Rediseño de la red de monitoreo meteorológico para el Departamento de Caldas
dc.contributor.advisor | Vélez Upegui, Jorge Julián | |
dc.contributor.advisor | Obregón Neira, Nelson | |
dc.contributor.author | Blanco Manzano, Yirley Astrid | |
dc.date.accessioned | 2025-07-21T13:36:37Z | |
dc.date.available | 2025-07-21T13:36:37Z | |
dc.date.issued | 2025 | |
dc.description | graficas, mapas, tablas | spa |
dc.description.abstract | El presente estudio propone una optimización de la red de monitoreo meteorológico del departamento de Caldas mediante la aplicación del Análisis de Componentes Principales (PCA) y el análisis de Entropía (ENT), combinados con criterios heurísticos. La red actual cuenta con 120 estaciones con registros pluviométricos entre los años 2000 y 2024; sin embargo, tras una evaluación de la calidad de los datos, se seleccionaron 65 estaciones con información adecuada, reduciendo el periodo de análisis al intervalo 2017–2024. El estudio se desarrolló en tres escalas temporales: 5 minutos (considerando cuatro eventos extremos), diaria y mensual. El análisis PCA, combinado con la técnica de agrupamiento K-means, permitió identificar patrones espaciales homogéneos en cada escala, destacando especialmente la influencia del ecosistema de páramo en las precipitaciones de corta duración en el centro del departamento, así como el aumento de la variabilidad en la zona occidental a medida que se incrementa la escala temporal. En el caso del análisis de Entropía, se estableció un procedimiento basado en el criterio de maximizar la información y minimizar la redundancia, mediante el cálculo de la Entropía Marginal, Conjunta, Condicional y la Transinformación. Los resultados obtenidos, tanto del PCA como del análisis de Entropía, indican que a mayor escala temporal se requiere un mayor número de estaciones, debido al incremento en la incertidumbre de la correlación espacial. Esta propuesta busca contribuir al rediseño eficiente de la red de monitoreo, optimizando recursos y mejorando la representatividad de los datos meteorológicos en la región (Texto tomado de la fuente). | spa |
dc.description.abstract | This study proposes the optimization of the meteorological monitoring network in the department of Caldas through the application of Principal Component Analysis (PCA) and Entropy (ENT) analysis, combined with heuristic criteria. The current network includes 120 stations with pluviometric records from 2000 to 2024; however, following a data quality assessment, 65 stations with adequate information were selected, reducing the analysis period to 2017–2024. The analysis was carried out at three temporal scales: 5-minute (based on four extreme events), daily, and monthly. PCA, combined with the K-means clustering technique, enabled the identification of spatially homogeneous patterns at each scale, particularly highlighting the influence of the paramo ecosystem on short-duration precipitation in the central region of the department, as well as increased variability in the western region as the temporal scale increases. For the Entropy analysis, a procedure was established based on the criterion of maximizing information and minimizing redundancy, through the calculation of marginal, joint, conditional entropy, and mutual information (transinformation). The results from both PCA and the Entropy analysis, indicate that a larger number of stations is required at a larger time scale, due to the increase in the uncertainty of the spatial correlation. This proposal aims to contribute to the efficient redesign of the monitoring network, optimizing resources and improving the representativeness of meteorological data in the region. | eng |
dc.description.curriculararea | Ingeniería Civil.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Recursos Hidráulicos | spa |
dc.format.extent | xiv, 124 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88363 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.references | Alfonso, L., He, L., Lobbrecht, A., & Price, R. (2013). Information theory applied to evaluate the discharge monitoring network of the Magdalena River. Journal of Hydroinformatics, 15(1), 211–228. https://doi.org/10.2166/HYDRO.2012.066 | spa |
dc.relation.references | Alfonso, L., Lobbrecht, A., & Price, R. (2010). Optimization of water level monitoring network in polder systems using information theory. Water Resources Research, 46(12), 12553. https://doi.org/10.1029/2009WR008953 | spa |
dc.relation.references | Alizadeh, Z., Yazdi, J., & Moridi, A. (2018). Development of an Entropy Method for Groundwater Quality Monitoring Network Design. Environmental Processes 2018 5:4, 5(4), 769–788. https://doi.org/10.1007/S40710-018-0335-2 | spa |
dc.relation.references | Amorim, A. M. T., Gonçalves, A. B., Nunes, L. M., & Sousa, A. J. (2012). Optimizing the location of weather monitoring stations using estimation uncertainty. International Journal of Climatology, 32(6), 941–952. https://doi.org/10.1002/JOC.2317 | spa |
dc.relation.references | Amorocho, J., & Espildora, B. (1973). Entropy in the assessment of uncertainty in hydrologic systems and models. Water Resources Research, 9(6), 1511–1522. https://doi.org/10.1029/WR009I006P01511 | spa |
dc.relation.references | Bárdossy, A., & Bogárdi, I. (1983). Network design for the spatial estimation of environmental variables. Applied Mathematics and Computation, 12(4), 339–365. https://doi.org/10.1016/0096-3003(83)90046-2 | spa |
dc.relation.references | Bedoya, J., & Poveda, G. (2008, March). (PDF) Sobre una posible influencia de la precipitación en el Valle de San Nicolás en los eventos de precipitación sobre el Valle de Aburrá. https://www.researchgate.net/publication/249010963_Sobre_una_posible_influencia_de_la_precipitacion_en_el_Valle_de_San_Nicolas_en_los_eventos_de_precipitacion_sobre_el_Valle_de_Aburra | spa |
dc.relation.references | Bertini, C., Ridolfi, E., De Padua, L. H. R., Russo, F., Napolitano, F., & Alfonso, L. (2021). An entropy-based approach for the optimization of rain gauge network using satellite and ground-based data. Hydrology Research, 52(3), 620–635. https://doi.org/10.2166/NH.2021.113 | spa |
dc.relation.references | Carreón-Sierra, S., Salcido, A., Castro, T., & Celada-Murillo, A.-T. (2015). Cluster Analysis of the Wind Events and Seasonal Wind Circulation Patterns in the Mexico City Region. Atmosphere, 6(8), 1006–1031. https://doi.org/10.3390/atmos6081006 | spa |
dc.relation.references | Chen, Y. C., Wei, C., & Yeh, H. C. (2008). Rainfall network design using kriging and entropy. Hydrological Processes, 22(3), 340–346. https://doi.org/10.1002/HYP.6292 | spa |
dc.relation.references | Cheng, K. S., Lin, Y. C., & Liou, J. J. (2008). Rain-gauge network evaluation and augmentation using geostatistics. Hydrological Processes, 22(14), 2554–2564. https://doi.org/10.1002/hyp.6851 | spa |
dc.relation.references | Cifuentes Carvajal, A. (2016). Evaluación de diferentes métodos de interpolación para la variable precipitación en el departamento de Caldas – Colombia. https://ridum.umanizales.edu.co/handle/20.500.12746/2652 | spa |
dc.relation.references | Collado, J., & Toledo, V. (1997). Localización óptima de estaciones climatológicas y observatorios meteorológicos en la República Mexicana. Tecnología y Ciencias Del Agua. | spa |
dc.relation.references | Contreras, J., Ballari, D., & Samaniego, E. (2017). Optimización de una red de monitoreo de precipitación usando modelos Geoestadísticos: caso de estudio en la cuenca del río Paute, Ecuador. https://repositorioslatinoamericanos.uchile.cl/handle/2250/8165914?show=full | spa |
dc.relation.references | Cormack, R. M. (1971). A Review of Classification. Journal of the Royal Statistical Society: Series A (General), 134(3), 321–353. https://doi.org/10.2307/2344237 | spa |
dc.relation.references | CORPOCALDAS. (2020). Plan de Gestión Ambiental Regional 2020-2031. https://corpocaldas2022.blob.core.windows.net/webadmin/file_Diagnostic_CfrAbQYF.pdf | spa |
dc.relation.references | Cortés, A. C. (2010). Análisis De La Variabilidad Espacial Y Temporal De La Precipitación En Una Ciudad De Media Montaña Andina Caso De Estudio: Manizales. 20–22. http://www.bdigital.unal.edu.co/3584/1/anacristinacortescortes.2010.pdf | spa |
dc.relation.references | Cressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data (Wiley Series in Probability and Statistics). 624. http://www.amazon.com/Statistics-Spatio-Temporal-Wiley-Series-Probability/dp/0471692743 | spa |
dc.relation.references | Dai, A. (2001). Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations. | spa |
dc.relation.references | Dai, Q., Bray, M., Zhuo, L., Islam, T., & Han, D. (2017). A Scheme for Rain Gauge Network Design Based on Remotely Sensed Rainfall Measurements. Journal of Hydrometeorology, 18(2), 363–379. https://doi.org/10.1175/JHM-D-16-0136.1 | spa |
dc.relation.references | de Oliveira Simoyama, F., Croope, S., de Salles Neto, L. L., & Santos, L. B. L. (2023). Optimization of rain gauge networks—A systematic literature review. Socio-Economic Planning Sciences, 86, 101469. https://doi.org/10.1016/J.SEPS.2022.101469 | spa |
dc.relation.references | de Souza, A., Abreu, M. C., de Oliveira-Júnior, J. F., Aristone, F., Fernandes, W. A., Aviv-Sharon, E., & Graf, R. (2022). Climate Regionalization in Mato Grosso do Sul: a Combination of Hierarchical and Non-hierarchical Clustering Analyses Based on Precipitation and Temperature. Brazilian Archives of Biology and Technology, 65, e22210331. https://doi.org/10.1590/1678-4324-2022210331 | spa |
dc.relation.references | Fahle, M., Hohenbrink, T. L., Dietrich, O., & Lischeid, G. (2015). Temporal variability of the optimal monitoring setup assessed using information theory. Water Resources Research, 51(9), 7723–7743. https://doi.org/10.1002/2015WR017137 | spa |
dc.relation.references | Gangopadhyay, S., Das Gupta, A., & Nachabe, M. H. (2001). Evaluation of ground water monitoring network by principal component analysis. Ground Water, 39(2), 181–191. https://doi.org/10.1111/j.1745-6584.2001.tb02299.x | spa |
dc.relation.references | Ghosh, M., Singh, J., Sekharan, S., Ghosh, S., Zope, P. E., & Karmakar, S. (2021). Rationalization of automatic weather stations network over a coastal urban catchment: A multivariate approach. Atmospheric Research, 254, 105511. https://doi.org/10.1016/J.ATMOSRES.2021.105511 | spa |
dc.relation.references | González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., Gumuzzio, Á., Piles, M., & Olmedo, E. (2015). Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain). Physics and Chemistry of the Earth, 83–84, 123–136. https://doi.org/10.1016/j.pce.2015.05.009 | spa |
dc.relation.references | Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113–129. https://doi.org/10.1016/S0022-1694(00)00144-X | spa |
dc.relation.references | Hao, Z., & Singh, V. P. (2011). Single-site monthly streamflow simulation using entropy theory. Water Resources Research, 47(9), 9528. https://doi.org/10.1029/2010WR010208 | spa |
dc.relation.references | Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000a). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0 | spa |
dc.relation.references | Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000b). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0 | spa |
dc.relation.references | Huang, Y., Zhao, H., Jiang, Y., & Lu, X. (2020). A Method for the Optimized Design of a Rain Gauge Network Combined with Satellite Remote Sensing Data. Remote Sensing 2020, Vol. 12, Page 194, 12(1), 194. https://doi.org/10.3390/RS12010194 | spa |
dc.relation.references | Hughes, J. P., & Lettenmaier, D. P. (1981). Data requirements for kriging: Estimation and network design. Water Resources Research, 17(6), 1641–1650. https://doi.org/10.1029/WR017i006p01641 | spa |
dc.relation.references | IDEAM. (2013). Zonificación y Codificación de Cuencas Hidrográficas e Hidrogeológicas de Colombia. 42–47. www.imprenta.gov.co | spa |
dc.relation.references | IDEAM. (2022a). Estudio Nacional del Agua 2022 | Instituto de Hidrología, Meteorología y Estudios Ambientales. https://www.ideam.gov.co/sala-de-prensa/informes/publicacion-jue-23032023-1200 | spa |
dc.relation.references | IDEAM. (2022b). GUÍA DISEÑO DE LA RED HIDROMETEOROLÓGICA NACIONAL. | spa |
dc.relation.references | IGAC. (2021). Clasificación de las tierras por su capacidad de uso Código: IN-GAG-PC05-02. | spa |
dc.relation.references | Insel, M. A., Ozturk, B., Yucel, O., & Sadikoglu, H. (2025). Generalizable wind power estimation from historic meteorological data by advanced artificial neural networks. Renewable Energy, 246, 122995. https://doi.org/10.1016/J.RENENE.2025.122995 | spa |
dc.relation.references | Instituto de Estudios Ambientales, I. (2017). Boletin Ambiental No 137: Sistema de Información Ambiental departamento de Caldas. | spa |
dc.relation.references | Jiang, J., Tang, S., Han, D., Fu, G., Solomatine, D., & Zheng, Y. (2020). A comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792. https://doi.org/10.1016/J.ENVSOFT.2020.104792 | spa |
dc.relation.references | Jollife, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/RSTA.2015.0202 | spa |
dc.relation.references | Jolliffe I.T. (2002). Principal Component Analysis (Second Edition). Springer-Verlag. https://doi.org/10.1007/B98835 | spa |
dc.relation.references | Kansakar, S. R., Hannah, D. M., Gerrard, J., & Rees, G. (2004). Spatial pattern in the precipitation regime of Nepal. International Journal of Climatology, 24(13), 1645–1659. https://doi.org/10.1002/JOC.1098 | spa |
dc.relation.references | Kassim, A. H. M., & Kottegoda, N. T. (1991). Rainfall network design through comparative kriging methods. Hydrological Sciences Journal, 36(3), 223–240. https://doi.org/10.1080/02626669109492505 | spa |
dc.relation.references | Kawachi, T., Maruyama, T., & Singh, V. P. (2001). Rainfall entropy for delineation of water resources zones in Japan. Journal of Hydrology, 246(1–4), 36–44. https://doi.org/10.1016/S0022-1694(01)00355-9 | spa |
dc.relation.references | Keum, J., Kornelsen, K. C., Leach, J. M., & Coulibaly, P. (2017a). Entropy Applications to Water Monitoring Network Design: A Review. Entropy 2017, Vol. 19, Page 613, 19(11), 613. https://doi.org/10.3390/E19110613 | spa |
dc.relation.references | Keum, J., Kornelsen, K., Leach, J., & Coulibaly, P. (2017b). Entropy Applications to Water Monitoring Network Design: A Review. Entropy, 19(11), 613. https://doi.org/10.3390/e19110613 | spa |
dc.relation.references | Krstanovic, P. F., & Singh, V. P. (1992a). Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resources Management, 6(4), 279–293. https://doi.org/10.1007/BF00872281/METRICS | spa |
dc.relation.references | Krstanovic, P. F., & Singh, V. P. (1992b). Evaluation of rainfall networks using entropy: II. Application. Water Resources Management, 6(4), 295–314. https://doi.org/10.1007/BF00872282/METRICS | spa |
dc.relation.references | Kwon, T., Lim, J., Yoon, S., & Yoon, S. (2020). Comparison of entropy methods for an optimal rain gauge network: A case study of Daegu and Gyeongbuk area in South Korea. Applied Sciences (Switzerland), 10(16), 5620. https://doi.org/10.3390/APP10165620 | spa |
dc.relation.references | Lathi, B. P. (1968). An Introduction to Random Signals and Communication Theory - Bhagwandas Pannalal Lathi - Google Libros. International Textbook Company. https://books.google.com.co/books/about/An_Introduction_to_Random_Signals_and_Co.html?id=6hwoAQAAMAAJ&redir_esc=y | spa |
dc.relation.references | Leach, J. M., Coulibaly, P., & Guo, Y. (2016). Entropy based groundwater monitoring network design considering spatial distribution of annual recharge. Advances in Water Resources, 96, 108–119. https://doi.org/10.1016/J.ADVWATRES.2016.07.006 | spa |
dc.relation.references | Li, C., Singh, V. P., & Mishra, A. K. (2012). Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy. Water Resources Research, 48(5), 5521. https://doi.org/10.1029/2011WR011251 | spa |
dc.relation.references | López Jiménez, V. L. (2014). Propuesta Metodológica para el Rediseño de una Red Meteorológica en un Sector de la Región Andina Colombiana. Publicaciones e Investigación, 8(1), 55. https://doi.org/10.22490/25394088.1281 | spa |
dc.relation.references | López, V. (2014). Propuesta Metodológica para el rediseño de una red Meteorológica en un Sector de la Región Andina Colombiana. Revista Especializada En Ingeniería, 8(1), 22. https://doi.org/10.22490/25394088.1281 | spa |
dc.relation.references | Lyra, G. B., Oliveira-Júnior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34(13), 3546–3558. https://doi.org/10.1002/JOC.3926 | spa |
dc.relation.references | Maldonado, T., Alfaro, E. J., & Hidalgo, H. G. (2021). Análisis de los conglomerados de precipitación y sus cambios estacionales sobre América Central para el período 1976-2015. Revista de Matemática: Teoría y Aplicaciones, 28(2), 337–362. https://doi.org/10.15517/RMTA.V28I2.42322 | spa |
dc.relation.references | María, B., Chicaiza, Y. B., Alex, J., & Veloz, V. (2018). Diseño óptimo de la red pluviométrica utilizando Cokriging y Entropía en la cuenca alta del río Guayllabamba, Distrito Metropolitano de Quito. http://bibdigital.epn.edu.ec/handle/15000/19830 | spa |
dc.relation.references | Mavukkandy, M. O., Karmakar, S., & Harikumar, P. S. (2014). Assessment and rationalization of water quality monitoring network: A multivariate statistical approach to the Kabbini River (India). Environmental Science and Pollution Research, 21(17), 10045–10066. https://doi.org/10.1007/S11356-014-3000-Y/FIGURES/9 | spa |
dc.relation.references | Mejía Fernández, F., Pablo, J., Linares, L., & Pachón Gómez, J. A. (2006). Taller internacional sobre gestión del riesgo a nivel local el caso de Manizales, Colombia (Colombia). | spa |
dc.relation.references | Méndez Martínez, C., Alonso, M., & Sepúlveda, R. (2012). Introducción al análisis factorial exploratorio. Revista Colombiana de Psiquiatría, 41(1), 197–207. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74502012000100014&lng=en&nrm=iso&tlng=es | spa |
dc.relation.references | Miñarro, M. D., Larrosa, J. A. E., & Cobacho, G. N. (2020). Mejora del dimensionamiento de una red de Calidad del aire mediante el empleo de métodos estadísticos multivariantes. DYNA (Bilbao), 149–153. https://recyt.fecyt.es/index.php/DY/article/view/78156 | spa |
dc.relation.references | Mishra, A. K., & Coulibaly, P. (2009). Developments in hydrometric network design: A review. In Reviews of Geophysics (Vol. 47, Issue 2, p. RG2001). https://doi.org/10.1029/2007RG000243 | spa |
dc.relation.references | Mishra, A. K., & Coulibaly, P. (2010). Hydrometric network evaluation for Canadian watersheds. Journal of Hydrology, 380(3–4), 420–437. https://doi.org/10.1016/j.jhydrol.2009.11.015 | spa |
dc.relation.references | Mishra, A. K., Özger, M., & Singh, V. P. (2009). An entropy-based investigation into the variability of precipitation. Journal of Hydrology, 370(1–4), 139–154. https://doi.org/10.1016/J.JHYDROL.2009.03.006 | spa |
dc.relation.references | Mogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management, 16(1), 37–49. https://doi.org/10.1023/A:1015511811686/METRICS | spa |
dc.relation.references | Muller, C. L., Chapman, L., Grimmond, C. S. B., Young, D. T., & Cai, X. (2013). Sensors and the city: A review of urban meteorological networks. In International Journal of Climatology (Vol. 33, Issue 7, pp. 1585–1600). https://doi.org/10.1002/joc.3678 | spa |
dc.relation.references | Nagaraj, M., & Srivastav, R. (2023). Non-linear granger causality approach for non-stationary modelling of extreme precipitation. Stochastic Environmental Research and Risk Assessment, 37(10), 3747–3761. https://doi.org/10.1007/S00477-023-02475-4 | spa |
dc.relation.references | Nunes, L. M., Cunha, M. C., & Ribeiro, L. (2004). Groundwater monitoring network optimization with redundancy reduction. Journal of Water Resources Planning and Management - ASCE, 130(1), 33–43. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(33) | spa |
dc.relation.references | Ocampo López, O. L., Vélez Upegui, J. J., Marín Salazar, J. P., & Forero Hernández, A. T. (2020). Análisis de tendencias climáticas con RClimdex en el departamento de Caldas, Colombia. Scientia et Technica, 25(4), 595–603. https://doi.org/10.22517/23447214.22771 | spa |
dc.relation.references | OMM. (1994). Guía de Prácticas Hidrológicas OMM No 168. https://www.yumpu.com/es/document/read/15498920/guia-de-practicas-hidrologicas-omm-n-168 | spa |
dc.relation.references | OMM. (2010). Manual on the Global Observing System, Volume II – Regional aspects (WMO-No. 544). https://library.wmo.int/viewer/30249/?offset=#page=1&viewer=picture&o=bookmark&n=0&q= | spa |
dc.relation.references | OMM. (2023). Guía de instrumentos y métodos de observación (OMM-N° 8). https://library.wmo.int/viewer/68677/?offset=1#page=1&viewer=picture&o=bookmark&n=0&q= | spa |
dc.relation.references | Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39(12), 2621–2635. https://doi.org/10.1016/J.WATRES.2005.04.024 | spa |
dc.relation.references | Pabón, J., Saavedra, H., Cárdenas, V., Niño, R., Parra, L., Garzón, M., & Reyes, F. (2002). Propuesta para el rediseño de la red de observaciones meteorológicas en colombia. 123–129. http://ciencias.bogota.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero05/05_14.pdf | spa |
dc.relation.references | Pardo-Igúzquiza, E. (1998). Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology, 210(1–4), 206–220. https://doi.org/10.1016/S0022-1694(98)00188-7 | spa |
dc.relation.references | Pena-Angulo, D., Cortesi, N., Brunetti, M., & González-Hidalgo, J. C. (2015). Spatial variability of maximum and minimum monthly temperature in Spain during 1981–2010 evaluated by correlation decay distance (CDD). Theoretical and Applied Climatology, 122(1–2), 35–45. https://doi.org/10.1007/s00704-014-1277-x | spa |
dc.relation.references | Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(107), 201–221. https://doi.org/10.18257/RACCEFYN.28(107).2004.1991 | spa |
dc.relation.references | Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1 | spa |
dc.relation.references | Ramírez-Carabalí, C., Sarmiento-Herrera, N., & García-López, J. C. (2024). Distribución y tendencias de las lluvias horarias en la región cafetera del Noreste de Sur América. Revista Cenicafé, 75(1), e75103. https://doi.org/10.38141/10778/75103 | spa |
dc.relation.references | Ricardo, A., & Castellanos, E. (2016a). Estudio de la variabilidad espacio temporal de la precipitación en Colombia. | spa |
dc.relation.references | Ricardo, A., & Castellanos, E. (2016b). Estudio de la variabilidad espacio temporal de la precipitación en Colombia. https://repositorio.unal.edu.co/handle/unal/57664 | spa |
dc.relation.references | Rodríguez-Amigo, M. C., Díez-Mediavilla, M., González-Peña, D., Pérez-Burgos, A., & Alonso-Tristán, C. (2017). Mathematical interpolation methods for spatial estimation of global horizontal irradiation in Castilla-León, Spain: A case study. Solar Energy, 151, 14–21. https://doi.org/10.1016/j.solener.2017.05.024 | spa |
dc.relation.references | Rodríguez‐Iturbe, I., & Mejía, J. M. (1974). The design of rainfall networks in time and space. Water Resources Research, 10(4), 713–728. https://doi.org/10.1029/WR010I004P00713 | spa |
dc.relation.references | Rueda Bayona, J. G., Elles Pérez, C. J., Sánchez Cotte, E. H., López Ariza, Á. L., & Rivillas, G. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura: Tecnología y Cultura Afirmando El Conocimiento, ISSN-e 2248-7638, ISSN 0123-921X, Vol. 20, No. 50 (Octubre - Diciembre), 2016, Págs. 55-68, 20(50), 55–68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04 | spa |
dc.relation.references | Santos, C. A. G., Santos, D. C. dos, Brasil Neto, R. M., de Oliveira, G., dos Santos, C. A. C., & Silva, R. M. da. (2024). Analyzing the impact of ocean-atmosphere teleconnections on rainfall variability in the Brazilian Legal Amazon via the Rainfall Anomaly Index (RAI). Atmospheric Research, 307, 107483. https://doi.org/10.1016/J.ATMOSRES.2024.107483 | spa |
dc.relation.references | Santos, J. F., Portela, M. M., & Pulido-Calvo, I. (2013). Dimensionality reduction in drought modelling. Hydrological Processes, 27(10), 1399–1410. https://doi.org/10.1002/HYP.9300 | spa |
dc.relation.references | Shannon, C. E. (1948a). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/J.1538-7305.1948.TB01338.X | spa |
dc.relation.references | Shannon, C. E. (1948b). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | spa |
dc.relation.references | Silva, V. de P. R. da, Belo Filho, A. F., Singh, V. P., Almeida, R. S. R., Silva, B. B. da, de Sousa, I. F., & Holanda, R. M. de. (2017). Entropy theory for analysing water resources in northeastern region of Brazil. Hydrological Sciences Journal, 62(7), 1029–1038. https://doi.org/10.1080/02626667.2015.1099789 | spa |
dc.relation.references | Silva, V. de P. R. da, Filho, A. F. B., Souza, E. P. de, Braga, C. C., Holanda, R. M. de, Almeida, R. S. R., & Braga, A. C. R. (2018). An analysis of rainfall based on entropy theory. International Journal of Advanced Engineering Research and Science, 5(6), 68–75. https://doi.org/10.22161/IJAERS.5.6.11 | spa |
dc.relation.references | St-Hilaire, A., Ouarda, T. B. M. J., Lachance, M., Bob??e, B., Gaudet, J., & Gignac, C. (2003). Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: A case study. Hydrological Processes, 17(18), 3561–3580. https://doi.org/10.1002/hyp.1350 | spa |
dc.relation.references | Trojer, H. (1959). Fundamentos para una zonificación meteorológica y climatológica del trópico y especialmente de Colombia. https://biblioteca.cenicafe.org/handle/10778/719 | spa |
dc.relation.references | Urrea, V., Ochoa, A., & Mesa, O. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia. | spa |
dc.relation.references | Velásquez, D. F. A., Carrillo, G. A. A., Barbosa, E. O. R., Latorre, D. A. G., & Maldonado, F. E. M. (2018). Revista Colombia Forestal. Colombia Forestal, 21(1), 102–118. https://doi.org/10.14483/2256201X.11601 | spa |
dc.relation.references | Veléz, J., Orozco, M., Duque, N., & Aristizábal, B. (2015). Entendimiento de fenómenos ambientales mediante análisis de datos. | spa |
dc.relation.references | Vittal, H., Singh, J., Kumar, P., & Karmakar, S. (2015). A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches. Journal of Hydrology, 525, 658–675. https://doi.org/10.1016/J.JHYDROL.2015.04.024 | spa |
dc.relation.references | W. Abtew, W., J. Obeysekera, J., & G. Shih, G. (1995). Technical Notes: Spatial Variation of Daily Rainfall and Network Design. Transactions of the ASAE, 38(3), 843–845. https://doi.org/10.13031/2013.27899 | spa |
dc.relation.references | Wang, W., Wang, D., Singh, V. P., Wang, Y., Wu, J., Zhang, J., Liu, J., Zou, Y., He, R., & Meng, D. (2019). Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy. Environmental Research, 178, 108686. https://doi.org/10.1016/J.ENVRES.2019.108686 | spa |
dc.relation.references | Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences (Third Edition). Academic Press. https://books.google.com.co/books?id=IJuCVtQ0ySIC&pg=PA39&hl=es&source=gbs_selected_pages&cad=1#v=onepage&q&f=false | spa |
dc.relation.references | Xu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X., Chen, Y., Chen, X., Liu, J., Zou, Y., & He, R. (2017). A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design. Journal of Hydrology, 555, 228–241. https://doi.org/10.1016/J.JHYDROL.2017.09.046 | spa |
dc.relation.references | Xu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X., Liu, J., Zou, Y., & He, R. (2018). A kriging and entropy-based approach to raingauge network design. Environmental Research, 161, 61–75. https://doi.org/10.1016/J.ENVRES.2017.10.038 | spa |
dc.relation.references | Zambrano Nájera, J., Delgado, V., & Vélez Upegui, J. J. (2020). Short-term temperature variability in a tropical Andean city Manizales, Colombia. Revista Vínculos, 17(2), 129–139. https://doi.org/10.14483/2322939X.17091 | spa |
dc.relation.references | Zhu, Q., Shen, L., Liu, P., Zhao, Y., Yang, Y., Huang, D., Wang, P., & Yang, J. (2015). Evolution of the Water Resources System Based on Synergetic and Entropy Theory. Polish Journal of Environmental Studies, 24(6), 2727–2738. https://doi.org/10.15244/PJOES/59236 | spa |
dc.relation.references | Zuluaga, M., Poveda, G., & Mejia, J. (2004). Ciclo Diurno de la Precipitación sobre Colombia y el Pacífico Oriental durante 1998-2002 según la misión TRMM. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.proposal | Rediseño redes de monitoreo | spa |
dc.subject.proposal | Precipitación | spa |
dc.subject.proposal | K-means Clustering | eng |
dc.subject.proposal | ciclo diurno | spa |
dc.subject.proposal | Análisis de Componentes Principales | spa |
dc.subject.proposal | Entropía | spa |
dc.subject.proposal | diurnal cycle | eng |
dc.subject.proposal | Principal Component Analysis | eng |
dc.subject.proposal | Entropy | eng |
dc.subject.proposal | Monitoring network redesign | eng |
dc.subject.proposal | precipitation | eng |
dc.subject.unesco | Meteorología | spa |
dc.subject.unesco | Meteorology | eng |
dc.subject.unesco | Análisis estadístico | spa |
dc.subject.unesco | Statistical analysis | eng |
dc.title | Rediseño de la red de monitoreo meteorológico para el Departamento de Caldas | spa |
dc.title.translated | Redesign of meteorological monitoring network for the Department of Caldas | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1090464179.2025.pdf
- Tamaño:
- 10.21 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Recursos Hidráulicos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: