Simulación Monte Carlo de nanopartículas magnéticas de magnetita

dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.authorLondoño Navarro, Juanita
dc.contributor.researchgroupPcm Computational Applicationsspa
dc.date.accessioned2024-04-04T13:34:27Z
dc.date.available2024-04-04T13:34:27Z
dc.date.issued2023
dc.descriptiongraficas, ilustraciones, tablasspa
dc.description.abstractLas nanopartículas han sido ampliamente estudiadas y empleadas en la comunidad científica y en la industria por sus innumerables aplicaciones. Los estudios computacionales reportados en la literatura se han enfocado en estudiar nanopartículas aisladas o sistemas de nanopartículas, separando ambos escenarios en diferentes modelos. En esta tesis de maestría se planteó la unificación de ambos modelos: desde un escenario atomístico donde las nanopartículas se simularon individualmente se emplearon los resultados obtenidos como datos de entrada para simular sistemas de nanopartículas magnéticas. Adicionalmente, se estudiaron las propiedades magnéticas de los sistemas de nanopartículas al variar su distribución de tamaños y la concentración de partículas. En el escenario atomístico, se modelaron y simularon nanopartículas individuales de Magnetita de diferentes tamaños empleando el método Monte Carlo, el modelo de Heisenberg clásico y el algoritmo Metropolis con el fin de estudiar los efectos de la temperatura, el campo magnético y el tamaño en las propiedades magnéticas de las nanopartículas. Para el estudio de los sistemas de nanopartículas se empleó el método Monte Carlo, el modelo de Heisenberg clásico y el algoritmo Metrópolis para estudiar la influencia de la concentración y la distribución de tamaños. A partir de los resultados obtenidos del estudio de la concentración y la distribución de tamaños de los sistemas, se pudo detallar que la respuesta magnética de estos sistemas es mayormente gobernada por la temperatura, variables como la concentración de partículas y el campo magnético aplicado toman una influencia secundaria dado que sus efectos son bastante notorios a bajas temperaturas y se evidencian levemente con el aumento de la temperatura. Adicionalmente, se encontró una mejor respuesta magnética para valores más pequeños de la desviación estándar en los sistemas de nanopartículas, debido a la presencia de nanopartículas más grandes dentro de los sistemas que presentan menores desviaciones. Finalmente, se encontró una marcada diferencia con el modelo principal reportado en literatura para la simulación de sistemas de nanopartículas, puesto que este no toma en cuenta variables como la temperatura y el campo magnético externo aplicado para la obtención de los valores de magnetización total de las nanopartículas (Texto tomado de la fuente)spa
dc.description.abstractNanoparticles are currently widely studied and used in the scientific community and in industry due to their innumerable applications. The computational studies reported have been focused on studying isolated nanoparticles or nanoparticle systems, separating both scenarios into different models. In this master's thesis, the unification of both models is proposed: starting from an atomistic scenario where the nanoparticles are simulated individually, the results obtained were used as input data to simulate nanoparticle systems. The influence in the magnetic properties of nanoparticles systems size distribution and concentration were also studied. In the atomistic scenario, individual Magnetite nanoparticles of different sizes were modeled and simulated: Monte Carlo method and the classical Heisenberg model were used in order to study the effects of temperature, magnetic field and nanoparticles sizes in the magnetic properties. For the study of nanoparticle systems, Monte Carlo method and the Metropolis algorithm were used to study the influence of concentration and size distribution. A marked difference was found with the models proposed in the literature for nanoparticle systems, these models do not take into account variables such as temperature and magnetic field for obtaining the nanoparticles total magnetization. Based on the results obtained from the study of the concentration and size distribution of nanoparticle systems, it was detailed that the magnetic response of these systems is mainly governed by temperature, variables such as the concentration of particles and the applied magnetic field take a secondary influence since its effects are only noticeable at low temperatures. Likewise, a better magnetic response was found for smaller values of the standard deviation of nanoparticle systems.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaSimulación Monte Carlospa
dc.format.extentxx, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85864
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.references[1] Cristina Buzea, Ivan I. Pacheco, Kevin Robbie, Biointerphases. Dec; 2(4):MR17-71 (2007).spa
dc.relation.references[2] Rossella Aversa, Mohammad Hadi Modarres, Stefano Cozzini, Regina Ciancio, Alberto Chiusole, Scientific Data volume 5, Article number: 180172 (2018).spa
dc.relation.references[3] Bapusaheb H. Shinde, Shaukatali N. Inamdar, Sagar A. Nalawade, Sushilkumar B. Chaudhari. Materials Today: Proceedings Volume 73, Part 3, Pages 412-417 (2023).spa
dc.relation.references[4] Abdul Hazim Abdullah, Syahrir Ridha Dzeti Farhah Mohshim, Mohammad Yusuf, Hesam Kamyab , Shwetank Krishna, Mohd Azuwan Maoinser, Chemosphere Volume 308, Part 1, 136274 (2022spa
dc.relation.references[5] Kartikay Lal, Frazer Noble, Khalid Mahmood Arif, Sensing and Bio-Sensing Research, Volume 38, 100538 (2022).spa
dc.relation.references[6] Madhu Hegde, Padmini Pai, Manasa Gangadhar Shetty, Kampa Sundara Babitha, Environmental Nanotechnology, Monitoring & Management,18,100756 (2022).spa
dc.relation.references[7] Esmail Dabirian, Alireza Hajipour, Abbasali Abouei Mehrizi, Ceren Karaman, Fatemeh Karimi, Pau Loke-Show, Onur Karaman, Fuel, 331,125682 (2023).spa
dc.relation.references[8] Jing-Jing Zhu, Xiao-Nan Huang, Tao Yang, Chuan-He Tang, Shou-Wei Yin, XiaoJiang Jia, Xiao-Quan Yang, Industrial Crops & Products, 177, 114521 (2022).spa
dc.relation.references[9] Bashar Issa, Ihab M. Obaidat, Borhan A. Albiss, Yousef Haik, Int. J. Mol. Sci. 14, 21266-21305 (2013spa
dc.relation.references[10] Gubin S.P, Wiley, capítulo 6 Magnetis of nanoparticles: Effects of Size, Shape, and Interactions, pg 197, 210-219 (2009).spa
dc.relation.references[11] Elsa M. Materon, Celina M. Miyazaki, Olivia Carr, Nirav Joshi, Paulo H.S. Picciani, Cleocir J. Dalmaschio, Frank Davis, Flavio M. Shimizu, Applied Surface Science Advances 6, 100163 (2021spa
dc.relation.references[12] V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros- Mendez, Adv. Healthc. Mater. 7, 1700845 (2018).spa
dc.relation.references[13] Challa S.S.R. Kumar, Faruq Mohammad, Advanced Drug Delivery Reviews 63, 789–808 (2011).spa
dc.relation.references[14] María De Arcocha Torres, Radiomarcaje de nanopartículas de albúmina con radiometales (tecnecio-99m, galio-67, zirconio-89) y estudio de su biodistribución mediante imagen molecular. Tesis Doctoral. Universidad de Navarra (2020).spa
dc.relation.references[15] Sneha Lunge, Shripal Singh, Amalendu Sinha, Journal of Magnetism and Magnetic Materials 356, 21–31, (2014).spa
dc.relation.references[16] L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, J. Hazard. Mater. 217, 439–446 (2012).spa
dc.relation.references[17] Magnetic nanoparticle assemblies, Dimitris Kechrakos, Handbook of Nanophysics - Vol.3 : Nanoparticles and Quantum Dots (pp.16)Edition: 1Chapter: 22Publisher: CRC Press - Taylor & Francis GroupEditors: Klaus D. Sattler, (2011).spa
dc.relation.references[18] D. Serantes, D. Baldomir, The Open Surface Science Journal, 4, (Suppl 1: M7) 71-84, (2012).spa
dc.relation.references[19] K. Trohidou and M. Vasilakaki, Monte Carlo Studies of Magnetic Nanoparticles, Applications of Monte Carlo Method in Science and Engineering, Prof. Shaul Mordechai (Ed.), ISBN: 978-953-307-691-1, InTech (2011).spa
dc.relation.references[20] V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoksson, C. Johansson, Journal of Magnetism and Magnetic Materials 321, 1400–1403 (2009).spa
dc.relation.references[21] Z. Mao, D. Chen, Z. He, Journal of Magnetism and Magnetic Materials 320, 2335– 2338 (2008).spa
dc.relation.references[22]. Tran Nguyen Lan, Tran Hoang Hai, Computational Materials Science 49, S287–S290 (2010).spa
dc.relation.references[23] P. Duru, E. Ozugurlu , L. Arda, Ceramics International, 45, 5259–5265 (2019).spa
dc.relation.references[24] O. Mounkachi , L. Fkhar, R. Lamouri, E. Salmani, A. El hat, M. Hamedoun, H. Ez-Zahraouy , E.K. Hlil, M. Ait Ali, A. Benyoussef, Ceramics International. 47, 31886–31893 (2021spa
dc.relation.references[25] H. El ganich, O. El rhazouani, A. Halimi, M. Mkimel, Y. Ait Ahmed, E. Saad Physics Letters A 412, 127587 (2021).spa
dc.relation.references[26] Ahmad Al-Qawasmeh, Mohammad H.A. Badarneh, Abdalla Obeidat, Sufian Abedrabbo, Journal of Magnetism and Magnetic Materials 562 169734, (2022).spa
dc.relation.references[27] Y. Labaye, O. Crisan, L. Berger, J. M. Greneche, J. M. D. Coey, Journal of Applied PPhysics, volume 91, number 10, (2002).spa
dc.relation.references[28] J. Mazo-Zuluaga, J. Restrepo, F. Muñoz, J. Mejía-López, Journal of Applied PPhysics, 105, 123907 (2009).spa
dc.relation.references[29] Johan Mazo Zuluaga. Propiedades magnéticas y efectos de tamaño en nanoestructuras de magnetita: simulación Monte Carlo, Tesis Doctoral “. Universidad de Antioquia (2008).spa
dc.relation.references[30] J. Wang, W. Wu, F. Zhao, G. Zhao, Appl. Phys. Lett. 98, 083107 (2011).spa
dc.relation.references[31] H.M. Lu, Z.H. Cao, C.L. Zhao, P.Y. Li, X.K. Meng, J. Appl. Phys. 103, 123526 (2008).spa
dc.relation.references[32] W. Wu, X. Lin, H. Duan, J. Wang, Int. J. Mod. Phys. B 26, 1250073 (2012).spa
dc.relation.references[33] Xe. He, H. Shi, Particuology, 10, 497 (2012).spa
dc.relation.references[34] H. Mayama, T. Naito, Physica E 41, 1878 (2009).spa
dc.relation.references[35] N.S. Gajbhiye, G. Balaji, M. Ghafari, Phys. Status Solidi A 189, 357 (2002).spa
dc.relation.references[36] J. Mazo-Zuluaga, J. Restrepo, J. Mejia-Lopez, J. Phys. Condens. Matter 20, 195213 (2008).spa
dc.relation.references[37] A .Kadiri, G. Dimitri Ngantso, M. Ait Tamerd, Ravinder Kumar, M. Arejdal, A. Abbassi, Y. El Amraoui, H. Ez-Zahraouy, A. Benyoussef, Solid State Communications, Volume 352, 114816 (2022).spa
dc.relation.references[38] M Vasilakaki , C Binns, K N Trohidou, Nanoscale, May 7;7(17):7753-62 (2015).spa
dc.relation.references[39] D. Serantes, D. Baldomir, The Open Surface Science Journal, 4, (Suppl 1: M7) 71-84 (2012).spa
dc.relation.references[40] V. Russier, Journal of Magnetism and Magnetic Materials 409, 50–55 (2016).spa
dc.relation.references[41] Éléonore Martin, Yves Gossuin, Sara Bals, Safiyye Kavak, Quoc Lam Vuong, Eur. Phys. J. B, 95:201 (2022).spa
dc.relation.references[42] Nooshin Banaee, Reports of Practical Oncology & Radiotherapy, Volume 25, Issue 4, Pages 515-520 (2020).spa
dc.relation.references[43] J. Mejía-López, Coercividad Magnética en Sistemas Percolantes. Tesis Doctoral, Pontificia Universidad Católica de Chile (2000).spa
dc.relation.references[44] Magnetism - From Fundamentals to Nanoscale Dynamics - J. Stohr, H. Siegmann Springer (2006).spa
dc.relation.references[45] S. Blundell, “Magnetism in Condensed Matter”. Oxford University Press (2001).spa
dc.relation.references[46] C. Kittel, “Introduction to Solid State Physics”. 7th Ed. John Wiley & Sons, USA (1996).spa
dc.relation.references[47] Ralph Skomski-Simple Models of Magnetism, Oxford Graduate Texts-Oxford University Press, USA (2008).spa
dc.relation.references[48] Getzlaff M. Fundamentals of magnetism (Springer, 2007)(ISBN 3540311505)(384s)spa
dc.relation.references[49] Nanoparticles from theory to apllications, Gunter Schmid, Wiley, second edition (2010).spa
dc.relation.references[50] R. C. Evans, An Introduction to Crystal Chemistry. 2nd Ed. Cambridge University [49] Press, Cambridge, UK (1966).spa
dc.relation.references[51] 15. B. D. Cullity, “Introduction to Magnetic Materials”. Addison, Wesley. USA (1972).spa
dc.relation.references[52] M. Uhl and B. Siberchicot, J. Phys.: Condens. Matter 7, 4227 (1995).spa
dc.relation.references[53] Magnetic nanoparticle, Gubin S.P, Wiley, capítulo 8 Micromagnetics of Small Ferromagnetic Particles, pg 303-343, (2009).spa
dc.relation.references[54] Dino Fiorani, Surface Effects in Magnetic Nanoparticle, Springer (2005).spa
dc.relation.references[55] Peter Mohn, Magnetism in the solid state, an introduction, Springer series in solid state science, 134, (2006).spa
dc.relation.references[56] W.F. Brown, Micromagnetics, Interscience Publishers, New York, London, (1963).spa
dc.relation.references[57] Exl, L., Suess, D., Schrefl, Micromagnetism. In: Coey, M., Parkin, S. (eds), Handbook of Magnetism and Magnetic Materials. Springer, Cham, (2021).spa
dc.relation.references[58] Carmen-Gabriela Stefanita, From Bulk to Nano The Many Sides of Magnetism, Springer (2008).spa
dc.relation.references[59] Celia Toyos Rodríguez, Nanopartículas magnéticas en biomedicina. Tesis de maestria, Universidad de Oviedo, 2019, Españaspa
dc.relation.references[60] Steen Mørup, Mikkel Fougt Hansen, Cathrine Frandsen, Beilstein J Nanotechnol. 1: 182–190 (2010).spa
dc.relation.references[61] Juan Eduardo Escrig Murua, Interacción Dipolar entre Sistemas Magnéticos Micro y Nanométricos. Tesis doctoral, Universidad De Santiago De Chile (2006).spa
dc.relation.references[62] D. P. Landau and K. Binder, A guide to Monte-Carlo similations in statistical physics, 2nd ed. New York: Cambridge University Press, (2009).spa
dc.relation.references[63] M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics, 1st ed.New York: Oxford University Press, (1999).spa
dc.relation.references[64] Magnetism and magnetic materials, J.M. D. Coey, Cambridge University press,. Pg, 201, 422 (2011).spa
dc.relation.references[65] Virginia E. Noval, Cristian Ochoa Puentes, José G. Carriazo, Revista Colombiana de Química, 46 (1): 42 (2017).spa
dc.relation.references[66] G. F. Goya, T. S. Berquó, F. C. Fonseca, M. P. Morales, Journal Of Applied Physics, volume 94, number 5 (2003).spa
dc.relation.references[67] M. Uhl and B. Siberchicot, J. Phys.: Condens. Matter 7, 4227 (1995).spa
dc.relation.references[68] Sobhit Singh, M. S. Seehra, Department of Physics & Astronomy, West Virginia University, Morgantown, WV-26506, USA, (2017).spa
dc.relation.references[69] K. L. Krycka, J. A. Borchers, R. A. Booth, Y. Ijiri, K. Hasz, J. J. Rhyne, and S. A. Majetich; Phys. Rev. Lett. 113, 147203 (2014).spa
dc.relation.references[70] K. L. Pisane, Sobhit Singh and M. S. Seehra, Appl. Phys. Lett. 110, 222409 (2017).spa
dc.relation.references[71] Eupídio Scopel, Patrick PiresConti, Daniel Grando Stroppa, Cleocir José Dalmaschio, SN Applied Sciences, 1:147 (2019).spa
dc.relation.references[72] Ghazal Labbeiki, Hossein Attar, Amir Heydarinasab, Sayed Sorkhabadi, Alimorad Rashidi, DARU Journal of Pharmaceutical Sciences, 22:6, (2014).spa
dc.relation.references[73] J. Londoño-Navarro, J. C. Riaño-Rojas, E. Restrepo-Parra, Dyna rev.fac.nac.minas vol.82 no.194 (2015).spa
dc.relation.references[74] Daniela Caruntu, Gabriel Caruntu and Charles J O’Connor, J. Phys. D: Appl. Phys. 40, 5801–5809 (2007).spa
dc.relation.references[75] Chen J P, Sorensen C M, Klabunde K J, Hadjipanayis G C, Devlin E. Kostikas A Phys. Rev. B 54 9288 (1996).spa
dc.relation.references[76] Elisabeth Restrepo Parra. Simulación Monte Carlo de propiedades magnéticas y de transporte en sistemas de superredes del tipo (FM/AFM)n. Tesis doctoral. Universidad Nacional de Colombia (2010spa
dc.relation.references[77] J. Mohapatra, Z. Fanhao, K. Elkins, M. Xing, M.Ghimire, S. Yoon, S. R Mishra, J. Ping Liu, Phys. Chem. Chem. Phys., ,20, 12879-12887 (2018).spa
dc.relation.references[78] Devore, Jay L. Probability and Statistics for Engineering and the Sciences (8th ed.). Boston, MA: Cengage Learning (2011).spa
dc.relation.references[79] Q. Jiang, X.Y. Lang, The Open Nanoscience Journal,1, 32-59 (2007).spa
dc.relation.references[80] X. He, W. Zhong, Chak-Tong Au, Y. Du, Nanoscale Research Letters, 8:446 (2013).spa
dc.relation.references[81] X. He, H. Shi, Particuology 10, 497–502 (2012).spa
dc.relation.references[82] C. MacDonald, G. Friedman, J. Alamia, K. Barbee, B. Polyak.. Nanomedicine (London, England). 5. 65-76. 10 (2010).spa
dc.relation.references[83] G. Peña-Rodríguez, P. A. Rivera-Suárez, C. H. González-Gómez, C. A. Parra-Vargas, A. O. Garzón-Posada, D. A. Landínez-Téllez y J. Roa-Rojas. TecnoLógicas, vol. 21, no. 41, pp. 13-27 (2018).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.proposalMétodo de Monte Carlospa
dc.subject.proposalAlgoritmo de Metrópolisspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalSistemas de nanopartículasspa
dc.subject.proposalMagnetitaspa
dc.subject.proposalMonte Carlo methodeng
dc.subject.proposalMetropolis algorithmeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalNanoparticle systemseng
dc.subject.proposalMagnetiteeng
dc.subject.unescoFísica
dc.subject.unescoPhysics
dc.titleSimulación Monte Carlo de nanopartículas magnéticas de magnetitaspa
dc.title.translatedMonte Carlo simulations of magnetite magnetic nanoparticleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053794935.2023.pdf
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: