Quantumness of the photonic blockade effect

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.authorBermúdez Feijóo, Santiago
dc.date.accessioned2023-08-03T15:39:03Z
dc.date.available2023-08-03T15:39:03Z
dc.date.issued2023-06-14
dc.descriptionilustraciones, diagramas
dc.description.abstractThe present thesis aims to investigate the photon blockade effect, understood as a phenomenon in which the presence of a single photon inhibits further photons, effectively transforming a system into one that emits one photon at a time. This effect can be classified into two categories: The conventional photon blockade, which relies on the nonlinearities of a system, and the unconventional photon blockade, which employs quantum interference between two paths to cancel the probability to access a particular state. In order to investigate the underlying physical mechanisms of these two forms of blockades, this thesis employs numerical solutions of master equations, complemented by the application of analytical techniques for determining optimal conditions for each type of blockade. Specifically, the study finds that the driven dissipative Jaynes-Cummings model represents an ideal scheme in which both mechanisms are exhibited simultaneously. This enables the analysis of the photon blockade mechanism in a unique and experimentally feasible setup, such as a cavity-QED scheme composed of a semiconductor quantum dot grown inside a micropillar. Additionally, intrinsic differences between both blockade mechanisms are uncovered through the utilization of the theory of frequency-filtered correlations and the integration of dissipative mechanisms such as phonon-mediated coupling. Furthermore, new criteria for the theoretical classification based on the study of higher-order correlation functions are employed to analyze the numerical solutions of the model, determining if the systems can act as single photon sources. Moreover, the research applies the aforementioned tools to study a system that consists of an elliptical microcavity with an embedded quantum dot, subject to external excitation by a laser and a magnetic field. The optimal conditions for generating conventional photon blockade in this system were identified, constituting it to act as a single photon polarization switch. This thesis, therefore, provides a comprehensive examination of the photon blockade effect, which could be used in the future for developing high-quality single photon sources, helping for the implementation of quantum technologieseng
dc.description.abstractLa presente tesis tiene como objetivo investigar el efecto de bloqueo de fotones, entendido como un fenómeno en el cual la presencia de un solo fotón inhibe la emisión de más fotones, transformando efectivamente un sistema en uno que emite un fotón a la vez. Este efecto se puede clasificar en dos categorías: el bloqueo de fotones convencional, que se basa en las no linealidades de un sistema, y el bloqueo de fotones no convencional, que emplea la interferencia cuántica entre dos trayectorias para cancelar la probabilidad de acceder a un estado particular. Con el fin de investigar los mecanismos físicos subyacentes de estas dos formas de bloqueo, esta tesis utiliza soluciones numéricas de ecuaciones maestras, complementadas con la aplicación de técnicas analíticas para determinar las condiciones óptimas para cada tipo de bloqueo. Específicamente, el estudio encuentra que el modelo de Jaynes-Cummings bombeado y disipativo representa un esquema ideal en el que ambos mecanismos se exhiben simultáneamente. Esto permite el análisis del mecanismo de bloqueo de fotones en una configuración única y experimentalmente factible, como un esquema de cavidad-QED compuesto por un punto cuántico semiconductor crecido dentro de un micro-pilar. Se descubren a su vez diferencias intrínsecas entre ambos mecanismos de bloqueo a través de la utilización de la teoría de correlaciones filtradas por frecuencia y la integración de mecanismos disipativos como el acoplamiento mediado por fonones. Además, se emplean nuevos criterios para la clasificación teórica basada en el estudio de funciones de correlación de orden superior para analizar las soluciones numéricas del modelo, determinando si los sistemas pueden actuar como fuentes de un solo fotón. Complementario a ello, la investigación aplica las herramientas mencionadas para estudiar un sistema que consiste en una microcavidad elíptica con un punto cuántico incrustado, sujeto a excitación externa por un láser y un campo magnético. Se identificaron las condiciones óptimas para generar un bloqueo de fotones convencional en este sistema, lo que lo convierte en un interruptor de polarización de un solo fotón. Esta tesis, por lo tanto, proporciona un examen exhaustivo del efecto de bloqueo de fotones, que podría en el futuro servir para desarrollar fuentes de fotones individuales de alta calidad, que ayuden a la implementación de tecnologías cuánticasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84436
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesA. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch. Strongly Interacting Photons in a Nonlinear Cavity. Physical Review Letters, 79(8):1467–1470, August 1997.spa
dc.relation.referencesI.L. Aleiner, P.W. Brouwer, and L.I. Glazman. Quantum effects in Coulomb blockade. Physics Reports, 358(5-6):309–440, March 2002.spa
dc.relation.referencesK. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436(7047):87–90, July 2005.spa
dc.relation.referencesT. C. H. Liew and V. Savona. Single Photons from Coupled Quantum Modes. Physical Review Letters, 104(18):183601, May 2010.spa
dc.relation.referencesMarc-Antoine Lemonde, Nicolas Didier, and Aashish A. Clerk. Antibunching and unconventional photon blockade with Gaussian squeezed states. Physical Review A, 90(6):063824, December 2014.spa
dc.relation.referencesMarina Radulaski. A Double Take on Unconventional Photon Blockade. Physics, 11:74, July 2018.spa
dc.relation.referencesH.J. Snijders, J.A. Frey, J. Norman, H. Flayac, V. Savona, A.C. Gossard, J.E. Bowers, M.P. van Exter, D. Bouwmeester, and W. Löffler. Observation of the Unconventional Photon Blockade. Physical Review Letters, 121(4):043601, July 2018.spa
dc.relation.referencesCyril Vaneph, Alexis Morvan, Gianluca Aiello, Mathieu Féchant, Marco Aprili, Julien Gabelli, and Jérôme Estève. Observation of the Unconventional Photon Blockade in the Microwave Domain. Physical Review Letters, 121(4):043602, July 2018.spa
dc.relation.referencesE. Zubizarreta Casalengua, J. C. López Carreño, F. P. Laussy, and E. del Valle. Conventional and unconventional photon statistics. Laser & Photonics Reviews, 14(6):1900279, June 2020. arXiv: 1901.09030.spa
dc.relation.referencesRoy J. Glauber. The Quantum Theory of Optical Coherence. Physical Review, 130(6):2529–2539, June 1963.spa
dc.relation.referencesH. J. Kimble, M. Dagenais, and L. Mandel. Photon Antibunching in Resonance Fluorescence. Physical Review Letters, 39(11):691–695, September 1977.spa
dc.relation.referencesR. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley. Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity. Physical Review Letters, 55(22):2409–2412, November 1985.spa
dc.relation.referencesXiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-xi Liu, and Franco Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, November 2017.spa
dc.relation.referencesJohn M. Martinis, Sergio Boixo, Hartmut Neven, Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, and Adam Zalcman. Quantum supremacy using a programmable superconducting processor, 2019. Artwork Size: 13320049066 bytes Pages: 13320049066 bytes Version Number: 11 Type: dataset.spa
dc.relation.referencesA. Kavokin, J.J. Baumberg, G. Malpuech, and F.P. Laussy. Microcavities. Oxford science publications. OUP Oxford, 2011.spa
dc.relation.referencesLu Cai, Junyao Pan, Yong Zhao, Jin Wang, and Shiyuan Xiao. Whispering Gallery Mode Optical Microresonators: Structures and Sensing Applications. physica status solidi (a), 217(6):1900825, March 2020.spa
dc.relation.referencesYun-Qi Hu, Hong Yang, Tao Wang, Xuan Mao, Ran-Ran Xie, Jing-Yu Liang, Guo-Qing Qin, Min Wang, and Gui-Lu Long. A novel method to fabricate on-chip ultra-high-Q microtoroid resonators. Optics Communications, 476:126259, December 2020.spa
dc.relation.referencesM. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko. Ultimate Q of optical microsphere resonators. Optics Letters, 21(7):453, April 1996.spa
dc.relation.referencesLu Cai, Junyao Pan, and Sheng Hu. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Optics and Lasers in Engineering, 127:105968, April 2020.spa
dc.relation.referencesOliver Wright. Gallery of whispers. Physics World, 25(02):31–36, February 2012.spa
dc.relation.referencesMisha Sumetsky. Lasing microbottles. Light: Science & Applications, 6(10):e17102–e17102, October 2017.spa
dc.relation.referencesKerry J. Vahala. Optical microcavities. Nature, 424(6950):839–846, August 2003.spa
dc.relation.referencesN. Nawi, B. Y. Majlis, M. A. Mahdi, R. M. De La Rue, M. Lonˆcar, and A. R. Md Zain. Enhancement and reproducibility of high quality factor, one-dimensional photonic crystal/photonic wire (1D PhC/PhW) microcavities. Journal of the European Optical Society-Rapid Publications, 14(1):6, December 2018.spa
dc.relation.referencesM.A. Butt, S.N. Khonina, and N.L. Kazanskiy. Recent advances in photonic crystal optical devices: A review. Optics & Laser Technology, 142:107265, October 2021.spa
dc.relation.referencesC. P. Barrera-Patiño, J. D. Vollet-Filho, R. G. Teixeira-Rosa, H. P. Quiroz, A. Dussan, N. M. Inada, V. S. Bagnato, and R. R. Rey-González. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings. Scientific Reports, 10(1):5786, April 2020.spa
dc.relation.referencesC. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp. Quantum dot micropillar cavities with quality factors exceeding 250,000. Applied Physics B, 122(1):19, January 2016.spa
dc.relation.referencesD. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui. High Q modes in elliptical microcavity pillars. Applied Physics Letters, 90(16):161105, April 2007.spa
dc.relation.referencesKoichi Yamaguchi Koichi Yamaguchi, Kunihiko Yujobo Kunihiko Yujobo, and Toshiyuki Kaizu Toshiyuki Kaizu. Stranski-Krastanov Growth of InAs Quantum Dots with Narrow Size Distribution. Japanese Journal of Applied Physics, 39(12A):L1245, December 2000.spa
dc.relation.referencesCharles Santori, David Fattal, Jelena Vuckovic, Glenn S Solomon, and Yoshihisa Yamamoto. Singlephoton generation with InAs quantum dots. New Journal of Physics, 6:89–89, July 2004.spa
dc.relation.referencesBingyang Zhang, Glenn S. Solomon, Matthew Pelton, Jocelyn Plant, Charles Santori, Jelena Vuˇckovi´c, and Yoshihisa Yamamoto. Fabrication of InAs quantum dots in AlAsGaAs DBR pillar microcavities for single photon sources. Journal of Applied Physics, 97(7):073507, April 2005.spa
dc.relation.referencesPascale Senellart, Glenn Solomon, and Andrew White. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotechnology, 12(11):1026–1039, November 2017.spa
dc.relation.referencesStephan Figge, Christian Tessarek, Timo Aschenbrenner, and Detlef Hommel. InGaN quantum dot growth in the limits of Stranski-Krastanov and spinodal decomposition: InGaN quantum dots. physica status solidi (b), 248(8):1765–1776, August 2011.spa
dc.relation.referencesF. Pelayo García de Arquer, Dmitri V. Talapin, Victor I. Klimov, Yasuhiko Arakawa, Manfred Bayer, and Edward H. Sargent. Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555):eaaz8541, August 2021.spa
dc.relation.referencesM. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov. Invited Review Article: Single-photon sources and detectors. Review of Scientific Instruments, 82(7):071101, July 2011.spa
dc.relation.referencesC. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59(18):2044–2046, November 1987.spa
dc.relation.referencesC. Gerry and P. Knight. Introductory Quantum Optics. Cambridge University Press, 2004.spa
dc.relation.referencesGuang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, and Wei Huang. Single photon sources with single semiconductor quantum dots. Frontiers of Physics, 9(2):170–193, April 2014.spa
dc.relation.referencesYasuhiko Arakawa and Mark J. Holmes. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Applied Physics Reviews, 7(2):021309, June 2020.spa
dc.relation.referencesShunfa Liu, Yuming Wei, Rongling Su, Rongbin Su, Ben Ma, Zesheng Chen, Haiqiao Ni, Zhichuan Niu, Ying Yu, Yujia Wei, Xuehua Wang, and Siyuan Yu. A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging method. Scientific Reports, 7(1):13986, October 2017.spa
dc.relation.referencesXing Ding, Yu He, Z.-C. Duan, Niels Gregersen, M.-C. Chen, S. Unsleber, S. Maier, Christian Schneider, Martin Kamp, Sven Höfling, Chao-Yang Lu, and Jian-Wei Pan. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Physical Review Letters, 116(2):020401, January 2016.spa
dc.relation.referencesSantiago Bermúdez Feijóo and Herbert Vinck Posada. Statistical and entanglement properties of Two interacting cavities. Bachelor Thesis, Universidad Nacional de Colombia, Bogotá Colombia, July 2019.spa
dc.relation.referencesAnatole Kenfack and Karol yczkowski. Negativity of the Wigner function as an indicator of nonclassicality. Journal of Optics B: Quantum and Semiclassical Optics, 6(10):396–404, October 2004.spa
dc.relation.referencesJ. A. Jones and M. Mosca. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. The Journal of Chemical Physics, 109(5):1648–1653, August 1998.spa
dc.relation.referencesA. M. Zagoskin, S. Ashhab, J. R. Johansson, and Franco Nori. Quantum Two-Level Systems in Josephson Junctions as Naturally Formed Qubits. Physical Review Letters, 97(7):077001, August 2006.spa
dc.relation.referencesHe-Liang Huang, Dachao Wu, Daojin Fan, and Xiaobo Zhu. Superconducting quantum computing: a review. Science China Information Sciences, 63(8):180501, August 2020.spa
dc.relation.referencesDaniele Cozzolino, Beatrice Da Lio, Davide Bacco, and Leif Katsuo Oxenløwe. High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges. Advanced Quantum Technologies, 2(12):1900038, December 2019.spa
dc.relation.referencesThomas Durt, Christian Kurtsiefer, Antia Lamas-Linares, and Alexander Ling. Wigner tomography of two-qubit states and quantum cryptography. Physical Review A, 78(4):042338, October 2008.spa
dc.relation.referencesN. Zettili. Quantum Mechanics: Concepts and Applications. Wiley, 2009.spa
dc.relation.referencesM.O. Scully and M.S. Zubairy. Quantum Optics. Quantum Optics. Cambridge University Press, 1997.spa
dc.relation.referencesE.T. Jaynes and F.W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–109, 1963.spa
dc.relation.referencesD. Braak. Integrability of the Rabi Model. Physical Review Letters, 107(10):100401, August 2011.spa
dc.relation.referencesSurendra Singh. Antibunching, sub-poissonian photon statistics and finite bandwidth effects in resonance fluorescence. Optics Communications, 44(4):254–258, January 1983.spa
dc.relation.referencesX. T. Zou and L. Mandel. Photon-antibunching and sub-Poissonian photon statistics. Physical Review A, 41(1):475–476, January 1990.spa
dc.relation.referencesR. Hanbury Brown and R.Q. Twiss. LXXIV. A new type of interferometer for use in radio astronomy. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(366):663–682, July 1954.spa
dc.relation.referencesR. Hanbury Brown and R. Q. Twiss. Correlation between Photons in two Coherent Beams of Light. Nature, 177(4497):27–29, January 1956.spa
dc.relation.referencesJ. H. Eberly and K. Wódkiewicz. The time-dependent physical spectrum of light*. Journal of the Optical Society of America, 67(9):1252, September 1977.spa
dc.relation.referencesE. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann. Theory of Frequency- Filtered and Time-Resolved N -Photon Correlations. Physical Review Letters, 109(18):183601, October 2012.spa
dc.relation.referencesAlejandro Gonzalez-Tudela, Fabrice P Laussy, Carlos Tejedor, Michael J Hartmann, and Elena del Valle. Two-photon spectra of quantum emitters. New Journal of Physics, 15(3):033036, March 2013.spa
dc.relation.referencesJuan Camilo Lopez Carreño. Exciting with quantum light. Phd Thesis, Universidad Autonoma de Madrid, Madrid, November 2019.spa
dc.relation.referencesJuan Camilo López Carreño, Elena del Valle, and Fabrice P. Laussy. Photon Correlations from the Mollow Triplet: Photon Correlations from the Mollow Triplet. Laser & Photonics Reviews, 11(5):1700090, September 2017.spa
dc.relation.referencesC. Sánchez Muñoz, E. del Valle, C. Tejedor, and F. P. Laussy. Violation of classical inequalities by photon frequency filtering. Physical Review A, 90(5):052111, November 2014.spa
dc.relation.referencesM. Peiris, B. Petrak, K. Konthasinghe, Y. Yu, Z. C. Niu, and A. Muller. Two-color photon correlations of the light scattered by a quantum dot. Physical Review B, 91(19):195125, May 2015.spa
dc.relation.referencesJuan Camilo López Carreño, Eduardo Zubizarreta Casalengua, Elena del Valle, and Fabrice P. Laussy. Criterion for Single Photon Sources. 2016. Publisher: arXiv Version Number: 1.spa
dc.relation.referencesM. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn. Accessing Higher Order Correlations in Quantum Optical States by Time Multiplexing. Physical Review Letters, 104(6):063602, February 2010.spa
dc.relation.referencesM. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson. Photon-number resolution using timemultiplexed single-photon detectors. Physical Review A, 68(4):043814, October 2003.spa
dc.relation.referencesS Ferretti, V Savona, and D Gerace. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New Journal of Physics, 15(2):025012, February 2013.spa
dc.relation.referencesXun-Wei Xu and Yuan-Jie Li. Antibunching photons in a cavity coupled to an optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 46(3):035502, February 2013.spa
dc.relation.referencesBijita Sarma and Amarendra K. Sarma. Unconventional photon blockade in three-mode optomechanics. Physical Review A, 98(1):013826, July 2018.spa
dc.relation.referencesY. H. Zhou, H. Z. Shen, and X. X. Yi. Unconventional photon blockade with second-order nonlinearity. Physical Review A, 92(2):023838, August 2015.spa
dc.relation.referencesXun-Wei Xu and Yong Li. Tunable photon statistics in weakly nonlinear photonic molecules. Physical Review A, 90(4):043822, October 2014.spa
dc.relation.referencesH. Flayac and V. Savona. Unconventional photon blockade. Physical Review A, 96(5):053810, November 2017.spa
dc.relation.referencesEduardo Zubizarreta Casalengua, Juan Camilo López Carreño, Fabrice P. Laussy, and Elena del Valle. Tuning photon statistics with coherent fields. Physical Review A, 101(6):063824, June 2020.spa
dc.relation.referencesXinyun Liang, Zhenglu Duan, Qin Guo, Cunjin Liu, Shengguo Guan, and Yi Ren. Antibunching effect of photons in a two-level emitter-cavity system. Physical Review A, 100(6):063834, December 2019.spa
dc.relation.referencesJ. P. Reithmaier, G. S˛ek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432(7014):197–200, November 2004.spa
dc.relation.referencesT. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014):200–203, November 2004.spa
dc.relation.referencesE. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch. Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity. Physical Review Letters, 95(6):067401, August 2005.spa
dc.relation.referencesSatoshi Kako, Charles Santori, Katsuyuki Hoshino, Stephan Götzinger, Yoshihisa Yamamoto, and Yasuhiko Arakawa. A gallium nitride single-photon source operating at 200 K. Nature Materials, 5(11):887– 892, November 2006.spa
dc.relation.referencesMichael Förtsch, Josef U. Fürst, Christoffer Wittmann, Dmitry Strekalov, Andrea Aiello, Maria V. Chekhova, Christine Silberhorn, Gerd Leuchs, and Christoph Marquardt. A versatile source of single photons for quantum information processing. Nature Communications, 4(1):1818, October 2013.spa
dc.relation.referencesJ. A. Timpson, D. Sanvitto, A. Daraei, P. S. S. Guimaraes, H. Vinck, S. Lam, D. M. Whittaker, M. S. Skolnick, A. M. Fox, C. Y. Hu, Y.-L. D. Ho, R. Gibson, J. G. Rarity, S. Pellegrini, K. J. Gordon, R. E. Warburton, A. Tahraoui, G. S. Buller, P. W. Fry, and M. Hopkinson. Single photon sources based upon single quantum dots in semiconductor microcavity pillars. Journal of Modern Optics, 54(2-3):453–465, January 2007.spa
dc.relation.referencesGuido Burkard, Michael J. Gullans, Xiao Mi, and Jason R. Petta. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nature Reviews Physics, 2(3):129–140, January 2020.spa
dc.relation.referencesAlexandre Blais, Arne L. Grimsmo, S.M. Girvin, and Andreas Wallraff. Circuit quantum electrodynamics. Reviews of Modern Physics, 93(2):025005, May 2021.spa
dc.relation.referencesAlexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 69(6):062320, June 2004.spa
dc.relation.referencesA. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167, September 2004.spa
dc.relation.referencesUlrich Hohenester. Cavity quantum electrodynamics with semiconductor quantum dots: Role of phononassisted cavity feeding. Physical Review B, 81(15):155303, April 2010.spa
dc.relation.referencesArka Majumdar, Erik D. Kim, Yiyang Gong, Michal Bajcsy, and Jelena Vuckovic. Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot. Physical Review B, 84(8):085309, August 2011.spa
dc.relation.referencesSantiago Echeverri-Arteaga, Herbert Vinck-Posada, and Edgar A. Gómez. Explanation of the quantum phenomenon of off-resonant cavity-mode emission. Physical Review A, 97(4):043815, April 2018.spa
dc.relation.referencesSantiago Echeverri-Arteaga, Herbert Vinck-Posada, and Edgar A. Gómez. The strange attraction phenomenon in cQED: The intermediate quantum coupling regime. Optik, 183:389–394, April 2019.spa
dc.relation.referencesAlexandre Le Boité. Theoretical Methods for Ultrastrong Light–Matter Interactions. Advanced Quantum Technologies, 3(7):1900140, July 2020.spa
dc.relation.referencesP. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 91(2):025005, June 2019.spa
dc.relation.referencesT. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross. Circuit quantum electrodynamics in the ultrastrongcoupling regime. Nature Physics, 6(10):772–776, October 2010.spa
dc.relation.referencesA. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann. Photon Blockade in the Ultrastrong Coupling Regime. Physical Review Letters, 109(19):193602, November 2012.spa
dc.relation.referencesAlexandre Le Boité, Myung-Joong Hwang, Hyunchul Nha, and Martin B. Plenio. Fate of photon blockade in the deep strong-coupling regime. Physical Review A, 94(3):033827, September 2016.spa
dc.relation.referencesC. A. Jiménez-Orjuela, H. Vinck-Posada, and José M. Villas-Bôas. Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96(12):125303, September 2017.spa
dc.relation.referencesC.A. Jiménez-Orjuela, H. Vinck-Posada, and José M. Villas-Bôas. Polarization switch in an elliptical micropillar – quantum dot system induced by a magnetic field in Faraday configuration. Physics Letters A, 382(44):3216–3219, November 2018.spa
dc.relation.referencesHeinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University PressOxford, 1 edition, January 2007.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Físicaspa
dc.subject.lembFOTONESspa
dc.subject.lembPhotonseng
dc.subject.lembCORRELACION DE FOTONESspa
dc.subject.lembPhoton correlationeng
dc.subject.proposalConventional photon blockadeeng
dc.subject.proposalBloqueo de fotones convencionalspa
dc.subject.proposalUnconventional photon blockadeeng
dc.subject.proposalBloqueo de fotones no convencionalspa
dc.subject.proposalJaynes Cummings modeleng
dc.subject.proposalmodelo de Jaynes Cummingsspa
dc.subject.proposalSingle photon sourceseng
dc.subject.proposalFuentes de fotones individualesspa
dc.subject.proposalSingle photon polarization switcheng
dc.subject.proposalInterruptor de polarización de fotones individualesspa
dc.subject.unescoTeoría cuánticaspa
dc.subject.unescoQuantum theoryeng
dc.titleQuantumness of the photonic blockade effecteng
dc.title.translatedQuantumness of the photonic blockade effecteng
dc.title.translatedCarácter cuántico del bloqueo fotónicospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032479669.2023.pdf
Tamaño:
16.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: