Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
dc.contributor.advisor | Rincón Santamaria, Alejandro | |
dc.contributor.advisor | Candelo Becerra, John Edwin | |
dc.contributor.author | Aristizabal Jaramillo, Diego Alejandro | |
dc.contributor.researchgroup | Grupo de Investigación en Tecnologías Aplicadas Gita | spa |
dc.date.accessioned | 2024-04-16T13:19:04Z | |
dc.date.available | 2024-04-16T13:19:04Z | |
dc.date.issued | 2024-01 | |
dc.description | Ilustraciones, tablas | spa |
dc.description.abstract | Las fuentes de energía renovables no convencionales representan en la actualidad un importante aporte de la generación de energía eléctrica en los sistemas eléctricos de potencia a nivel mundial, el enfoque de integrar estas fuentes alternativas como unidades principales de la red puede conducir a la inestabilidad de los sistemas. Considerando la necesidad de inclusiones de fuentes de energía renovables no convencionales (FERNC) a los sistemas de transmisión, se hace necesario la implementación de dispositivos que den soportabilidad similar a la que tienen los generadores síncronos, al mismo tiempo se requiere que estos dispositivos de inyecciones de inercia virtual cuenten con un sistema de control que sea acorde a las necesidades del sistema. Para el caso descripto previamente se propone la implementación de un sistema de control para un generador síncrono virtual (VSG) implementado en un sistema de potencia mediante la herramienta DIgSILENT Power Factory, con el objetivo de que este dispositivo inyecte inercia en la red ante diferentes eventos, de tal forma que mejore y mantenga la estabilidad de frecuencia del sistema de potencia interconectado, principalmente cuando se tenga alta penetración de las FERNC. Al final del trabajo podemos evidenciar como la conservación de la inercia a través del VSG hace que el sistema tenga mejor respuesta ante eventos de aumento y disminución de carga, dando una mayor soportabilidad al sistema, al compararlo con sola la inclusión de fuentes solares sin ninguna tecnología adicional. (Tomado de la fuente) | spa |
dc.description.abstract | Non-conventional renewable energy sources currently represent an important contribution to the generation of electrical energy in electrical power systems worldwide, the approach of integrating these alternative sources as main units of the network can lead to the instability of the systems. Considering the need to include non-conventional renewable energy sources (FERNC) in the transmission systems, it is necessary to implement devices that provide supportability similar to that of synchronous generators, at the same time it is required that these injection devices of virtual inertia have a control system that is consistent with the needs of the system. For the case described previously, the implementation of a control system for a virtual synchronous generator (VSG) implemented in a power system using the DIgSILENT Power Factory tool is proposed, with the objective of this device injecting inertia into the network in the event of different events. , in such a way that it improves and maintains the frequency stability of the interconnected power system, mainly when there is high penetration of FERNC. At the end of the work we can show how the conservation of inertia through the VSG makes the system have a better response to load increase and decrease events, giving greater supportability to the system, when compared with just the inclusion of solar sources without any additional technology. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Eléctrica e Ingeniería de Control | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Análisis, operación y control en sistemas de energía eléctrica Sistemas de potencia | spa |
dc.format.extent | 1 recursos en línea (81 páginas) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85920 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Q. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011, doi: 10.1109/TIE.2010.2048839. | spa |
dc.relation.references | Salama, H. S., Bakeer, A., Magdy, G., & Vokony, I. (2021). Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 44, 103466. | spa |
dc.relation.references | M. Ashabani and Y. A. I. Mohamed, "Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller With Self-Synchronization Capability," in IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 805-814, March 2014, doi: 10.1109/TPWRS.2013.2280659. | spa |
dc.relation.references | Cheema, K. M., Chaudhary, N. I., Tahir, M. F., Mehmood, K., Mudassir, M., Kamran, M., ... & Elbarbary, Z. S. (2022). Virtual synchronous generator: Modifications, stability assessment and future applications. Energy Reports, 8, 1704-1717. | spa |
dc.relation.references | Zhu, Y., Wang, H., & Zhu, Z. (2021). Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors. Energy Reports, 7, 6820-6832. | spa |
dc.relation.references | Chen, J., Liu, M., Milano, F., & O'Donnell, T. (2020). 100% Converter-Interfaced generation using virtual synchronous generator control: A case study based on the irish system. Electric Power Systems Research, 187, 106475. | spa |
dc.relation.references | Zhang, B., Zhao, P., & Zhao, J. (2022). Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 8, 283-290. | spa |
dc.relation.references | Hirase, Y., Ohara, Y., & Bevrani, H. (2020). Virtual synchronous generator based frequency control in interconnected microgrids. Energy Reports, 6, 97-103. | spa |
dc.relation.references | Wan, X., Ding, X., Hu, H., & Yu, Y. (2021). An enhanced second-order-consensus-based distributed secondary frequency controller of virtual synchronous generators for isolated AC microgrids. Energy Reports, 7, 5228-5238. | spa |
dc.relation.references | Li, P., Hu, W., Xu, X., Huang, Q., Liu, Z., & Chen, Z. (2019). A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control. Energy, 189, 116389. | spa |
dc.relation.references | D. Li, Q. Zhu, S. Lin and X. Y. Bian, "A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397-398, March 2017, doi: 10.1109/TEC.2016.2623982. | spa |
dc.relation.references | Tan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191. | spa |
dc.relation.references | Cheema, K. M., Milyani, A. H., El-Sherbeeny, A. M., & El-Meligy, M. A. (2021). Modification in active power-frequency loop of virtual synchronous generator to improve the transient stability. International Journal of Electrical Power & Energy Systems, 128, 106668. | spa |
dc.relation.references | X. Wang, M. Yue y E. Muljadi, "Mejora de la generación fotovoltaica con un emulador de inercia virtual para proporcionar una respuesta inercial a la red", 2014 IEEE Energy Conversion Congress and Exposition (ECCE) , 2014, pp. 17-23, doi : 10.1109/ECCE.2014.6953370 | spa |
dc.relation.references | Kerdphol, T., Rahman, F. S., & Mitani, Y. (2018). Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies, 11(4), 981. | spa |
dc.relation.references | Farmer, W. J., & Rix, A. J. (2020). Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation. IET Renewable Power Generation, 14(15), 2820-2829. | spa |
dc.relation.references | Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual inertia: Current trends and future directions. Applied Sciences, 7(7), 654. | spa |
dc.relation.references | Kerdphol, T., Rahman, F. S., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability, 9(5), 773. | spa |
dc.relation.references | Weedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B.; Strbac, G. Electric Power System, 5th ed.; John Wiley & Sons: London, UK, 2012. | spa |
dc.relation.references | Bevrani, H. Robust Power System Frequency Control; Springer: Cham, Switzerland, 2014. | spa |
dc.relation.references | Kundur P., Paserba J., Ajjarapu V. et al.: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387– 1401 | spa |
dc.relation.references | Bayer E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 1– 48 | spa |
dc.relation.references | Juankorena X., Esandi I., Lopez J. et al.: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495– 500 | spa |
dc.relation.references | Wang X., Yue M., Muljadi E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014 | spa |
dc.relation.references | J.H Eto et al., "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation", The Lawrence Berkeley National Laboratory LBNL-4142E, 2010. | spa |
dc.relation.references | A. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, Boston, Mass:McGraw-Hill, pp. 178, 2009. | spa |
dc.relation.references | Zhong, Q.C.; Weiss, G. Synchonverter: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1265. | spa |
dc.relation.references | Bevrani, H.; Watanabe, M.; Mitani, Y. Power System Monitoring and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 9. | spa |
dc.relation.references | C. Barbier and J.P. Barret, "An analysis of Phenomena of voltage collapse on the transmission system", Revue Generale d'Electricité, pp. 672-690, October 1980. | spa |
dc.relation.references | Kundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute. | spa |
dc.relation.references | B. Gao, G.K. Morison and P. Kundur, “Voltage Stability Evaluation Using Modal Analysis,” IEEE Trans., vol. PWRS-7, No. 4, pp. 1529-1542, November 1992. | spa |
dc.relation.references | C. Concordia, D.R. Davidson, D.N. Ewart, L.K. Kirchmayer and R.P. Schultz, "Long Term Power System Dynamics - A New Planning Dimension", CIGRE Paper 32-13, 1976 | spa |
dc.relation.references | E.G. Cate, K. Hemmaplardh, J.W. Manke and D.P. Gelopulos, “Time frame Notion and time response of the methods in transient, Mid-Term- and Long-term stability programs,” IEEE Trans., vol. PAS-103, pp. 143-151, January 1984. | spa |
dc.relation.references | CIGRE Working Group 32-03, "Tentative classification and terminologies relating to stability problems of Power system ", Electra, No. 56, 1978. | spa |
dc.relation.references | EPRI Report EL-596, "Midterm Simulation of Electric Power Systems", Project RP745, June 1979. | spa |
dc.relation.references | K. Hemmaplardh, J.W. Manke, W.R. Pauly and J. W. Lamont, “Considerations for a Long-Term Dynamic Simulation Program,” IEEE Trans., vol. PWRS-1, pp. 129-135, February 1986. | spa |
dc.relation.references | Fernando, V. J. (2023). Generadores Síncronos Virtuales con Almacenamiento de Energía para Soporte de Frecuencia en Red. | spa |
dc.relation.references | Sanahuja, S. D. (2017). Sistemas de control con lógica difusa: Métodos de Mamdani y de takagi-sugeno-kang (tsk). Univesitat Jaume. | spa |
dc.relation.references | . Wadhwa, K. V. S. Bharath, K. Pandey and S. Sehrawat, "Controlling of frequency deviations in interconnected power systems using smart techniques," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853222. | spa |
dc.relation.references | N. Hatziargyriou et al., "Definition and Classification of Power System Stability – Revisited & Extended," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774. | spa |
dc.relation.references | P. Anderson and A. Fouad, Power System Control and Stability, 1st ed. Iowa State University Press, Ames, Iowa, U.S.A., 1977. | spa |
dc.relation.references | DIgSILENT PowerFactory 2016: Technical Reference Documentation Synchronous Machine, Version 2016, 1st ed., DIgSILENT GmbH, Heinrich- Hertz-Str. 9, 72810 Gomaringen, Germany, 2016. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.lemb | Distribución de energía eléctrica | |
dc.subject.lemb | Métodos de simulación | |
dc.subject.lemb | Energía renovable - Métodos de simulación | |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Inercia | spa |
dc.subject.proposal | NADIR | spa |
dc.subject.proposal | ROCOF | spa |
dc.subject.proposal | Stability | eng |
dc.subject.proposal | Inertia | eng |
dc.subject.proposal | Generador sincrónico | spa |
dc.subject.proposal | generador síncrono virtual | spa |
dc.subject.wikidata | Energía renovable | |
dc.subject.wikidata | Generador sincrónico | |
dc.title | Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia | spa |
dc.title.translated | Control implementation for virtual synchronous generators connected to photovoltaic solar generation sources in electrical power systems | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053820472.2024.pdf
- Tamaño:
- 2.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: