al., "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation", The Lawrence Berkeley National Laboratory LBNL-4142E, 2010.spa
dc.relation.referencesA. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, Boston, Mass:McGraw-Hill, pp. 178, 2009.spa
dc.relation.referencesZhong, Q.C.; Weiss, G. Synchonverter: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1265.spa
dc.relation.referencesBevrani, H.; Watanabe, M.; Mitani, Y. Power System Monitoring and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 9.spa
dc.relation.referencesC. Barbier and J.P. Barret, "An analysis of Phenomena of voltage collapse on the transmission system", Revue Generale d'Electricité, pp. 672-690, October 1980.spa
dc.relation.referencesKundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute.spa
dc.relation.referencesB. Gao, G.K. Morison and P. Kundur, “Voltage Stability Evaluation Using Modal Analysis,” IEEE Trans., vol. PWRS-7, No. 4, pp. 1529-1542, November 1992.spa
dc.relation.referencesC. Concordia, D.R. Davidson, D.N. Ewart, L.K. Kirchmayer and R.P. Schultz, "Long Term Power System Dynamics - A New Planning Dimension", CIGRE Paper 32-13, 1976spa
dc.relation.referencesE.G. Cate, K. Hemmaplardh, J.W. Manke and D.P. Gelopulos, “Time frame Notion and time response of the methods in transient, Mid-Term- and Long-term stability programs,” IEEE Trans., vol. PAS-103, pp. 143-151, January 1984.spa
dc.relation.referencesCIGRE Working Group 32-03, "Tentative classification and terminologies relating to stability problems of Power system ", Electra, No. 56, 1978.spa
dc.relation.referencesEPRI Report EL-596, "Midterm Simulation of Electric Power Systems", Project RP745, June 1979.spa
dc.relation.referencesK. Hemmaplardh, J.W. Manke, W.R. Pauly and J. W. Lamont, “Considerations for a Long-Term Dynamic Simulation Program,” IEEE Trans., vol. PWRS-1, pp. 129-135, February 1986.spa
dc.relation.referencesFernando, V. J. (2023). Generadores Síncronos Virtuales con Almacenamiento de Energía para Soporte de Frecuencia en Red.spa
dc.relation.referencesSanahuja, S. D. (2017). Sistemas de control con lógica difusa: Métodos de Mamdani y de takagi-sugeno-kang (tsk). Univesitat Jaume.spa
dc.relation.references. Wadhwa, K. V. S. Bharath, K. Pandey and S. Sehrawat, "Controlling of frequency deviations in interconnected power systems using smart techniques," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853222.spa
dc.relation.referencesN. Hatziargyriou et al., "Definition and Classification of Power System Stability – Revisited & Extended," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774.spa
dc.relation.referencesP. Anderson and A. Fouad, Power System Control and Stability, 1st ed. Iowa State University Press, Ames, Iowa, U.S.A., 1977.spa
dc.relation.referencesDIgSILENT PowerFactory 2016: Technical Reference Documentation Synchronous Machine, Version 2016, 1st ed., DIgSILENT GmbH, Heinrich- Hertz-Str. 9, 72810 Gomaringen, Germany, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembDistribución de energía eléctrica
dc.subject.lembMétodos de simulación
dc.subject.lembEnergía renovable - Métodos de simulación
dc.subject.proposalEstabilidadspa
dc.subject.proposalInerciaspa
dc.subject.proposalNADIRspa
dc.subject.proposalROCOFspa
dc.subject.proposalStabilityeng
dc.subject.proposalInertiaeng
dc.subject.proposalGenerador sincrónicospa
dc.subject.proposalgenerador síncrono virtualspa
dc.subject.wikidataEnergía renovable
dc.subject.wikidataGenerador sincrónico
dc.titleImplementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potenciaspa
dc.title.translatedControl implementation for virtual synchronous generators connected to photovoltaic solar generation sources in electrical power systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053820472.2024.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: