Composición química asociada al perfil de taza de un café especial variedad Castillo® proveniente de Barbosa Antioquia y beneficiado bajo diferentes procesos de fermentación

dc.contributor.advisorGil González, Jesús Humberto
dc.contributor.advisorCiro Velásquez, Héctor José
dc.contributor.authorAcosta Arbeláez, Johanna Marcela
dc.coverage.cityBarbosa (Antioquia)
dc.date.accessioned2021-03-26T22:44:56Z
dc.date.available2021-03-26T22:44:56Z
dc.date.issued2020
dc.description.abstractl café es uno de los productos básicos más comercializados, cuya producción ha aumentado de manera constante a lo largo de los años. Se estima que la producción actual es de 176,1 millones de toneladas a nivel mundial, siendo Brasil, Vietnam y Colombia los principales productores. Este aumento en la producción está asociado al creciente interés de los consumidores por los cafés especiales, orgánicos, de comercio justo, amigables con el medio ambiente y con beneficios para la salud; entre otras tendencias que se viene tomando los mercados mundiales. El objetivo de este estudio fue Identificar la composición química y calidad sensorial del café obtenido por diferentes métodos de proceso (seco, semi-seco y húmedo). Se evaluó el efecto de los métodos de procesamiento sobre el café (C. Arábica) variedad Castillo® cultivada en Antioquia (Colombia), para lo cual se realizaron 20 análisis químicos al café verde que comprenden: compuestos volátiles y compuestos nutricionales (ácidos orgánicos, ácidos clorogénicos, carbohidratos, cafeína y minerales), y se relacionaron con el perfil de taza del café tostado. Posteriormente, se analizaron los datos agrupados en tres grupos: a) compuestos volátiles y perfil de taza, b) compuestos nutricionales y perfil de taza, analizados mediante un análisis de componentes principales (ACP) y c) ácidos clorogénicos en café verde y perfil de taza mediante un análisis de estadística descriptiva. En el grupo “a” dos CP explicaron aproximadamente el 64,18% de la variación total, mientras que en el grupo “b” la distribución de las varianzas de los componentes resultantes de los tres primeros CP explicó el 100% de la variabilidad. El ACP mostró que el método de procesamiento en seco presenta una diferencia significativa en cuanto a su perfil químico y sensorial con respecto a los otros métodos evaluados y es una herramienta que permitirá tomar elecciones más asertivas al momento de elegir un método de procesamiento. Abstract: Coffee is one of the most traded commodities, whose production has steadily increased over the years. Current production is estimated to be 176.1 million tons worldwide, with Brazil, Vietnam and Colombia being the main producers. This increase in production is associated with the growing interest of consumers for specialty coffees, organic, fair trade, environment-friendly, and with health benefits; among other trends taking place in world markets. The aim of this study was to identify the chemical composition and sensory quality of the coffee obtained by different process methods (dry, semi-dry and wet). The effect of the processing methods on the Castilla® variety coffee (C. Arabica) cultivated in Antioquia (Colombia) was evaluated, for which 20 chemical analyzes were carried out on green coffee that includes; volatile compounds and nutritional compounds (organic acids, chlorogenic acids, carbohydrates, caffeine and minerals) and were related to the cup profile of roasted coffee. Afterwards, the data were analyzed by grouping them into three groups: a) volatile compounds and cup profile, b) nutritional compounds and cup profile, analyzed by principal component analysis (PCA) and c) chlorogenic acids in green coffee and cup profile in roasted coffee using descriptive statistical analysis. In group “a”, two PCs explained approximately 64.18% of the total variation, while in group “b” the distribution of the variances of the components resulting from the first three PCs explained 100% of the variability. The PCA showed that the dry processing method presents a significant difference in terms of its chemical and sensory profile with respect to the other evaluated methods and it is a tool that will allow making more assertive choices when choosing a processing method.
dc.description.abstractCoffee is one of the most traded commodities, whose production has steadily increased over the years. Current production is estimated to be 176.1 million tons worldwide, with Brazil, Vietnam and Colombia being the main producers. This increase in production is associated with the growing interest of consumers for specialty coffees, organic, fair trade, environment-friendly, and with health benefits; among other trends taking place in world markets. The aim of this study was to identify the chemical composition and sensory quality of the coffee obtained by different process methods (dry, semi-dry and wet). The effect of the processing methods on the Castilla® variety coffee (C. Arabica) cultivated in Antioquia (Colombia) was evaluated, for which 20 chemical analyzes were carried out on green coffee that includes; volatile compounds and nutritional compounds (organic acids, chlorogenic acids, carbohydrates, caffeine and minerals) and were related to the cup profile of roasted coffee. Afterwards, the data were analyzed by grouping them into three groups: a) volatile compounds and cup profile, b) nutritional compounds and cup profile, analyzed by principal component analysis (PCA) and c) chlorogenic acids in green coffee and cup profile in roasted coffee using descriptive statistical analysis. In group “a”, two PCs explained approximately 64.18% of the total variation, while in group “b” the distribution of the variances of the components resulting from the first three PCs explained 100% of the variability. The PCA showed that the dry processing method presents a significant difference in terms of its chemical and sensory profile with respect to the other evaluated methods and it is a tool that will allow making more assertive choices when choosing a processing methodeng
dc.description.degreelevelMaestríaspa
dc.description.funderSENNOVAspa
dc.format.extent84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional -Sede Medellínspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79377
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Agrícola y Alimentosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAgwanda, C. O., Baradat, P., Eskes, A. B., Cilas, C., & Charrier, A. (2003). Selection for bean and liquor qualities within related hybrids of Arabica coffee in multilocal field trials. Euphytica, 131(May), 1–14.spa
dc.relation.referencesAkiyama, M., Murakami, K., Hirano, Y., Ikeda, M., Iwatsuki, K., Wada, A., Tokuno, K., Onishi, M., & Iwabuchi, H. (2008). Characterization of headspace aroma compounds of freshly brewed arabica coffees and studies on a characteristic aroma compound of Ethiopian coffee. Journal of Food Science, 73(5), 335–346.spa
dc.relation.referencesArcila, J. (2007). Crecimiento y desarrollo de la planta de café. En H. O. Ospina F. & S. M. Marín L. (Eds.), Sistemas de producción de café en Colombia (pp. 22–60). Cenicafé.spa
dc.relation.referencesArcos Á., C. A. (2017). Efecto de la fermentación aerobia del grano de café orgánico, en el desarrollo de características sensoriales de la bebida en el Municipio de Pitalito. Universidad Nacional Abierta y a Distancia.spa
dc.relation.referencesArruda, N. P., Hovell, A. M. C., Rezende, C. M., Freitas, S. P., Couri, S., & Bizzo, H. R. (2012). Correlação entre precursores e voláteis em café arábica brasileiro processado pelas vias seca, semiúmida e úmida e discriminação através da análise por componentes principais. Quimica Nova, 35(10), 2044–2051.spa
dc.relation.referencesAvallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42(4), 252–256.spa
dc.relation.referencesBertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–2583.spa
dc.relation.referencesBote, A. D., & Jan, V. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83, 39– 46.spa
dc.relation.referencesBougeard, S., & Dray, S. (2018). Supervised multiblock analysis in R with the ade4 package. Journal of Statistical Software, 86(1), 1–17. Boyacá V., L. A. (2018). Estudio exploratorio de la obtención de café verde mediante beneficio Honey y la determinación de su calidad en taza (Tesis de maestría). Universidad Nacional de Colombia.Bogotá, Colombia.spa
dc.relation.referencesBressanello, D., Liberto, E., Cordero, C., Rubiolo, P., Pellegrino, G., Ruosi, M. R., & Bicchi, C. (2017). Coffee aroma : Chemometric comparison of the chemical information provided by three different samplings combined with GC – MS to describe the sensory properties in cup. Food Chemistry, 214, 218–226.spa
dc.relation.referencesBressanello, D., Liberto, E., Cordero, C., Sgorbini, B., Rubiolo, P., Pellegrino, G., Ruosi, M. R., Bicchi, C., Lavazza, S. A., & Settimo, S. (2018). Chemometric Modeling of Coffee Sensory Notes through Their Chemical Signatures: Potential and Limits in Defining an Analytical Tool for Quality Control [Research-article]. Journal of Agricultural and Food Chemistry, 66, 7096–7109.spa
dc.relation.referencesCaporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GCMS. Food Research International, 108, 628–640.spa
dc.relation.referencesCenicafé, & FNC. (2004). Beneficio del café II. En Cartilla cafetera (p. 18). Cenicafé.spa
dc.relation.referencesCheong, M. W., Tong, K. H., Ong, J. J. M., Liu, S. Q., Curran, P., & Yu, B. (2013). Volatile composition and antioxidant capacity of Arabica coffee. Food Research International, 51(1), 388–396.spa
dc.relation.referencesCortina, H., Acuña, J., Moncada, M., Herrera, J., & Molina, D. (2013). Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (FNC (ed.)). Cenicafé.spa
dc.relation.referencesCruz, Pascual, L. F., & Battaglia, M. (2010). Guía técnica de construcción y funcionamiento 71 de secadoras solares tipo domo. Journal of Agriculture and Environment for International Development, 104(3–4), 125–138.spa
dc.relation.referencesCruz, R., Morais, S., & Casal, S. (2015). Mineral Composition Variability of Coffees: A Result of Processing and Production. En V. R. Preedy (Ed.), Processing and Impact on Active Components in Food (pp. 549–558). Elsevier Inc. Cuéllar-Soares, P. C., & Castaño-Castrillón, J. J. (2001). Influencia de la materia prima, del grado de tostión y de molienda en la densidad del café tostado y molido y en algunas propiedades del extracto obtenido. Cenicafé, 52(2), 127–140.spa
dc.relation.referencesDe Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2017). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1).spa
dc.relation.referencesDe Oliveira Petkowicz, C. L. (2015). Polysaccharides in Coffee and Their Relationship to Health: An Overview. En V. R. Preedy (Ed.), Coffee in Health and Disease Prevention (pp. 163–172). Elsevier Inc.spa
dc.relation.referencesDíaz, M. (2014). Recomendaciones para la experimentación de métodos de beneficio para producir cafés de alta calidad.spa
dc.relation.referencesDIN. (2015). Analysis of coffee and coffee products - determination of chlorogenic acids content in roasted coffee and soluble coffee - HPLC method. (DIN 10767:2015-08).spa
dc.relation.referencesDolédec, D., & Chessel, D. (1994). Co‐inertia analysis: an alternative method for studying species–environment relationships. Freshwater Biology, 31(3), 277–294.spa
dc.relation.referencesDuarte, G. S., Pereira, A. A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 118(3), 851–855.spa
dc.relation.referencesEröz Poyraz, İ., Öztürk, N., Kıyan, H. T., & Demirci, B. (2016). Volatile compounds of Coffea arabica L. green and roasted beans. Anadolu University Journal of Science and Technology –C Life Sciences and Biotechnology, 5(1), 31–35.spa
dc.relation.referencesEvangelista, S. R., da Cruz Pedrozo Miguel, M. G., de Souza Cordeiro, C., Silva, C. F., Marques Pinheiro, A. C., & Schwan, R. F. (2014). Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiology, 44, 87–95. Famiani, F., Battistelli, A., Moscatello, S., Cruz-Castillo, J. G., & Walker, R. P. (2015). The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents – a review. Revista Chapingo, Serie Horticultura, 21(2), 97–128.spa
dc.relation.referencesFarah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373–380.spa
dc.relation.referencesFigueiredo, L. P., Borém, F. M., Ribeiro, F. C., Giomo, G. S., & Henrique, J. (2018). Sensory analysis and chemical composition of ‘Bourbon’ coffees cultivated in different environments. Coffee Scie nce, 13(1), 122–131.spa
dc.relation.referencesFlament, I., & Bessiére-Thomas, Y. (2002). Coffee Flavor Chemistry. John Wiley & Sons, Ltd.spa
dc.relation.referencesFlórez, R., Ibarra, L., Gómez, L., Carmona, C., Castaño, A., & Ortiz, A. (2013). Manual del cafetero colombiano: Estructura y funcionamiento de la planta de café. (FNC (ed.)). Cenicafé.spa
dc.relation.referencesFNC, Federación Nacional de Cafeteros de Colombia. (2008). Cafés especiales. Glosario. https://federaciondecafeteros.org/wp/glosario/cafes-especiales/.spa
dc.relation.referencesFNC, Federación Nacional de Cafeteros de Colombia. (2016). Un Café Sobresaliente. Café de Colombia. www.cafedecolombia.com/particulares/es/el_cafe_de_colombia/un_cafe_sobresaliente/.spa
dc.relation.referencesFNC, Federación Nacional de Cafeteros de Colombia. (2017). FNC en cifras. Federación Nacional de Cafeteros. www.federaciondecafeteros.org.spa
dc.relation.referencesFNC, Federación Nacional de Cafeteros de Colombia. (2020). Producción de café de Colombia cerró el 2019 en 14,8 millones de sacos. Federacion Nacional De Cafeteros De Colombia. https://federaciondecafeteros.org/wp/listado-noticias/produccion-decafe-de-colombia-cerro-el-2019-en-148-millones-de-sacos/.spa
dc.relation.referencesFujioka, K., & Shibamoto, T. (2008). Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chemistry, 106(1), 217–221. Gonzalez-Sanchez, H., Gonzalez-Palomares, S., & Rosales-Reyes, T. (2011). Café (coffea arabica L.): compuestos volátiles relacionados con el aroma y sabor. Unacar Tecnociencia, 5(151), 35–45.spa
dc.relation.referencesGuambi D., L. A., Andrade M., J., Farfán T., D. S., & Velásquez C., S. del R. (2018). Calidad organoléptica , métodos de beneficio y cultivares de café robusta ( Coffea canephora Pierre ex Froehner ) en la amazonía del Ecuador. Revista iberoamericana de Tecnología Postcosecha, 19(2), 239–253.spa
dc.relation.referencesHaile, M., & Kang, W. H. (2019). The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. Journal of Food Quality, 2019, 6.spa
dc.relation.referencesHair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis: A Global Perspective (7a ed.). Pearson education.spa
dc.relation.referencesHamdouche, Y., Meile, J. C., Nganou, D. N., Durand, N., Teyssier, C., & Montet, D. (2016). Discrimination of post-harvest coffee processing methods by microbial ecology analyses. Food Control, 65, 112–120.spa
dc.relation.referencesHameed, A., Hussain, S. A., Ijaz, M. U., Ullah, S., Pasha, I., & Suleria, H. A. R. (2018). Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1184–1237.spa
dc.relation.referencesINCOTEC. (2010). Café y productos del café. determinación del contenido de cafeína usando cromatografía líquida de alto desempeño (HPLC). método de referencia (NTCISO 20481:2010).spa
dc.relation.referencesJeszka-Skowron, M., Stanisz, E., & De Peña, M. P. (2016). Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT - Food Science and Technology, 73(November 2016), 243–250.spa
dc.relation.referencesKaiser, H. F. (1961). A note on guttman’s lower bound for the number of common factors. the British Journal of Statistical Psychology, 14(1), 2–3.spa
dc.relation.referencesKleinwächter, M., Bytof, G., & Selmar, D. (2015). Coffee beans and processing. En V. R. Preedy (Ed.), Coffee in Health and Disease Prevention (pp. 73–81). Elsevier Inc.spa
dc.relation.referencesKleinwächter, M., & Selmar, D. (2010). Influence of drying on the content of sugars in wet processed green Arabica coffees. Food Chemistry, 119(2), 500–504.spa
dc.relation.referencesKulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(April), 49–58.spa
dc.relation.referencesLê, S., Josse, J., & Husson, F. (2008). FactoMineR : An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18.spa
dc.relation.referencesLee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2015). Coffee fermentation and flavor - An intricate and delicate relationship. Food Chemistry, 185, 182–191.spa
dc.relation.referencesLiu, C., Yang, N., Yang, Q., Ayed, C., Linforth, R., & Fisk, I. D. (2019). Enhancing Robusta 75 coffee aroma by modifying flavour precursors in the green coffee bean. Food Chemistry, 281(November 2018), 8–17.spa
dc.relation.referencesLloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. Anales de Psicologia, 30(3), 1151–1169.spa
dc.relation.referencesMarín L., S. M., Arcila P., J., Montoya R., E. C., & Oliveros T., C. E. (2003). Cambios Físicos Y Químicos Durante La Maduracíon del Fruto de Café (Coffea arabica L. var. Colombia). Cenifcafé, 54(3), 208–225.spa
dc.relation.referencesMottaleb, M. A., Meziani, M. J., & Islam, M. R. (2014). Solid-Phase Microextraction and its Application to Natural Products. En K. Hostettmann (Ed.), Encyclopedia of Analytical Chemistry (pp. 105–127). John Wiley & Sons, Ltd.spa
dc.relation.referencesMullin, W. J., & Emmons, D. B. (1997). Determination of organic acids and sugars in cheese, milk and whey by high performance liquid chromatography. Food Research International, 30(2), 147–151.spa
dc.relation.referencesMuñoz Armayones, S. (2016). Técnicas multivariantes para el análisis de datos ómicos. (Trabajo de fin de grado inedito). Universidad de Sevilla. Sevilla, España.spa
dc.relation.referencesNarita, Y., & Inouye, K. (2015). Chlorogenic acids from coffe. En V. R. Preedy (Ed.), Coffee in Health and Disease Prevention (pp. 189–199). Elsevier Inc.spa
dc.relation.referencesOberthür, T., Läderach, P., Posada, H., Fisher, M. J., Samper, L. F., Illera, J., Collet, L., Moreno, E., Alarcón, R., Villegas, A., Usma, H., Perez, C., & Jarvis, A. (2011). Regional relationships between inherent coffee quality and growing environment for denomination of origin labels in Nariño and Cauca, Colombia. Food Policy, 36(6), 783– 794.spa
dc.relation.referencesPereira, L. L., Guarçoni, R. C., Pinheiro, P. F., Osório, V. M., Pinheiro, C. A., Moreira, T. R., & ten Caten, C. S. (2020). New propositions about coffee wet processing: Chemical 76 and sensory perspectives. Food Chemistry, 310(April 2019), 125943.spa
dc.relation.referencesPuerta, G. I. (1998). Calidad en taza de las variedades de Coffea arabica L. cultivadas en Colombia. Cenicafé, 49(4), 265–278.spa
dc.relation.referencesPuerta Q., G. I. (2008). Calidad en taza de mezclas preparadas con granos de Coffe arabica Ly C. canephora. Cenicafé, 59(3), 183–203.spa
dc.relation.referencesPuerta Q., G. I. (2010). Fundamentos del proceso de fermentación en el beneficio del café. Avances técnicos Cenicafé, 402, 12.spa
dc.relation.referencesPuerta Q., G. I. (2011). Composición química de una taza de café. Avances en Química, 414, 1–12.spa
dc.relation.referencesPuerta Q., G. I., & Echeverry Molina, J. G. (2015). Fermentación controlada del café: Tecnología para agregar valor a la calidad. Avances técnicos Cenicafé, 454, 12. Puerta Q, G. I. (2012). Factores, procesos y controles en la fermentación del café. Avances técnicos Cenicafé, 422, 12.spa
dc.relation.referencesR Core Team. (2014). R: A language and environment for statistical computing. http://www.rproject.org/.spa
dc.relation.referencesRamalakshmi, K., Kubra, I. R., & Rao, L. J. M. (2007). Physicochemical characteristics of green coffee: Comparison of graded and defective beans. Journal of Food Science, 72(5), S333-s337.spa
dc.relation.referencesRhoades, J. W. (1960). Analysis of the Volatile Constituents of Coffee. Journal of Agricultural and Food Chemistry, 8(2), 136–141.spa
dc.relation.referencesRibeiro, D. E., Borém, F. M., Nunes, C. A. ônio, Alves, A. P. de C., Santos, C. M. dos S., Taveira, J. H. da S., & Dias, L. L. de C. (2018). Profile of Organic Acids and Bioactive Compounds in. Coffee Science, 13(2), 187–197.spa
dc.relation.referencesRodrigues, C. I., Marta, L., Maia, R., Miranda, M., Ribeirinho, M., & Máguas, C. (2007). Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. Journal of Food Composition and Analysis, 20(5), 440– 448.spa
dc.relation.referencesSaeed, M., Naveed, M., BiBi, J., Ali Kamboh, A., Phil, L., & Chao, S. (2019). Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Critical Reviews in Food Science and Nutrition, 59(20), 3293–3319.spa
dc.relation.referencesSamoggia, A., & Riedel, B. (2019). Consumers’ perceptions of coffee health benefits and motives for coffee consumption and purchasing. Nutrients, 11(3), 21.spa
dc.relation.referencesSCA. (2015). SCAA Protocols Cupping Specialty Coffee. En Specialty Coffee Association of America. http://www.scaa.org/?page=resources&d=coffee-protocols.spa
dc.relation.referencesScholz, M. B. dos S., Kitzberger, C. S. G., Prudencio, S. H., & Silva, R. S. dos S. F. da. (2018). The typicity of coffees from different terroirs determined by groups of physicochemical and sensory variables and multiple factor analysis. Food Research International, 114(May), 72–80. Şemen, S., Mercan, S., Yayla, M., & Açıkkol, M. (2017). Elemental composition of green coffee and its contribution to dietary intake. Food Chemistry, 215, 92–100.spa
dc.relation.referencesSouza, M. De, Barbosa, G., & Brígida, M. (2019). Correlation between the composition of green Arabica co ff ee beans and the sensory quality of co ff ee brews. Food Chemistry, 292, 275–280.spa
dc.relation.referencesStefanello, N., Spanevello, R. M., Passamonti, S., Porciúncula, L., Bonan, C. D., Olabiyi, A. A., Teixeira da Rocha, J. B., Assmann, C. E., Morsch, V. M., & Schetinger, M. R. C. (2019). Coffee, caffeine, chlorogenic acid, and the purinergic system. Food and Chemical Toxicology, 123, 298–313.spa
dc.relation.referencesSunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315–325.spa
dc.relation.referencesToledo, P. R. A. B., Pezza, L., Pezza, H. R., & Toci, A. T. (2016). Relationship Between the Different Aspects Related to Coffee Quality and Their Volatile Compounds. Comprehensive Reviews in Food Science and Food Safety, 15(4), 705–719.spa
dc.relation.referencesTolessa, K., Rademaker, M., De Baets, B., & Boeckx, P. (2016). Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Talanta, 150, 367–374.spa
dc.relation.referencesTsegay, G., Redi-Abshiro, M., Singh, B., Ele, E., Mohammed, A. M., & Mamo, H. (2019). Volatile profile of green coffee beans from Coffea Arabica l. plants grown at different altitudes in Ethiopia. Bull. Chem. Soc. Ethiop., 33(3), 401–413.spa
dc.relation.referencesUfer, D., Lin, W., & Ortega, D. L. (2019). Personality traits and preferences for specialty coffee: Results from a coffee shop field experiment. Food Research International, 125. 108504.spa
dc.relation.referencesUSDA. (2020). Coffee: World Markets and Trade. En Foreign Agricultural Service. http://apps.fas.usda.gov/psdonline/circulars/coffee.pdf.spa
dc.relation.referencesValencia, J., Pinzón, M., & Gutiérrez, R. (2015). Caracterizacion fisicoquímica y sensorial de tazas de café producidas en el departamento del Quindío. Alimentos Hoy, 23(36), 150–156.spa
dc.relation.referencesVallarino, J. G., & Osorio, S. (2019). Organic acids. En E. M. Yahia & A. Carrillo-López (Eds.), Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 207– 224). Elsevier Inc.spa
dc.relation.referencesWei, F., & Tanokura, M. (2015). Organic compounds in green coffee beans. En V. R. Preedy (Ed.), Coffee in Health and Disease Prevention (pp. 149–162). Elsevier Inc.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcCalidad de café
dc.subject.armarcCafé Colombia
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalCaféspa
dc.subject.proposalCoffeeeng
dc.subject.proposalCafé Arabicaspa
dc.subject.proposalCafé húmedospa
dc.subject.proposalcafé secospa
dc.subject.proposalCafé semisecospa
dc.subject.proposalSemi-dry coffeeeng
dc.subject.proposalWet coffeeeng
dc.subject.proposalDry coffeeeng
dc.subject.proposalCafé especial variedad Castillo®spa
dc.titleComposición química asociada al perfil de taza de un café especial variedad Castillo® proveniente de Barbosa Antioquia y beneficiado bajo diferentes procesos de fermentaciónspa
dc.title.translatedChemical composition associated with the cup profile of a special Castillo® variety coffee from Barbosa Antioquia and benefited under different fermentation processes
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCentro de los Recursos Naturales y Renovables La Salada (SENA)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
44001488.2020.pdf
Tamaño:
1.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencia y Tecnología de los Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: