Rediseño de la red de monitoreo meteorológico para el Departamento de Caldas

dc.contributor.advisorVélez Upegui, Jorge Julián
dc.contributor.advisorObregón Neira, Nelson
dc.contributor.authorBlanco Manzano, Yirley Astrid
dc.date.accessioned2025-07-21T13:36:37Z
dc.date.available2025-07-21T13:36:37Z
dc.date.issued2025
dc.descriptiongraficas, mapas, tablasspa
dc.description.abstractEl presente estudio propone una optimización de la red de monitoreo meteorológico del departamento de Caldas mediante la aplicación del Análisis de Componentes Principales (PCA) y el análisis de Entropía (ENT), combinados con criterios heurísticos. La red actual cuenta con 120 estaciones con registros pluviométricos entre los años 2000 y 2024; sin embargo, tras una evaluación de la calidad de los datos, se seleccionaron 65 estaciones con información adecuada, reduciendo el periodo de análisis al intervalo 2017–2024. El estudio se desarrolló en tres escalas temporales: 5 minutos (considerando cuatro eventos extremos), diaria y mensual. El análisis PCA, combinado con la técnica de agrupamiento K-means, permitió identificar patrones espaciales homogéneos en cada escala, destacando especialmente la influencia del ecosistema de páramo en las precipitaciones de corta duración en el centro del departamento, así como el aumento de la variabilidad en la zona occidental a medida que se incrementa la escala temporal. En el caso del análisis de Entropía, se estableció un procedimiento basado en el criterio de maximizar la información y minimizar la redundancia, mediante el cálculo de la Entropía Marginal, Conjunta, Condicional y la Transinformación. Los resultados obtenidos, tanto del PCA como del análisis de Entropía, indican que a mayor escala temporal se requiere un mayor número de estaciones, debido al incremento en la incertidumbre de la correlación espacial. Esta propuesta busca contribuir al rediseño eficiente de la red de monitoreo, optimizando recursos y mejorando la representatividad de los datos meteorológicos en la región (Texto tomado de la fuente).spa
dc.description.abstractThis study proposes the optimization of the meteorological monitoring network in the department of Caldas through the application of Principal Component Analysis (PCA) and Entropy (ENT) analysis, combined with heuristic criteria. The current network includes 120 stations with pluviometric records from 2000 to 2024; however, following a data quality assessment, 65 stations with adequate information were selected, reducing the analysis period to 2017–2024. The analysis was carried out at three temporal scales: 5-minute (based on four extreme events), daily, and monthly. PCA, combined with the K-means clustering technique, enabled the identification of spatially homogeneous patterns at each scale, particularly highlighting the influence of the paramo ecosystem on short-duration precipitation in the central region of the department, as well as increased variability in the western region as the temporal scale increases. For the Entropy analysis, a procedure was established based on the criterion of maximizing information and minimizing redundancy, through the calculation of marginal, joint, conditional entropy, and mutual information (transinformation). The results from both PCA and the Entropy analysis, indicate that a larger number of stations is required at a larger time scale, due to the increase in the uncertainty of the spatial correlation. This proposal aims to contribute to the efficient redesign of the monitoring network, optimizing resources and improving the representativeness of meteorological data in the region.eng
dc.description.curricularareaIngeniería Civil.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.format.extentxiv, 124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88363
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAlfonso, L., He, L., Lobbrecht, A., & Price, R. (2013). Information theory applied to evaluate the discharge monitoring network of the Magdalena River. Journal of Hydroinformatics, 15(1), 211–228. https://doi.org/10.2166/HYDRO.2012.066spa
dc.relation.referencesAlfonso, L., Lobbrecht, A., & Price, R. (2010). Optimization of water level monitoring network in polder systems using information theory. Water Resources Research, 46(12), 12553. https://doi.org/10.1029/2009WR008953spa
dc.relation.referencesAlizadeh, Z., Yazdi, J., & Moridi, A. (2018). Development of an Entropy Method for Groundwater Quality Monitoring Network Design. Environmental Processes 2018 5:4, 5(4), 769–788. https://doi.org/10.1007/S40710-018-0335-2spa
dc.relation.referencesAmorim, A. M. T., Gonçalves, A. B., Nunes, L. M., & Sousa, A. J. (2012). Optimizing the location of weather monitoring stations using estimation uncertainty. International Journal of Climatology, 32(6), 941–952. https://doi.org/10.1002/JOC.2317spa
dc.relation.referencesAmorocho, J., & Espildora, B. (1973). Entropy in the assessment of uncertainty in hydrologic systems and models. Water Resources Research, 9(6), 1511–1522. https://doi.org/10.1029/WR009I006P01511spa
dc.relation.referencesBárdossy, A., & Bogárdi, I. (1983). Network design for the spatial estimation of environmental variables. Applied Mathematics and Computation, 12(4), 339–365. https://doi.org/10.1016/0096-3003(83)90046-2spa
dc.relation.referencesBedoya, J., & Poveda, G. (2008, March). (PDF) Sobre una posible influencia de la precipitación en el Valle de San Nicolás en los eventos de precipitación sobre el Valle de Aburrá. https://www.researchgate.net/publication/249010963_Sobre_una_posible_influencia_de_la_precipitacion_en_el_Valle_de_San_Nicolas_en_los_eventos_de_precipitacion_sobre_el_Valle_de_Aburraspa
dc.relation.referencesBertini, C., Ridolfi, E., De Padua, L. H. R., Russo, F., Napolitano, F., & Alfonso, L. (2021). An entropy-based approach for the optimization of rain gauge network using satellite and ground-based data. Hydrology Research, 52(3), 620–635. https://doi.org/10.2166/NH.2021.113spa
dc.relation.referencesCarreón-Sierra, S., Salcido, A., Castro, T., & Celada-Murillo, A.-T. (2015). Cluster Analysis of the Wind Events and Seasonal Wind Circulation Patterns in the Mexico City Region. Atmosphere, 6(8), 1006–1031. https://doi.org/10.3390/atmos6081006spa
dc.relation.referencesChen, Y. C., Wei, C., & Yeh, H. C. (2008). Rainfall network design using kriging and entropy. Hydrological Processes, 22(3), 340–346. https://doi.org/10.1002/HYP.6292spa
dc.relation.referencesCheng, K. S., Lin, Y. C., & Liou, J. J. (2008). Rain-gauge network evaluation and augmentation using geostatistics. Hydrological Processes, 22(14), 2554–2564. https://doi.org/10.1002/hyp.6851spa
dc.relation.referencesCifuentes Carvajal, A. (2016). Evaluación de diferentes métodos de interpolación para la variable precipitación en el departamento de Caldas – Colombia. https://ridum.umanizales.edu.co/handle/20.500.12746/2652spa
dc.relation.referencesCollado, J., & Toledo, V. (1997). Localización óptima de estaciones climatológicas y observatorios meteorológicos en la República Mexicana. Tecnología y Ciencias Del Agua.spa
dc.relation.referencesContreras, J., Ballari, D., & Samaniego, E. (2017). Optimización de una red de monitoreo de precipitación usando modelos Geoestadísticos: caso de estudio en la cuenca del río Paute, Ecuador. https://repositorioslatinoamericanos.uchile.cl/handle/2250/8165914?show=fullspa
dc.relation.referencesCormack, R. M. (1971). A Review of Classification. Journal of the Royal Statistical Society: Series A (General), 134(3), 321–353. https://doi.org/10.2307/2344237spa
dc.relation.referencesCORPOCALDAS. (2020). Plan de Gestión Ambiental Regional 2020-2031. https://corpocaldas2022.blob.core.windows.net/webadmin/file_Diagnostic_CfrAbQYF.pdfspa
dc.relation.referencesCortés, A. C. (2010). Análisis De La Variabilidad Espacial Y Temporal De La Precipitación En Una Ciudad De Media Montaña Andina Caso De Estudio: Manizales. 20–22. http://www.bdigital.unal.edu.co/3584/1/anacristinacortescortes.2010.pdfspa
dc.relation.referencesCressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data (Wiley Series in Probability and Statistics). 624. http://www.amazon.com/Statistics-Spatio-Temporal-Wiley-Series-Probability/dp/0471692743spa
dc.relation.referencesDai, A. (2001). Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations.spa
dc.relation.referencesDai, Q., Bray, M., Zhuo, L., Islam, T., & Han, D. (2017). A Scheme for Rain Gauge Network Design Based on Remotely Sensed Rainfall Measurements. Journal of Hydrometeorology, 18(2), 363–379. https://doi.org/10.1175/JHM-D-16-0136.1spa
dc.relation.referencesde Oliveira Simoyama, F., Croope, S., de Salles Neto, L. L., & Santos, L. B. L. (2023). Optimization of rain gauge networks—A systematic literature review. Socio-Economic Planning Sciences, 86, 101469. https://doi.org/10.1016/J.SEPS.2022.101469spa
dc.relation.referencesde Souza, A., Abreu, M. C., de Oliveira-Júnior, J. F., Aristone, F., Fernandes, W. A., Aviv-Sharon, E., & Graf, R. (2022). Climate Regionalization in Mato Grosso do Sul: a Combination of Hierarchical and Non-hierarchical Clustering Analyses Based on Precipitation and Temperature. Brazilian Archives of Biology and Technology, 65, e22210331. https://doi.org/10.1590/1678-4324-2022210331spa
dc.relation.referencesFahle, M., Hohenbrink, T. L., Dietrich, O., & Lischeid, G. (2015). Temporal variability of the optimal monitoring setup assessed using information theory. Water Resources Research, 51(9), 7723–7743. https://doi.org/10.1002/2015WR017137spa
dc.relation.referencesGangopadhyay, S., Das Gupta, A., & Nachabe, M. H. (2001). Evaluation of ground water monitoring network by principal component analysis. Ground Water, 39(2), 181–191. https://doi.org/10.1111/j.1745-6584.2001.tb02299.xspa
dc.relation.referencesGhosh, M., Singh, J., Sekharan, S., Ghosh, S., Zope, P. E., & Karmakar, S. (2021). Rationalization of automatic weather stations network over a coastal urban catchment: A multivariate approach. Atmospheric Research, 254, 105511. https://doi.org/10.1016/J.ATMOSRES.2021.105511spa
dc.relation.referencesGonzález-Zamora, Á., Sánchez, N., Martínez-Fernández, J., Gumuzzio, Á., Piles, M., & Olmedo, E. (2015). Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain). Physics and Chemistry of the Earth, 83–84, 123–136. https://doi.org/10.1016/j.pce.2015.05.009spa
dc.relation.referencesGoovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113–129. https://doi.org/10.1016/S0022-1694(00)00144-Xspa
dc.relation.referencesHao, Z., & Singh, V. P. (2011). Single-site monthly streamflow simulation using entropy theory. Water Resources Research, 47(9), 9528. https://doi.org/10.1029/2010WR010208spa
dc.relation.referencesHelena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000a). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0spa
dc.relation.referencesHelena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000b). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0spa
dc.relation.referencesHuang, Y., Zhao, H., Jiang, Y., & Lu, X. (2020). A Method for the Optimized Design of a Rain Gauge Network Combined with Satellite Remote Sensing Data. Remote Sensing 2020, Vol. 12, Page 194, 12(1), 194. https://doi.org/10.3390/RS12010194spa
dc.relation.referencesHughes, J. P., & Lettenmaier, D. P. (1981). Data requirements for kriging: Estimation and network design. Water Resources Research, 17(6), 1641–1650. https://doi.org/10.1029/WR017i006p01641spa
dc.relation.referencesIDEAM. (2013). Zonificación y Codificación de Cuencas Hidrográficas e Hidrogeológicas de Colombia. 42–47. www.imprenta.gov.cospa
dc.relation.referencesIDEAM. (2022a). Estudio Nacional del Agua 2022 | Instituto de Hidrología, Meteorología y Estudios Ambientales. https://www.ideam.gov.co/sala-de-prensa/informes/publicacion-jue-23032023-1200spa
dc.relation.referencesIDEAM. (2022b). GUÍA DISEÑO DE LA RED HIDROMETEOROLÓGICA NACIONAL.spa
dc.relation.referencesIGAC. (2021). Clasificación de las tierras por su capacidad de uso Código: IN-GAG-PC05-02.spa
dc.relation.referencesInsel, M. A., Ozturk, B., Yucel, O., & Sadikoglu, H. (2025). Generalizable wind power estimation from historic meteorological data by advanced artificial neural networks. Renewable Energy, 246, 122995. https://doi.org/10.1016/J.RENENE.2025.122995spa
dc.relation.referencesInstituto de Estudios Ambientales, I. (2017). Boletin Ambiental No 137: Sistema de Información Ambiental departamento de Caldas.spa
dc.relation.referencesJiang, J., Tang, S., Han, D., Fu, G., Solomatine, D., & Zheng, Y. (2020). A comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792. https://doi.org/10.1016/J.ENVSOFT.2020.104792spa
dc.relation.referencesJollife, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/RSTA.2015.0202spa
dc.relation.referencesJolliffe I.T. (2002). Principal Component Analysis (Second Edition). Springer-Verlag. https://doi.org/10.1007/B98835spa
dc.relation.referencesKansakar, S. R., Hannah, D. M., Gerrard, J., & Rees, G. (2004). Spatial pattern in the precipitation regime of Nepal. International Journal of Climatology, 24(13), 1645–1659. https://doi.org/10.1002/JOC.1098spa
dc.relation.referencesKassim, A. H. M., & Kottegoda, N. T. (1991). Rainfall network design through comparative kriging methods. Hydrological Sciences Journal, 36(3), 223–240. https://doi.org/10.1080/02626669109492505spa
dc.relation.referencesKawachi, T., Maruyama, T., & Singh, V. P. (2001). Rainfall entropy for delineation of water resources zones in Japan. Journal of Hydrology, 246(1–4), 36–44. https://doi.org/10.1016/S0022-1694(01)00355-9spa
dc.relation.referencesKeum, J., Kornelsen, K. C., Leach, J. M., & Coulibaly, P. (2017a). Entropy Applications to Water Monitoring Network Design: A Review. Entropy 2017, Vol. 19, Page 613, 19(11), 613. https://doi.org/10.3390/E19110613spa
dc.relation.referencesKeum, J., Kornelsen, K., Leach, J., & Coulibaly, P. (2017b). Entropy Applications to Water Monitoring Network Design: A Review. Entropy, 19(11), 613. https://doi.org/10.3390/e19110613spa
dc.relation.referencesKrstanovic, P. F., & Singh, V. P. (1992a). Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resources Management, 6(4), 279–293. https://doi.org/10.1007/BF00872281/METRICSspa
dc.relation.referencesKrstanovic, P. F., & Singh, V. P. (1992b). Evaluation of rainfall networks using entropy: II. Application. Water Resources Management, 6(4), 295–314. https://doi.org/10.1007/BF00872282/METRICSspa
dc.relation.referencesKwon, T., Lim, J., Yoon, S., & Yoon, S. (2020). Comparison of entropy methods for an optimal rain gauge network: A case study of Daegu and Gyeongbuk area in South Korea. Applied Sciences (Switzerland), 10(16), 5620. https://doi.org/10.3390/APP10165620spa
dc.relation.referencesLathi, B. P. (1968). An Introduction to Random Signals and Communication Theory - Bhagwandas Pannalal Lathi - Google Libros. International Textbook Company. https://books.google.com.co/books/about/An_Introduction_to_Random_Signals_and_Co.html?id=6hwoAQAAMAAJ&redir_esc=yspa
dc.relation.referencesLeach, J. M., Coulibaly, P., & Guo, Y. (2016). Entropy based groundwater monitoring network design considering spatial distribution of annual recharge. Advances in Water Resources, 96, 108–119. https://doi.org/10.1016/J.ADVWATRES.2016.07.006spa
dc.relation.referencesLi, C., Singh, V. P., & Mishra, A. K. (2012). Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy. Water Resources Research, 48(5), 5521. https://doi.org/10.1029/2011WR011251spa
dc.relation.referencesLópez Jiménez, V. L. (2014). Propuesta Metodológica para el Rediseño de una Red Meteorológica en un Sector de la Región Andina Colombiana. Publicaciones e Investigación, 8(1), 55. https://doi.org/10.22490/25394088.1281spa
dc.relation.referencesLópez, V. (2014). Propuesta Metodológica para el rediseño de una red Meteorológica en un Sector de la Región Andina Colombiana. Revista Especializada En Ingeniería, 8(1), 22. https://doi.org/10.22490/25394088.1281spa
dc.relation.referencesLyra, G. B., Oliveira-Júnior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34(13), 3546–3558. https://doi.org/10.1002/JOC.3926spa
dc.relation.referencesMaldonado, T., Alfaro, E. J., & Hidalgo, H. G. (2021). Análisis de los conglomerados de precipitación y sus cambios estacionales sobre América Central para el período 1976-2015. Revista de Matemática: Teoría y Aplicaciones, 28(2), 337–362. https://doi.org/10.15517/RMTA.V28I2.42322spa
dc.relation.referencesMaría, B., Chicaiza, Y. B., Alex, J., & Veloz, V. (2018). Diseño óptimo de la red pluviométrica utilizando Cokriging y Entropía en la cuenca alta del río Guayllabamba, Distrito Metropolitano de Quito. http://bibdigital.epn.edu.ec/handle/15000/19830spa
dc.relation.referencesMavukkandy, M. O., Karmakar, S., & Harikumar, P. S. (2014). Assessment and rationalization of water quality monitoring network: A multivariate statistical approach to the Kabbini River (India). Environmental Science and Pollution Research, 21(17), 10045–10066. https://doi.org/10.1007/S11356-014-3000-Y/FIGURES/9spa
dc.relation.referencesMejía Fernández, F., Pablo, J., Linares, L., & Pachón Gómez, J. A. (2006). Taller internacional sobre gestión del riesgo a nivel local el caso de Manizales, Colombia (Colombia).spa
dc.relation.referencesMéndez Martínez, C., Alonso, M., & Sepúlveda, R. (2012). Introducción al análisis factorial exploratorio. Revista Colombiana de Psiquiatría, 41(1), 197–207. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74502012000100014&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesMiñarro, M. D., Larrosa, J. A. E., & Cobacho, G. N. (2020). Mejora del dimensionamiento de una red de Calidad del aire mediante el empleo de métodos estadísticos multivariantes. DYNA (Bilbao), 149–153. https://recyt.fecyt.es/index.php/DY/article/view/78156spa
dc.relation.referencesMishra, A. K., & Coulibaly, P. (2009). Developments in hydrometric network design: A review. In Reviews of Geophysics (Vol. 47, Issue 2, p. RG2001). https://doi.org/10.1029/2007RG000243spa
dc.relation.referencesMishra, A. K., & Coulibaly, P. (2010). Hydrometric network evaluation for Canadian watersheds. Journal of Hydrology, 380(3–4), 420–437. https://doi.org/10.1016/j.jhydrol.2009.11.015spa
dc.relation.referencesMishra, A. K., Özger, M., & Singh, V. P. (2009). An entropy-based investigation into the variability of precipitation. Journal of Hydrology, 370(1–4), 139–154. https://doi.org/10.1016/J.JHYDROL.2009.03.006spa
dc.relation.referencesMogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management, 16(1), 37–49. https://doi.org/10.1023/A:1015511811686/METRICSspa
dc.relation.referencesMuller, C. L., Chapman, L., Grimmond, C. S. B., Young, D. T., & Cai, X. (2013). Sensors and the city: A review of urban meteorological networks. In International Journal of Climatology (Vol. 33, Issue 7, pp. 1585–1600). https://doi.org/10.1002/joc.3678spa
dc.relation.referencesNagaraj, M., & Srivastav, R. (2023). Non-linear granger causality approach for non-stationary modelling of extreme precipitation. Stochastic Environmental Research and Risk Assessment, 37(10), 3747–3761. https://doi.org/10.1007/S00477-023-02475-4spa
dc.relation.referencesNunes, L. M., Cunha, M. C., & Ribeiro, L. (2004). Groundwater monitoring network optimization with redundancy reduction. Journal of Water Resources Planning and Management - ASCE, 130(1), 33–43. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(33)spa
dc.relation.referencesOcampo López, O. L., Vélez Upegui, J. J., Marín Salazar, J. P., & Forero Hernández, A. T. (2020). Análisis de tendencias climáticas con RClimdex en el departamento de Caldas, Colombia. Scientia et Technica, 25(4), 595–603. https://doi.org/10.22517/23447214.22771spa
dc.relation.referencesOMM. (1994). Guía de Prácticas Hidrológicas OMM No 168. https://www.yumpu.com/es/document/read/15498920/guia-de-practicas-hidrologicas-omm-n-168spa
dc.relation.referencesOMM. (2010). Manual on the Global Observing System, Volume II – Regional aspects (WMO-No. 544). https://library.wmo.int/viewer/30249/?offset=#page=1&viewer=picture&o=bookmark&n=0&q=spa
dc.relation.referencesOMM. (2023). Guía de instrumentos y métodos de observación (OMM-N° 8). https://library.wmo.int/viewer/68677/?offset=1#page=1&viewer=picture&o=bookmark&n=0&q=spa
dc.relation.referencesOuyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39(12), 2621–2635. https://doi.org/10.1016/J.WATRES.2005.04.024spa
dc.relation.referencesPabón, J., Saavedra, H., Cárdenas, V., Niño, R., Parra, L., Garzón, M., & Reyes, F. (2002). Propuesta para el rediseño de la red de observaciones meteorológicas en colombia. 123–129. http://ciencias.bogota.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero05/05_14.pdfspa
dc.relation.referencesPardo-Igúzquiza, E. (1998). Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology, 210(1–4), 206–220. https://doi.org/10.1016/S0022-1694(98)00188-7spa
dc.relation.referencesPena-Angulo, D., Cortesi, N., Brunetti, M., & González-Hidalgo, J. C. (2015). Spatial variability of maximum and minimum monthly temperature in Spain during 1981–2010 evaluated by correlation decay distance (CDD). Theoretical and Applied Climatology, 122(1–2), 35–45. https://doi.org/10.1007/s00704-014-1277-xspa
dc.relation.referencesPoveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(107), 201–221. https://doi.org/10.18257/RACCEFYN.28(107).2004.1991spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1spa
dc.relation.referencesRamírez-Carabalí, C., Sarmiento-Herrera, N., & García-López, J. C. (2024). Distribución y tendencias de las lluvias horarias en la región cafetera del Noreste de Sur América. Revista Cenicafé, 75(1), e75103. https://doi.org/10.38141/10778/75103spa
dc.relation.referencesRicardo, A., & Castellanos, E. (2016a). Estudio de la variabilidad espacio temporal de la precipitación en Colombia.spa
dc.relation.referencesRicardo, A., & Castellanos, E. (2016b). Estudio de la variabilidad espacio temporal de la precipitación en Colombia. https://repositorio.unal.edu.co/handle/unal/57664spa
dc.relation.referencesRodríguez-Amigo, M. C., Díez-Mediavilla, M., González-Peña, D., Pérez-Burgos, A., & Alonso-Tristán, C. (2017). Mathematical interpolation methods for spatial estimation of global horizontal irradiation in Castilla-León, Spain: A case study. Solar Energy, 151, 14–21. https://doi.org/10.1016/j.solener.2017.05.024spa
dc.relation.referencesRodríguez‐Iturbe, I., & Mejía, J. M. (1974). The design of rainfall networks in time and space. Water Resources Research, 10(4), 713–728. https://doi.org/10.1029/WR010I004P00713spa
dc.relation.referencesRueda Bayona, J. G., Elles Pérez, C. J., Sánchez Cotte, E. H., López Ariza, Á. L., & Rivillas, G. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura: Tecnología y Cultura Afirmando El Conocimiento, ISSN-e 2248-7638, ISSN 0123-921X, Vol. 20, No. 50 (Octubre - Diciembre), 2016, Págs. 55-68, 20(50), 55–68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04spa
dc.relation.referencesSantos, C. A. G., Santos, D. C. dos, Brasil Neto, R. M., de Oliveira, G., dos Santos, C. A. C., & Silva, R. M. da. (2024). Analyzing the impact of ocean-atmosphere teleconnections on rainfall variability in the Brazilian Legal Amazon via the Rainfall Anomaly Index (RAI). Atmospheric Research, 307, 107483. https://doi.org/10.1016/J.ATMOSRES.2024.107483spa
dc.relation.referencesSantos, J. F., Portela, M. M., & Pulido-Calvo, I. (2013). Dimensionality reduction in drought modelling. Hydrological Processes, 27(10), 1399–1410. https://doi.org/10.1002/HYP.9300spa
dc.relation.referencesShannon, C. E. (1948a). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/J.1538-7305.1948.TB01338.Xspa
dc.relation.referencesShannon, C. E. (1948b). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.xspa
dc.relation.referencesSilva, V. de P. R. da, Belo Filho, A. F., Singh, V. P., Almeida, R. S. R., Silva, B. B. da, de Sousa, I. F., & Holanda, R. M. de. (2017). Entropy theory for analysing water resources in northeastern region of Brazil. Hydrological Sciences Journal, 62(7), 1029–1038. https://doi.org/10.1080/02626667.2015.1099789spa
dc.relation.referencesSilva, V. de P. R. da, Filho, A. F. B., Souza, E. P. de, Braga, C. C., Holanda, R. M. de, Almeida, R. S. R., & Braga, A. C. R. (2018). An analysis of rainfall based on entropy theory. International Journal of Advanced Engineering Research and Science, 5(6), 68–75. https://doi.org/10.22161/IJAERS.5.6.11spa
dc.relation.referencesSt-Hilaire, A., Ouarda, T. B. M. J., Lachance, M., Bob??e, B., Gaudet, J., & Gignac, C. (2003). Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: A case study. Hydrological Processes, 17(18), 3561–3580. https://doi.org/10.1002/hyp.1350spa
dc.relation.referencesTrojer, H. (1959). Fundamentos para una zonificación meteorológica y climatológica del trópico y especialmente de Colombia. https://biblioteca.cenicafe.org/handle/10778/719spa
dc.relation.referencesUrrea, V., Ochoa, A., & Mesa, O. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia.spa
dc.relation.referencesVelásquez, D. F. A., Carrillo, G. A. A., Barbosa, E. O. R., Latorre, D. A. G., & Maldonado, F. E. M. (2018). Revista Colombia Forestal. Colombia Forestal, 21(1), 102–118. https://doi.org/10.14483/2256201X.11601spa
dc.relation.referencesVeléz, J., Orozco, M., Duque, N., & Aristizábal, B. (2015). Entendimiento de fenómenos ambientales mediante análisis de datos.spa
dc.relation.referencesVittal, H., Singh, J., Kumar, P., & Karmakar, S. (2015). A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches. Journal of Hydrology, 525, 658–675. https://doi.org/10.1016/J.JHYDROL.2015.04.024spa
dc.relation.referencesW. Abtew, W., J. Obeysekera, J., & G. Shih, G. (1995). Technical Notes: Spatial Variation of Daily Rainfall and Network Design. Transactions of the ASAE, 38(3), 843–845. https://doi.org/10.13031/2013.27899spa
dc.relation.referencesWang, W., Wang, D., Singh, V. P., Wang, Y., Wu, J., Zhang, J., Liu, J., Zou, Y., He, R., & Meng, D. (2019). Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy. Environmental Research, 178, 108686. https://doi.org/10.1016/J.ENVRES.2019.108686spa
dc.relation.referencesWilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences (Third Edition). Academic Press. https://books.google.com.co/books?id=IJuCVtQ0ySIC&pg=PA39&hl=es&source=gbs_selected_pages&cad=1#v=onepage&q&f=falsespa
dc.relation.referencesXu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X., Chen, Y., Chen, X., Liu, J., Zou, Y., & He, R. (2017). A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design. Journal of Hydrology, 555, 228–241. https://doi.org/10.1016/J.JHYDROL.2017.09.046spa
dc.relation.referencesXu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X., Liu, J., Zou, Y., & He, R. (2018). A kriging and entropy-based approach to raingauge network design. Environmental Research, 161, 61–75. https://doi.org/10.1016/J.ENVRES.2017.10.038spa
dc.relation.referencesZambrano Nájera, J., Delgado, V., & Vélez Upegui, J. J. (2020). Short-term temperature variability in a tropical Andean city Manizales, Colombia. Revista Vínculos, 17(2), 129–139. https://doi.org/10.14483/2322939X.17091spa
dc.relation.referencesZhu, Q., Shen, L., Liu, P., Zhao, Y., Yang, Y., Huang, D., Wang, P., & Yang, J. (2015). Evolution of the Water Resources System Based on Synergetic and Entropy Theory. Polish Journal of Environmental Studies, 24(6), 2727–2738. https://doi.org/10.15244/PJOES/59236spa
dc.relation.referencesZuluaga, M., Poveda, G., & Mejia, J. (2004). Ciclo Diurno de la Precipitación sobre Colombia y el Pacífico Oriental durante 1998-2002 según la misión TRMM.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalRediseño redes de monitoreospa
dc.subject.proposalPrecipitaciónspa
dc.subject.proposalK-means Clusteringeng
dc.subject.proposalciclo diurnospa
dc.subject.proposalAnálisis de Componentes Principalesspa
dc.subject.proposalEntropíaspa
dc.subject.proposaldiurnal cycleeng
dc.subject.proposalPrincipal Component Analysiseng
dc.subject.proposalEntropyeng
dc.subject.proposalMonitoring network redesigneng
dc.subject.proposalprecipitationeng
dc.subject.unescoMeteorologíaspa
dc.subject.unescoMeteorologyeng
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.titleRediseño de la red de monitoreo meteorológico para el Departamento de Caldasspa
dc.title.translatedRedesign of meteorological monitoring network for the Department of Caldaseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090464179.2025.pdf
Tamaño:
10.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: