Simulación Monte Carlo de nanopartículas magnéticas de magnetita
dc.contributor.advisor | Restrepo-Parra, Elisabeth | |
dc.contributor.author | Londoño Navarro, Juanita | |
dc.contributor.researchgroup | Pcm Computational Applications | spa |
dc.date.accessioned | 2024-04-04T13:34:27Z | |
dc.date.available | 2024-04-04T13:34:27Z | |
dc.date.issued | 2023 | |
dc.description | graficas, ilustraciones, tablas | spa |
dc.description.abstract | Las nanopartículas han sido ampliamente estudiadas y empleadas en la comunidad científica y en la industria por sus innumerables aplicaciones. Los estudios computacionales reportados en la literatura se han enfocado en estudiar nanopartículas aisladas o sistemas de nanopartículas, separando ambos escenarios en diferentes modelos. En esta tesis de maestría se planteó la unificación de ambos modelos: desde un escenario atomístico donde las nanopartículas se simularon individualmente se emplearon los resultados obtenidos como datos de entrada para simular sistemas de nanopartículas magnéticas. Adicionalmente, se estudiaron las propiedades magnéticas de los sistemas de nanopartículas al variar su distribución de tamaños y la concentración de partículas. En el escenario atomístico, se modelaron y simularon nanopartículas individuales de Magnetita de diferentes tamaños empleando el método Monte Carlo, el modelo de Heisenberg clásico y el algoritmo Metropolis con el fin de estudiar los efectos de la temperatura, el campo magnético y el tamaño en las propiedades magnéticas de las nanopartículas. Para el estudio de los sistemas de nanopartículas se empleó el método Monte Carlo, el modelo de Heisenberg clásico y el algoritmo Metrópolis para estudiar la influencia de la concentración y la distribución de tamaños. A partir de los resultados obtenidos del estudio de la concentración y la distribución de tamaños de los sistemas, se pudo detallar que la respuesta magnética de estos sistemas es mayormente gobernada por la temperatura, variables como la concentración de partículas y el campo magnético aplicado toman una influencia secundaria dado que sus efectos son bastante notorios a bajas temperaturas y se evidencian levemente con el aumento de la temperatura. Adicionalmente, se encontró una mejor respuesta magnética para valores más pequeños de la desviación estándar en los sistemas de nanopartículas, debido a la presencia de nanopartículas más grandes dentro de los sistemas que presentan menores desviaciones. Finalmente, se encontró una marcada diferencia con el modelo principal reportado en literatura para la simulación de sistemas de nanopartículas, puesto que este no toma en cuenta variables como la temperatura y el campo magnético externo aplicado para la obtención de los valores de magnetización total de las nanopartículas (Texto tomado de la fuente) | spa |
dc.description.abstract | Nanoparticles are currently widely studied and used in the scientific community and in industry due to their innumerable applications. The computational studies reported have been focused on studying isolated nanoparticles or nanoparticle systems, separating both scenarios into different models. In this master's thesis, the unification of both models is proposed: starting from an atomistic scenario where the nanoparticles are simulated individually, the results obtained were used as input data to simulate nanoparticle systems. The influence in the magnetic properties of nanoparticles systems size distribution and concentration were also studied. In the atomistic scenario, individual Magnetite nanoparticles of different sizes were modeled and simulated: Monte Carlo method and the classical Heisenberg model were used in order to study the effects of temperature, magnetic field and nanoparticles sizes in the magnetic properties. For the study of nanoparticle systems, Monte Carlo method and the Metropolis algorithm were used to study the influence of concentration and size distribution. A marked difference was found with the models proposed in the literature for nanoparticle systems, these models do not take into account variables such as temperature and magnetic field for obtaining the nanoparticles total magnetization. Based on the results obtained from the study of the concentration and size distribution of nanoparticle systems, it was detailed that the magnetic response of these systems is mainly governed by temperature, variables such as the concentration of particles and the applied magnetic field take a secondary influence since its effects are only noticeable at low temperatures. Likewise, a better magnetic response was found for smaller values of the standard deviation of nanoparticle systems. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Simulación Monte Carlo | spa |
dc.format.extent | xx, 74 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85864 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | [1] Cristina Buzea, Ivan I. Pacheco, Kevin Robbie, Biointerphases. Dec; 2(4):MR17-71 (2007). | spa |
dc.relation.references | [2] Rossella Aversa, Mohammad Hadi Modarres, Stefano Cozzini, Regina Ciancio, Alberto Chiusole, Scientific Data volume 5, Article number: 180172 (2018). | spa |
dc.relation.references | [3] Bapusaheb H. Shinde, Shaukatali N. Inamdar, Sagar A. Nalawade, Sushilkumar B. Chaudhari. Materials Today: Proceedings Volume 73, Part 3, Pages 412-417 (2023). | spa |
dc.relation.references | [4] Abdul Hazim Abdullah, Syahrir Ridha Dzeti Farhah Mohshim, Mohammad Yusuf, Hesam Kamyab , Shwetank Krishna, Mohd Azuwan Maoinser, Chemosphere Volume 308, Part 1, 136274 (2022 | spa |
dc.relation.references | [5] Kartikay Lal, Frazer Noble, Khalid Mahmood Arif, Sensing and Bio-Sensing Research, Volume 38, 100538 (2022). | spa |
dc.relation.references | [6] Madhu Hegde, Padmini Pai, Manasa Gangadhar Shetty, Kampa Sundara Babitha, Environmental Nanotechnology, Monitoring & Management,18,100756 (2022). | spa |
dc.relation.references | [7] Esmail Dabirian, Alireza Hajipour, Abbasali Abouei Mehrizi, Ceren Karaman, Fatemeh Karimi, Pau Loke-Show, Onur Karaman, Fuel, 331,125682 (2023). | spa |
dc.relation.references | [8] Jing-Jing Zhu, Xiao-Nan Huang, Tao Yang, Chuan-He Tang, Shou-Wei Yin, XiaoJiang Jia, Xiao-Quan Yang, Industrial Crops & Products, 177, 114521 (2022). | spa |
dc.relation.references | [9] Bashar Issa, Ihab M. Obaidat, Borhan A. Albiss, Yousef Haik, Int. J. Mol. Sci. 14, 21266-21305 (2013 | spa |
dc.relation.references | [10] Gubin S.P, Wiley, capítulo 6 Magnetis of nanoparticles: Effects of Size, Shape, and Interactions, pg 197, 210-219 (2009). | spa |
dc.relation.references | [11] Elsa M. Materon, Celina M. Miyazaki, Olivia Carr, Nirav Joshi, Paulo H.S. Picciani, Cleocir J. Dalmaschio, Frank Davis, Flavio M. Shimizu, Applied Surface Science Advances 6, 100163 (2021 | spa |
dc.relation.references | [12] V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros- Mendez, Adv. Healthc. Mater. 7, 1700845 (2018). | spa |
dc.relation.references | [13] Challa S.S.R. Kumar, Faruq Mohammad, Advanced Drug Delivery Reviews 63, 789–808 (2011). | spa |
dc.relation.references | [14] María De Arcocha Torres, Radiomarcaje de nanopartículas de albúmina con radiometales (tecnecio-99m, galio-67, zirconio-89) y estudio de su biodistribución mediante imagen molecular. Tesis Doctoral. Universidad de Navarra (2020). | spa |
dc.relation.references | [15] Sneha Lunge, Shripal Singh, Amalendu Sinha, Journal of Magnetism and Magnetic Materials 356, 21–31, (2014). | spa |
dc.relation.references | [16] L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, J. Hazard. Mater. 217, 439–446 (2012). | spa |
dc.relation.references | [17] Magnetic nanoparticle assemblies, Dimitris Kechrakos, Handbook of Nanophysics - Vol.3 : Nanoparticles and Quantum Dots (pp.16)Edition: 1Chapter: 22Publisher: CRC Press - Taylor & Francis GroupEditors: Klaus D. Sattler, (2011). | spa |
dc.relation.references | [18] D. Serantes, D. Baldomir, The Open Surface Science Journal, 4, (Suppl 1: M7) 71-84, (2012). | spa |
dc.relation.references | [19] K. Trohidou and M. Vasilakaki, Monte Carlo Studies of Magnetic Nanoparticles, Applications of Monte Carlo Method in Science and Engineering, Prof. Shaul Mordechai (Ed.), ISBN: 978-953-307-691-1, InTech (2011). | spa |
dc.relation.references | [20] V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoksson, C. Johansson, Journal of Magnetism and Magnetic Materials 321, 1400–1403 (2009). | spa |
dc.relation.references | [21] Z. Mao, D. Chen, Z. He, Journal of Magnetism and Magnetic Materials 320, 2335– 2338 (2008). | spa |
dc.relation.references | [22]. Tran Nguyen Lan, Tran Hoang Hai, Computational Materials Science 49, S287–S290 (2010). | spa |
dc.relation.references | [23] P. Duru, E. Ozugurlu , L. Arda, Ceramics International, 45, 5259–5265 (2019). | spa |
dc.relation.references | [24] O. Mounkachi , L. Fkhar, R. Lamouri, E. Salmani, A. El hat, M. Hamedoun, H. Ez-Zahraouy , E.K. Hlil, M. Ait Ali, A. Benyoussef, Ceramics International. 47, 31886–31893 (2021 | spa |
dc.relation.references | [25] H. El ganich, O. El rhazouani, A. Halimi, M. Mkimel, Y. Ait Ahmed, E. Saad Physics Letters A 412, 127587 (2021). | spa |
dc.relation.references | [26] Ahmad Al-Qawasmeh, Mohammad H.A. Badarneh, Abdalla Obeidat, Sufian Abedrabbo, Journal of Magnetism and Magnetic Materials 562 169734, (2022). | spa |
dc.relation.references | [27] Y. Labaye, O. Crisan, L. Berger, J. M. Greneche, J. M. D. Coey, Journal of Applied PPhysics, volume 91, number 10, (2002). | spa |
dc.relation.references | [28] J. Mazo-Zuluaga, J. Restrepo, F. Muñoz, J. Mejía-López, Journal of Applied PPhysics, 105, 123907 (2009). | spa |
dc.relation.references | [29] Johan Mazo Zuluaga. Propiedades magnéticas y efectos de tamaño en nanoestructuras de magnetita: simulación Monte Carlo, Tesis Doctoral “. Universidad de Antioquia (2008). | spa |
dc.relation.references | [30] J. Wang, W. Wu, F. Zhao, G. Zhao, Appl. Phys. Lett. 98, 083107 (2011). | spa |
dc.relation.references | [31] H.M. Lu, Z.H. Cao, C.L. Zhao, P.Y. Li, X.K. Meng, J. Appl. Phys. 103, 123526 (2008). | spa |
dc.relation.references | [32] W. Wu, X. Lin, H. Duan, J. Wang, Int. J. Mod. Phys. B 26, 1250073 (2012). | spa |
dc.relation.references | [33] Xe. He, H. Shi, Particuology, 10, 497 (2012). | spa |
dc.relation.references | [34] H. Mayama, T. Naito, Physica E 41, 1878 (2009). | spa |
dc.relation.references | [35] N.S. Gajbhiye, G. Balaji, M. Ghafari, Phys. Status Solidi A 189, 357 (2002). | spa |
dc.relation.references | [36] J. Mazo-Zuluaga, J. Restrepo, J. Mejia-Lopez, J. Phys. Condens. Matter 20, 195213 (2008). | spa |
dc.relation.references | [37] A .Kadiri, G. Dimitri Ngantso, M. Ait Tamerd, Ravinder Kumar, M. Arejdal, A. Abbassi, Y. El Amraoui, H. Ez-Zahraouy, A. Benyoussef, Solid State Communications, Volume 352, 114816 (2022). | spa |
dc.relation.references | [38] M Vasilakaki , C Binns, K N Trohidou, Nanoscale, May 7;7(17):7753-62 (2015). | spa |
dc.relation.references | [39] D. Serantes, D. Baldomir, The Open Surface Science Journal, 4, (Suppl 1: M7) 71-84 (2012). | spa |
dc.relation.references | [40] V. Russier, Journal of Magnetism and Magnetic Materials 409, 50–55 (2016). | spa |
dc.relation.references | [41] Éléonore Martin, Yves Gossuin, Sara Bals, Safiyye Kavak, Quoc Lam Vuong, Eur. Phys. J. B, 95:201 (2022). | spa |
dc.relation.references | [42] Nooshin Banaee, Reports of Practical Oncology & Radiotherapy, Volume 25, Issue 4, Pages 515-520 (2020). | spa |
dc.relation.references | [43] J. Mejía-López, Coercividad Magnética en Sistemas Percolantes. Tesis Doctoral, Pontificia Universidad Católica de Chile (2000). | spa |
dc.relation.references | [44] Magnetism - From Fundamentals to Nanoscale Dynamics - J. Stohr, H. Siegmann Springer (2006). | spa |
dc.relation.references | [45] S. Blundell, “Magnetism in Condensed Matter”. Oxford University Press (2001). | spa |
dc.relation.references | [46] C. Kittel, “Introduction to Solid State Physics”. 7th Ed. John Wiley & Sons, USA (1996). | spa |
dc.relation.references | [47] Ralph Skomski-Simple Models of Magnetism, Oxford Graduate Texts-Oxford University Press, USA (2008). | spa |
dc.relation.references | [48] Getzlaff M. Fundamentals of magnetism (Springer, 2007)(ISBN 3540311505)(384s) | spa |
dc.relation.references | [49] Nanoparticles from theory to apllications, Gunter Schmid, Wiley, second edition (2010). | spa |
dc.relation.references | [50] R. C. Evans, An Introduction to Crystal Chemistry. 2nd Ed. Cambridge University [49] Press, Cambridge, UK (1966). | spa |
dc.relation.references | [51] 15. B. D. Cullity, “Introduction to Magnetic Materials”. Addison, Wesley. USA (1972). | spa |
dc.relation.references | [52] M. Uhl and B. Siberchicot, J. Phys.: Condens. Matter 7, 4227 (1995). | spa |
dc.relation.references | [53] Magnetic nanoparticle, Gubin S.P, Wiley, capítulo 8 Micromagnetics of Small Ferromagnetic Particles, pg 303-343, (2009). | spa |
dc.relation.references | [54] Dino Fiorani, Surface Effects in Magnetic Nanoparticle, Springer (2005). | spa |
dc.relation.references | [55] Peter Mohn, Magnetism in the solid state, an introduction, Springer series in solid state science, 134, (2006). | spa |
dc.relation.references | [56] W.F. Brown, Micromagnetics, Interscience Publishers, New York, London, (1963). | spa |
dc.relation.references | [57] Exl, L., Suess, D., Schrefl, Micromagnetism. In: Coey, M., Parkin, S. (eds), Handbook of Magnetism and Magnetic Materials. Springer, Cham, (2021). | spa |
dc.relation.references | [58] Carmen-Gabriela Stefanita, From Bulk to Nano The Many Sides of Magnetism, Springer (2008). | spa |
dc.relation.references | [59] Celia Toyos Rodríguez, Nanopartículas magnéticas en biomedicina. Tesis de maestria, Universidad de Oviedo, 2019, España | spa |
dc.relation.references | [60] Steen Mørup, Mikkel Fougt Hansen, Cathrine Frandsen, Beilstein J Nanotechnol. 1: 182–190 (2010). | spa |
dc.relation.references | [61] Juan Eduardo Escrig Murua, Interacción Dipolar entre Sistemas Magnéticos Micro y Nanométricos. Tesis doctoral, Universidad De Santiago De Chile (2006). | spa |
dc.relation.references | [62] D. P. Landau and K. Binder, A guide to Monte-Carlo similations in statistical physics, 2nd ed. New York: Cambridge University Press, (2009). | spa |
dc.relation.references | [63] M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics, 1st ed.New York: Oxford University Press, (1999). | spa |
dc.relation.references | [64] Magnetism and magnetic materials, J.M. D. Coey, Cambridge University press,. Pg, 201, 422 (2011). | spa |
dc.relation.references | [65] Virginia E. Noval, Cristian Ochoa Puentes, José G. Carriazo, Revista Colombiana de Química, 46 (1): 42 (2017). | spa |
dc.relation.references | [66] G. F. Goya, T. S. Berquó, F. C. Fonseca, M. P. Morales, Journal Of Applied Physics, volume 94, number 5 (2003). | spa |
dc.relation.references | [67] M. Uhl and B. Siberchicot, J. Phys.: Condens. Matter 7, 4227 (1995). | spa |
dc.relation.references | [68] Sobhit Singh, M. S. Seehra, Department of Physics & Astronomy, West Virginia University, Morgantown, WV-26506, USA, (2017). | spa |
dc.relation.references | [69] K. L. Krycka, J. A. Borchers, R. A. Booth, Y. Ijiri, K. Hasz, J. J. Rhyne, and S. A. Majetich; Phys. Rev. Lett. 113, 147203 (2014). | spa |
dc.relation.references | [70] K. L. Pisane, Sobhit Singh and M. S. Seehra, Appl. Phys. Lett. 110, 222409 (2017). | spa |
dc.relation.references | [71] Eupídio Scopel, Patrick PiresConti, Daniel Grando Stroppa, Cleocir José Dalmaschio, SN Applied Sciences, 1:147 (2019). | spa |
dc.relation.references | [72] Ghazal Labbeiki, Hossein Attar, Amir Heydarinasab, Sayed Sorkhabadi, Alimorad Rashidi, DARU Journal of Pharmaceutical Sciences, 22:6, (2014). | spa |
dc.relation.references | [73] J. Londoño-Navarro, J. C. Riaño-Rojas, E. Restrepo-Parra, Dyna rev.fac.nac.minas vol.82 no.194 (2015). | spa |
dc.relation.references | [74] Daniela Caruntu, Gabriel Caruntu and Charles J O’Connor, J. Phys. D: Appl. Phys. 40, 5801–5809 (2007). | spa |
dc.relation.references | [75] Chen J P, Sorensen C M, Klabunde K J, Hadjipanayis G C, Devlin E. Kostikas A Phys. Rev. B 54 9288 (1996). | spa |
dc.relation.references | [76] Elisabeth Restrepo Parra. Simulación Monte Carlo de propiedades magnéticas y de transporte en sistemas de superredes del tipo (FM/AFM)n. Tesis doctoral. Universidad Nacional de Colombia (2010 | spa |
dc.relation.references | [77] J. Mohapatra, Z. Fanhao, K. Elkins, M. Xing, M.Ghimire, S. Yoon, S. R Mishra, J. Ping Liu, Phys. Chem. Chem. Phys., ,20, 12879-12887 (2018). | spa |
dc.relation.references | [78] Devore, Jay L. Probability and Statistics for Engineering and the Sciences (8th ed.). Boston, MA: Cengage Learning (2011). | spa |
dc.relation.references | [79] Q. Jiang, X.Y. Lang, The Open Nanoscience Journal,1, 32-59 (2007). | spa |
dc.relation.references | [80] X. He, W. Zhong, Chak-Tong Au, Y. Du, Nanoscale Research Letters, 8:446 (2013). | spa |
dc.relation.references | [81] X. He, H. Shi, Particuology 10, 497–502 (2012). | spa |
dc.relation.references | [82] C. MacDonald, G. Friedman, J. Alamia, K. Barbee, B. Polyak.. Nanomedicine (London, England). 5. 65-76. 10 (2010). | spa |
dc.relation.references | [83] G. Peña-Rodríguez, P. A. Rivera-Suárez, C. H. González-Gómez, C. A. Parra-Vargas, A. O. Garzón-Posada, D. A. Landínez-Téllez y J. Roa-Rojas. TecnoLógicas, vol. 21, no. 41, pp. 13-27 (2018). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::538 - Magnetismo | spa |
dc.subject.proposal | Método de Monte Carlo | spa |
dc.subject.proposal | Algoritmo de Metrópolis | spa |
dc.subject.proposal | Nanopartículas | spa |
dc.subject.proposal | Sistemas de nanopartículas | spa |
dc.subject.proposal | Magnetita | spa |
dc.subject.proposal | Monte Carlo method | eng |
dc.subject.proposal | Metropolis algorithm | eng |
dc.subject.proposal | Nanoparticles | eng |
dc.subject.proposal | Nanoparticle systems | eng |
dc.subject.proposal | Magnetite | eng |
dc.subject.unesco | Física | |
dc.subject.unesco | Physics | |
dc.title | Simulación Monte Carlo de nanopartículas magnéticas de magnetita | spa |
dc.title.translated | Monte Carlo simulations of magnetite magnetic nanoparticles | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053794935.2023.pdf
- Tamaño:
- 3.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: