Desarrollo microestructural y su incidencia en el desempeño de mezclas de tierra comprimida estabilizada con un cemento alternativo (LC3) y agregados de concreto reciclado
dc.contributor.advisor | Tobón, Jorge Iván | |
dc.contributor.advisor | Arias, Yhan Paul | |
dc.contributor.author | Díaz García, Andrés Camilo | |
dc.contributor.cvlac | Diaz, Andres Camilo | |
dc.contributor.orcid | Díaz García, Andrés Camilo [0009-0002-5022-1330] | |
dc.contributor.orcid | Arias, Yhan Paul [0000-0002-8988-6295] | |
dc.contributor.researchgate | Diaz-Garcia, Camilo | |
dc.contributor.researchgroup | Grupo del Cemento y Materiales de Construcción | |
dc.contributor.scopus | Diaz-Garcia, Camilo | |
dc.date.accessioned | 2025-09-02T15:55:35Z | |
dc.date.available | 2025-09-02T15:55:35Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | La transición hacia procesos de producción que tengan un menor impacto ambiental y hagan un uso más eficiente de los recursos y energía, ha llevado a la necesidad de buscar alternativas que logren satisfacer las necesidades sin perder la calidad en el desempeño de los productos. En el caso de los materiales de construcción, la reducción del contenido de cementos convencionales y la diversificación de sistemas constructivos es la principal estrategia para alcanzar la sostenibilidad en el corto plazo. En ese sentido, el desarrollo de materiales de construcción en tierra ha tomado relevancia por su baja huella de carbono en la producción y diversidad de materias primas para su fabricación, teniendo así capacidad de incorporar de distintos residuos. Con base en esto, este estudio se centró en analizar en mezclas de suelo estabilizado, el efecto de la incorporación de agregados de concreto reciclado (ACR) y un cemento ternario de caliza y arcilla calcinada (LC3) sobre los cambios microestructurales, y su influencia en el desempeño de propiedades de ingeniería como la compactación, resistencia a compresión y absorción de agua por capilaridad. Se analizan mezclas con dos tipos de cemento, Cemento Portland (OPC) de Altas Resistencias Tempranas de referencia, y LC3, con dosificaciones de porcentaje en peso entre 0 y 15 % y de ACR entre 30 % y 60 %. La resistencia a compresión inconfinada a 7 y 28 días se evaluó estadísticamente a través de un diseño experimental de mezclas, obteniendo valores entre los 4 y 14 MPa, mostrando una mayor representatividad de la interacción entre las cantidades de ACR y el material cementante. Se encontró una fuerte incidencia del tipo de cemento sobre la respuesta mecánica y la absorción en presencia del agregado reciclado, donde el cemento alternativo presentó mayor demanda de agua, lo que permitió una mayor tasa de aumento de resistencia al mantener un medio poroso más reactivo. De esta forma, el LC3 alcanzó un desempeño similar a las mezclas del OPC cuando se encontró acompañado con altos niveles de ACR (60%); contrario a lo hallado en el cemento de referencia, que mostró bajos desempeños en las propiedades estudiadas cuando las altas cantidades de cemento estaban acompañadas del agregado reciclado, teniendo menor densidad y mayor porosidad, lo que afecta el desempeño de las propiedades. La compatibilidad entre el LC3 y el ACR se da por una mayor densificación con productos de hidratación que rellenaron los poros, con compuestos asociados a la reacción de la caliza y el metacaolín. Se desarrollan productos de menor densidad que el C-S-H de los cementos convencionales, generando una mayor extensión de la red de geles que densifican la matriz a causa de la estabilidad en la reacción que generan los carbonatos y la movilidad iónica que promueve el metacaolín, resultando en mejores desempeños de sus propiedades de ingeniería. Esto se observó por medio de análisis térmico para identificar los productos de hidratación, y por microscopía electrónica se pudo evidenciar el refinamiento de los poros. Esto muestra que los cambios microestructurales se vieron influenciados por la capacidad de desarrollar distintos tipos de productos de hidratación, alcanzando una mayor densidad compactada y así en un mejor desempeño, mostrando el potencial que tienen el uso de materias primas alternativas en el desarrollo de materiales de construcción sostenible con cementos de bajo contenido de clínker y residuos de construcción y demolición. (Tomado de la fuente) | spa |
dc.description.abstract | The transition towards production processes that have a lower environmental impact and make more efficient use of resources and energy has led to the need to look for alternatives that meet the demands without losing quality in product performance. In the case of building materials, the reduction of conventional cement content and the diversification of construction systems is the main strategy to achieve sustainability in the short term. In this sense, the development of earth-based building materials has become relevant due to their low carbon footprint in production and diversity of raw materials for their manufacture, thus having the capacity to incorporate different waste materials. Based on this, this study focused on analyzing the effect of the incorporation of recycled concrete aggregates (RCA) and a ternary cement of limestone and calcined clay (LC3) in stabilized soil mixtures on microstructural changes and their influence on the performance of engineering properties such as compaction, compressive strength and capillary water absorption. Mixtures with two types of cement, Portland Cement (OPC) of High Early Strengths of reference, and LC3, with dosages of percentage by weight between 0 and 15 % and ACR between 30 % and 60 %, are analysed. The unconfined compressive strength at 7 and 28 days was statistically evaluated through an experimental mix design, obtaining values between 4 and 14 MPa, showing a greater representativeness of the interaction between the amounts of ACR and the cementitious material. A significant influence of the type of cement on the mechanical and absorption response in the presence of recycled aggregate was found, where the alternative cement presented a higher water demand, which allowed a higher rate of strength increase by maintaining a more reactive porous medium. Thus, LC3 achieved a similar performance to the OPC mixes when accompanied by high levels of RCA (60%); contrary to what was found in the reference cement, which showed low performances in the properties studied when high amounts of cement were accompanied by recycled aggregate, having lower density and higher porosity, which affects the performance of the properties. The compatibility between LC3 and RCA is given by a higher densification with hydration products that filled the pores, with compounds associated with the reaction of limestone and metakaolin. Products with lower density than the C-S-H of conventional cements were developed, generating a greater extension of the network of gels that densify the matrix due to the stability in the reaction generated by the carbonates and the ionic mobility promoted by the metakaolin, resulting in better performance of its engineering properties. This was observed by thermal analysis to identify the hydration products, and by electron microscopy the refinement of the pores could be evidenced. This shows that the microstructural changes were influenced by the ability to develop different types of hydration products, achieving a higher compacted density and thus better performance, showing the potential of using alternative raw materials in the development of sustainable construction materials with low clinker content cements and construction and demolition waste. | eng |
dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Materiales y procesos | |
dc.description.researcharea | Aprovechamiento de residuos de construcción y demolición y tecnologías de bajo impacto | |
dc.format.extent | 114 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88538 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | K. Richardson et al., “Earth beyond six of nine planetary boundaries,” Science Advance, 2023, doi: 10.1126/sciadv.adh2458 | |
dc.relation.references | B. Huang et al., “A Life Cycle Thinking Framework to Mitigate the Environmental Impact of Building Materials,” Nov. 20, 2020, Cell Press. doi: 10.1016/j.oneear.2020.10.010 | |
dc.relation.references | Gobierno de Colombia, “Estrategia Nacional de Economía Circular,” 2021 | |
dc.relation.references | Y. Villagrán‐zaccardi et al., “Overview of cement and concrete production in Latin America and the Caribbean with a focus on the goals of reaching carbon neutrality,” RILEM Technical Letters, vol. 7, pp. 30–46, Jul. 2022, doi: 10.21809/rilemtechlett.2022.155 | |
dc.relation.references | K. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, Dec. 2018, doi: 10.1016/j.cemconres.2017.08.017 | |
dc.relation.references | E. Naboni and L. Havinga, Regenerative Design in Digital Practice: A Handbook for the Built Environment. Eurac Research, 2019 | |
dc.relation.references | S. Krumdieck, Transition Engineering: Building a Sustainable Future. CRC Press - Taylor & Francis Group, 2020 | |
dc.relation.references | F. Pacheco Torgal and S. Jalali, Eco-efficient Construction and Building Materials. Springer London, 2011. doi: 10.1007/978-0-85729-892-8 | |
dc.relation.references | J. C. Morel, R. Charef, E. Hamard, A. Fabbri, C. Beckett, and Q. B. Bui, “Earth as construction material in the circular economy context: Practitioner perspectives on barriers to overcome,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 376, no. 1834, Royal Society Publishing, Sep. 27, 2021. doi: 10.1098/rstb.2020.0182 | |
dc.relation.references | E. Hamard, A. Fabbri, and J. C. Morel, “General Introduction,” in RILEM State-of-the-Art Reports, vol. 35, Springer Science and Business Media B.V., 2022, pp. 1–15. doi: 10.1007/978-3-030-83297-1_1 | |
dc.relation.references | M. R. Hall, R. Lindsay, and M. Krayenhoff, “Chapter 1 - Overview of modern earth building,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, Elsevier Ltd, 2012, pp. 3–16. doi: 10.1533/9780857096166.1.3 | |
dc.relation.references | H. Schroeder, “Chapter 4 - Modern earth building codes, standards and normative development,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, Elsevier Ltd, 2012, pp. 72–109. doi: 10.1533/9780857096166.1.72 | |
dc.relation.references | D. Gallipoli, A. W. Bruno, C. Perlot, and J. Mendes, “A geotechnical perspective of raw earth building,” Acta Geotech, vol. 12, no. 3, pp. 463–478, Jun. 2017, doi: 10.1007/s11440-016-0521-1 | |
dc.relation.references | J. E. Aubert, P. Faria, P. Maillard, K. A. J. Ouedraogo, C. Ouellet-Plamondon, and E. Prud’homme, “Characterization of Earth Used in Earth Construction Materials,” in RILEM State-of-the-Art Reports, vol. 35, Springer Science and Business Media B.V., 2022, pp. 17–81. doi: 10.1007/978-3-030-83297-1_2 | |
dc.relation.references | V. Gupta, H. K. Chai, Y. Lu, and S. Chaudhary, “A state of the art review to enhance the industrial scale waste utilization in sustainable unfired bricks,” Sep. 10, 2020, Elsevier Ltd. doi: 10.1016/j.conbuildmat.2020.119220 | |
dc.relation.references | H. Van Damme and H. Houben, “Earth concrete. Stabilization revisited,” Dec. 01, 2018, Elsevier Ltd. doi: 10.1016/j.cemconres.2017.02.035 | |
dc.relation.references | A. Dawson, “Chapter 7 - Alternative and recycled materials for earth construction,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 2012. doi: 10.1533/9780857096166.1.172 | |
dc.relation.references | A. L. Murmu and A. Patel, “Towards sustainable bricks production: An overview,” Mar. 20, 2018, Elsevier Ltd. doi: 10.1016/j.conbuildmat.2018.01.038 | |
dc.relation.references | L. A. López Ruiz, X. Roca Ramón, and S. Gassó Domingo, “The circular economy in the construction and demolition waste sector – A review and an integrative model approach,” J Clean Prod, vol. 248, Mar. 2020, doi: 10.1016/j.jclepro.2019.119238 | |
dc.relation.references | A. C. Paula Junior, C. Jacinto, C. Turco, J. Fernandes, E. Teixeira, and R. Mateus, “Analysis of the effect of incorporating construction and demolition waste on the environmental and mechanical performance of earth-based mixtures,” Constr Build Mater, vol. 330, May 2022, doi: 10.1016/j.conbuildmat.2022.127244 | |
dc.relation.references | A. H. Narayanaswamy, P. Walker, B. V. Venkatarama Reddy, A. Heath, and D. Maskell, “Mechanical and thermal properties, and comparative life-cycle impacts, of stabilised earth building products,” Constr Build Mater, vol. 243, May 2020, doi: 10.1016/j.conbuildmat.2020.118096 | |
dc.relation.references | L. R. Garcez, C. E. T. Balestra, N. B. R. Monteiro, J. de A. Melo Filho, and M. A. Ramirez Gil, “Mechanical strength and Life Cycle Assessment (LCA) of soil-cement: comparison between mixtures of soil with ASTM type III cement, LC3, and the incorporation of by products and agroindustrial residues,” Constr Build Mater, vol. 411, Jan. 2024, doi: 10.1016/j.conbuildmat.2023.134331 | |
dc.relation.references | A. Alujas Diaz et al., “Properties and occurrence of clay resources for use as supplementary cementitious materials: a paper of RILEM TC 282-CCL,” Materials and Structures/Materiaux et Constructions, vol. 55, no. 5, Jun. 2022, doi: 10.1617/s11527-022-01972-2 | |
dc.relation.references | A. A. Firoozi, C. Guney Olgun, A. A. Firoozi, and M. S. Baghini, “Fundamentals of soil stabilization,” International Journal of Geo-Engineering, vol. 8, no. 1, Dec. 2017, doi: 10.1186/s40703-017-0064-9 | |
dc.relation.references | A. Anburuvel, “The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review,” Geotechnical and Geological Engineering, vol. 42, no. 1, pp. 1–42, Jan. 2024, doi: 10.1007/s10706-023-02554-x | |
dc.relation.references | B. M. Das, Geotechnical Engineering Handbook. J. Ross Pub, 2011 | |
dc.relation.references | M. R. Hall, K. B. Najim, and P. Keikhaei Dehdezi, “Soil stabilization and earth construction: Materials, properties and techniques,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, Elsevier Ltd, 2012, pp. 222–255. doi: 10.1533/9780857096166.2.222 | |
dc.relation.references | P. Sargent, “Chapter 21 - The development of alkali-activated mixtures for soil stabilisation,” in Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier Inc., 2015, pp. 555–604. doi: 10.1533/9781782422884.4.555 | |
dc.relation.references | K. Lemaire, D. Deneele, S. Bonnet, and M. Legret, “Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt,” Eng Geol, vol. 166, pp. 255–261, Nov. 2013, doi: 10.1016/j.enggeo.2013.09.012 | |
dc.relation.references | G. Das, A. Razakamanantsoa, G. Herrier, and D. Deneele, “Influence of pore fluid-soil structure interactions on compacted lime-treated silty soil,” Eng Geol, vol. 296, Jan. 2022, doi: 10.1016/j.enggeo.2021.106496 | |
dc.relation.references | F. M. . Lea, P. C. . Hewlett, and Martin. Liska, Lea’s chemistry of cement and concrete. Butterworth-Heinemann, 2019 | |
dc.relation.references | K. Scrivener, R. Snellings, and B. Lothenbach, A practical guide to microstructural analysis of cementitious materials. Taylor & Francis Group, 2016 | |
dc.relation.references | K. Mehta and P. Monteiro, Concrete. Microstructure, properties and materials. Mc Graw Hill, 2006. doi: 10.1036/0071462899 | |
dc.relation.references | Z. Zhang, G. W. Scherer, and A. Bauer, “Morphology of cementitious material during early hydration,” Cem Concr Res, vol. 107, pp. 85–100, May 2018, doi: 10.1016/j.cemconres.2018.02.004 | |
dc.relation.references | Y. Baqer and X. Chen, “A review on reactive transport model and porosity evolution in the porous media,” Jul. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s11356-022-20466-w | |
dc.relation.references | M. Sharma, S. Bishnoi, F. Martirena, and K. Scrivener, “Limestone Calcined Clay Cement and Concrete: A state-of-the-art review,” Cem Concr Res, vol. 149, Nov. 2021, doi: 10.1016/j.cemconres.2021.106564 | |
dc.relation.references | Y. Dhandapani and M. Santhanam, “Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination,” Cem Concr Res, vol. 129, Mar. 2020, doi: 10.1016/j.cemconres.2019.105959 | |
dc.relation.references | C. Rodriguez and J. I. Tobón, “Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance,” Constr Build Mater, vol. 251, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.119050 | |
dc.relation.references | H. Yanguatin, J. Tobón, and J. Ramírez, “Pozzolanic reactivity of kaolin clays - A review,” Revista Ingeniería de Construcción, 2017, [Online]. Available: www.ricuc.cl | |
dc.relation.references | D. Wang, C. Shi, N. Farzadnia, Z. Shi, and H. Jia, “A review on effects of limestone powder on the properties of concrete,” Constr Build Mater, vol. 192, pp. 153–166, Dec. 2018, doi: 10.1016/j.conbuildmat.2018.10.119 | |
dc.relation.references | X. Ouyang, D. A. Koleva, G. Ye, and K. van Breugel, “Understanding the adhesion mechanisms between C-S-H and fillers,” Cem Concr Res, vol. 100, pp. 275–283, Oct. 2017, doi: 10.1016/j.cemconres.2017.07.006 | |
dc.relation.references | F. Pacheco-Torgal, Y. Tam, J. Labrincha, Y. Ding, and J. De Brito, Handbook of recycled concrete and demolition waste. Woodhead Publishing, 2013 | |
dc.relation.references | S. Kenai, “Recycled aggregates,” in Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, Elsevier, 2018, pp. 79–120. doi: 10.1016/B978-0-08-102156-9.00003-1 | |
dc.relation.references | J. Hubert, Z. Zhao, F. Michel, and L. Courard, “Effect of Crushing Method on the Properties of Produced Recycled Concrete Aggregates,” Buildings, vol. 13, no. 9, Sep. 2023, doi: 10.3390/buildings13092217 | |
dc.relation.references | D. Gómez-Cano, Y. P. Arias-Jaramillo, R. Beraal-Conea, and J. I. Tobón, “Effect of enhancement treatments applied to recycled concrete aggregates on concrete durability: A review,” Materiales de Construccion, vol. 73, no. 349, 2023, doi: 10.3989/mc.2023.296522 | |
dc.relation.references | R. K. Dhir, J. de Brito, R. V. Silva, and C. Q. Lye, “Properties and Composition of Recycled Aggregates,” in Sustainable Construction Materials, Elsevier, 2019, pp. 89–141. doi: 10.1016/b978-0-08-100985-7.00005-4 | |
dc.relation.references | D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials, Second. John Wiley Sons Ltd, 2008 | |
dc.relation.references | V. S. Ramachandran, Handbook of thermal analysis of construction materials. Noyes Publications, 2002 | |
dc.relation.references | J. I. Tobón, J. Paya, M. V. Borrachero, L. Soriano, and O. J. Restrepo, “Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials,” in Journal of Thermal Analysis and Calorimetry, Jan. 2012, pp. 233–239. doi: 10.1007/s10973-010-0997-0 | |
dc.relation.references | M. Földvári, Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary, 2011 | |
dc.relation.references | J. Dixon and S. B. Weed, Minerals in Soil Environments, Second ed. Soil Science Society of America, 1989 | |
dc.relation.references | B. V. Venkatarama Reddy and P. Prasanna Kumar, “Cement stabilised rammed earth. Part A: Compaction characteristics and physical properties of compacted cement stabilised soils,” Materials and Structures/Materiaux et Constructions, vol. 44, no. 3, pp. 681–693, Apr. 2011, doi: 10.1617/s11527-010-9658-9 | |
dc.relation.references | B. V. R. Venkatarama and M. S. Latha, “Influence of soil grading on the characteristics of cement stabilised soil compacts,” Materials and Structures/Materiaux et Constructions, vol. 47, no. 10, pp. 1633–1645, 2014, doi: 10.1617/s11527-013-0142-1 | |
dc.relation.references | H. B. Nagaraj, A. Rajesh, and M. V. Sravan, “Influence of soil gradation, proportion and combination of admixtures on the properties and durability of CSEBs,” Constr Build Mater, vol. 110, pp. 135–144, May 2016, doi: 10.1016/j.conbuildmat.2016.02.023 | |
dc.relation.references | J. D. Sitton, Y. Zeinali, W. H. Heidarian, and B. A. Story, “Effect of mix design on compressed earth block strength,” Constr Build Mater, vol. 158, pp. 124–131, Jan. 2018, doi: 10.1016/j.conbuildmat.2017.10.005 | |
dc.relation.references | C. Yin, W. Zhang, X. Jiang, and Z. Huang, “Effects of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer,” Materials, vol. 11, no. 10, Oct. 2018, doi: 10.3390/ma11101933 | |
dc.relation.references | M. Al-Mukhtar, A. Lasledj, and J. F. Alcover, “Lime consumption of different clayey soils,” Appl Clay Sci, vol. 95, pp. 133–145, 2014, doi: 10.1016/j.clay.2014.03.024 | |
dc.relation.references | E. Idriss et al., “Engineering and structural properties of compressed earth blocks (CEB) stabilized with a calcined clay-based alkali-activated binder,” Innovative Infrastructure Solutions, vol. 7, no. 2, Apr. 2022, doi: 10.1007/s41062-022-00760-9 | |
dc.relation.references | N. Ijaz, W. Ye, Z. ur Rehman, and Z. Ijaz, “Novel application of low carbon limestone calcined clay cement (LC3) in expansive soil stabilization: An eco-efficient approach,” J Clean Prod, vol. 371, Oct. 2022, doi: 10.1016/j.jclepro.2022.133492 | |
dc.relation.references | V. A. Reddy, C. H. Solanki, S. Kumar, K. R. Reddy, and Y.-J. Du, “Comparison of limestone calcined clay cement and ordinary Portland cement for stabilization/solidification of Pb-Zn smelter residue,” Environmental Science and Pollution Research, 2022, doi: 10.1007/s11356-021-16421-w/Published | |
dc.relation.references | V. A. Reddy, C. H. Solanki, S. Kumar, K. R. Reddy, and Y. J. Du, “New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil,” Chemosphere, vol. 235, pp. 308–315, Nov. 2019, doi: 10.1016/j.chemosphere.2019.06.051 | |
dc.relation.references | J. M. de Souza, R. C. Rudnick, and J. A. Lukiantchuki, “Evaluation of the incorporation of construction waste (CW) for the stabilization of soil-cement mixtures,” Ambiente Construído, vol. 20, no. 4, pp. 261–280, Dec. 2020, doi: 10.1590/s1678-86212020000400471 | |
dc.relation.references | M. Guo, G. Gong, Y. Yue, F. Xing, Y. Zhou, and B. Hu, “Performance evaluation of recycled aggregate concrete incorporating limestone calcined clay cement (LC3),” J Clean Prod, vol. 366, Sep. 2022, doi: 10.1016/j.jclepro.2022.132820 | |
dc.relation.references | G. W. Scherer and F. Bellmann, “Kinetic analysis of C-S-H growth on calcite,” Cem Concr Res, vol. 103, pp. 226–235, Jul. 2018, doi: 10.1016/j.cemconres.2016.07.017 | |
dc.relation.references | X. Gaviria, M. V. Borrachero, J. Payá, J. M. Monzó, and J. I. Tobón, “Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG),” J Therm Anal Calorim, vol. 132, no. 1, pp. 39–46, Apr. 2018, doi: 10.1007/s10973-017-6905-0 | |
dc.relation.references | ICONTEC, “NTC 121 - Especificación de desempeño para cemento hidráulico,” 2021 | |
dc.relation.references | ASTM, “D4318 − 17 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” 2017 | |
dc.relation.references | ASTM, “D6913-17 - Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis,” 2017 | |
dc.relation.references | ASTM, “D2487-17 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” 2017 | |
dc.relation.references | ASTM, “D1557-21 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft 3 (2,700 kN-m/m 3 )),” 2021 | |
dc.relation.references | Y. P. Arias, J. Payá, and J. C. Ochoa, “Halogen light thermogravimetric technique for determining the retained water in fine aggregates used for concrete mixing design,” J Therm Anal Calorim, vol. 123, no. 1, pp. 127–134, Jan. 2016, doi: 10.1007/s10973-015-4902-8 | |
dc.relation.references | F. Bergaya and G. Lagaly, Handbook of Clay Science. 2013 | |
dc.relation.references | ASTM, “C618-23 - Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, Mar. 2023 | |
dc.relation.references | G. Minke, Building with Earth Design and Technology of a Sustainable Architecture. Birkhäuser - Publishers for Architecture, 2006 | |
dc.relation.references | UNE, “UNE 83982 - Determinación de la absorción de agua por capilaridad en hormigón endurecido,” 2008 | |
dc.relation.references | ICONTEC, “NTC 5324 - Bloques de suelo-cemento para muros y divisiones,” 2004 | |
dc.relation.references | ASTM, “C1585 - 21 - Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes,” 2021 | |
dc.relation.references | ASTM, “D1633-17 - Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders,” 2017 | |
dc.relation.references | ASTM, “C 1437 - Standard Test Method for Flow of Hydraulic Cement Mortar.” doi: 10.1520/C1437 | |
dc.relation.references | ASTM, “C 109 - Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 50 mm [2 in.] Cube Specimens) | |
dc.relation.references | ASTM, “C311-24 - Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete,” ASTM International, West Conshohocken, PA, Jan. 2024 | |
dc.relation.references | R. Snellings et al., “Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test,” Materials and Structures/Materiaux et Constructions, vol. 51, no. 4, Aug. 2018, doi: 10.1617/s11527-018-1237-5 | |
dc.relation.references | P. Hou et al., “Mechanisms dominating thixotropy in limestone calcined clay cement (LC3),” Cem Concr Res, vol. 140, Feb. 2021, doi: 10.1016/j.cemconres.2020.106316 | |
dc.relation.references | Y. Dhandapani and M. Santhanam, “Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance,” Cem Concr Compos, vol. 84, pp. 36–47, Nov. 2017, doi: 10.1016/j.cemconcomp.2017.08.012 | |
dc.relation.references | J. R. González-López, C. A. Juárez-Alvarado, B. Ayub-Francis, and J. M. Mendoza-Rangel, “Compaction effect on the compressive strength and durability of stabilized earth blocks,” Constr Build Mater, vol. 163, pp. 179–188, Feb. 2018, doi: 10.1016/j.conbuildmat.2017.12.074 | |
dc.relation.references | L. Muchui Mugambi, S. Mujombi, V. Mutai, J. Ratumo Toeri, J. Mwiti Marangu, and L. Valentini, “Potential of Limestone Calcined Clay Cement (LC3) in soil stabilization for application in roads and pavements construction,” Case Studies in Construction Materials, vol. 21, Dec. 2024, doi: 10.1016/j.cscm.2024.e03706 | |
dc.relation.references | M. Földvári, Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary, 2011 | |
dc.relation.references | F. Zunino and K. Scrivener, “The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties,” Cem Concr Res, vol. 140, Feb. 2021, doi: 10.1016/j.cemconres.2020.106307 | |
dc.relation.references | L. Soriano, M. M. Tashima, M. Bonilla, J. Payá, J. Monzó, and M. V. Borrachero, “Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes,” J Therm Anal Calorim, vol. 120, no. 3, pp. 1511–1517, Jun. 2015, doi: 10.1007/s10973-015-4526-z | |
dc.relation.references | F. Avet, E. Boehm-Courjault, and K. Scrivener, “Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 115, pp. 70–79, Jan. 2019, doi: 10.1016/j.cemconres.2018.10.011 | |
dc.relation.references | B. Lothenbach and A. Nonat, “Calcium silicate hydrates: Solid and liquid phase composition,” Dec. 01, 2015, Elsevier Ltd. doi: 10.1016/j.cemconres.2015.03.019 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción | |
dc.subject.lemb | Estabilización de suelos | |
dc.subject.lemb | Materiales de construcción | |
dc.subject.lemb | Biodegradación | |
dc.subject.lemb | Análisis térmico | |
dc.subject.lemb | Cemento | |
dc.subject.proposal | Estabilización de suelos | spa |
dc.subject.proposal | Soil stabilization | eng |
dc.subject.proposal | Materiales de construcción en tierra | spa |
dc.subject.proposal | Earth construction materials | eng |
dc.subject.proposal | LC3 | eng |
dc.subject.proposal | Residuos de construcción y demolición | spa |
dc.subject.proposal | Construction and demolition wastes | eng |
dc.subject.proposal | Analisis microestructural | spa |
dc.subject.proposal | Microstructural analysis | eng |
dc.subject.proposal | Analisis termico | spa |
dc.subject.proposal | Thermal analysis | eng |
dc.subject.proposal | Desempeño mecanico | spa |
dc.subject.proposal | Mechanical performance | eng |
dc.title | Desarrollo microestructural y su incidencia en el desempeño de mezclas de tierra comprimida estabilizada con un cemento alternativo (LC3) y agregados de concreto reciclado | spa |
dc.title.translated | Microstructural development and its impact on the performance of compressed earth mixtures stabilized with an alternative cement (LC3) and recycled concrete aggregates | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
- Tamaño:
- 6.08 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: