Desarrollo microestructural y su incidencia en el desempeño de mezclas de tierra comprimida estabilizada con un cemento alternativo (LC3) y agregados de concreto reciclado

dc.contributor.advisorTobón, Jorge Iván
dc.contributor.advisorArias, Yhan Paul
dc.contributor.authorDíaz García, Andrés Camilo
dc.contributor.cvlacDiaz, Andres Camilo
dc.contributor.orcidDíaz García, Andrés Camilo [0009-0002-5022-1330]
dc.contributor.orcidArias, Yhan Paul [0000-0002-8988-6295]
dc.contributor.researchgateDiaz-Garcia, Camilo
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.contributor.scopusDiaz-Garcia, Camilo
dc.date.accessioned2025-09-02T15:55:35Z
dc.date.available2025-09-02T15:55:35Z
dc.date.issued2025
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractLa transición hacia procesos de producción que tengan un menor impacto ambiental y hagan un uso más eficiente de los recursos y energía, ha llevado a la necesidad de buscar alternativas que logren satisfacer las necesidades sin perder la calidad en el desempeño de los productos. En el caso de los materiales de construcción, la reducción del contenido de cementos convencionales y la diversificación de sistemas constructivos es la principal estrategia para alcanzar la sostenibilidad en el corto plazo. En ese sentido, el desarrollo de materiales de construcción en tierra ha tomado relevancia por su baja huella de carbono en la producción y diversidad de materias primas para su fabricación, teniendo así capacidad de incorporar de distintos residuos. Con base en esto, este estudio se centró en analizar en mezclas de suelo estabilizado, el efecto de la incorporación de agregados de concreto reciclado (ACR) y un cemento ternario de caliza y arcilla calcinada (LC3) sobre los cambios microestructurales, y su influencia en el desempeño de propiedades de ingeniería como la compactación, resistencia a compresión y absorción de agua por capilaridad. Se analizan mezclas con dos tipos de cemento, Cemento Portland (OPC) de Altas Resistencias Tempranas de referencia, y LC3, con dosificaciones de porcentaje en peso entre 0 y 15 % y de ACR entre 30 % y 60 %. La resistencia a compresión inconfinada a 7 y 28 días se evaluó estadísticamente a través de un diseño experimental de mezclas, obteniendo valores entre los 4 y 14 MPa, mostrando una mayor representatividad de la interacción entre las cantidades de ACR y el material cementante. Se encontró una fuerte incidencia del tipo de cemento sobre la respuesta mecánica y la absorción en presencia del agregado reciclado, donde el cemento alternativo presentó mayor demanda de agua, lo que permitió una mayor tasa de aumento de resistencia al mantener un medio poroso más reactivo. De esta forma, el LC3 alcanzó un desempeño similar a las mezclas del OPC cuando se encontró acompañado con altos niveles de ACR (60%); contrario a lo hallado en el cemento de referencia, que mostró bajos desempeños en las propiedades estudiadas cuando las altas cantidades de cemento estaban acompañadas del agregado reciclado, teniendo menor densidad y mayor porosidad, lo que afecta el desempeño de las propiedades. La compatibilidad entre el LC3 y el ACR se da por una mayor densificación con productos de hidratación que rellenaron los poros, con compuestos asociados a la reacción de la caliza y el metacaolín. Se desarrollan productos de menor densidad que el C-S-H de los cementos convencionales, generando una mayor extensión de la red de geles que densifican la matriz a causa de la estabilidad en la reacción que generan los carbonatos y la movilidad iónica que promueve el metacaolín, resultando en mejores desempeños de sus propiedades de ingeniería. Esto se observó por medio de análisis térmico para identificar los productos de hidratación, y por microscopía electrónica se pudo evidenciar el refinamiento de los poros. Esto muestra que los cambios microestructurales se vieron influenciados por la capacidad de desarrollar distintos tipos de productos de hidratación, alcanzando una mayor densidad compactada y así en un mejor desempeño, mostrando el potencial que tienen el uso de materias primas alternativas en el desarrollo de materiales de construcción sostenible con cementos de bajo contenido de clínker y residuos de construcción y demolición. (Tomado de la fuente)spa
dc.description.abstractThe transition towards production processes that have a lower environmental impact and make more efficient use of resources and energy has led to the need to look for alternatives that meet the demands without losing quality in product performance. In the case of building materials, the reduction of conventional cement content and the diversification of construction systems is the main strategy to achieve sustainability in the short term. In this sense, the development of earth-based building materials has become relevant due to their low carbon footprint in production and diversity of raw materials for their manufacture, thus having the capacity to incorporate different waste materials. Based on this, this study focused on analyzing the effect of the incorporation of recycled concrete aggregates (RCA) and a ternary cement of limestone and calcined clay (LC3) in stabilized soil mixtures on microstructural changes and their influence on the performance of engineering properties such as compaction, compressive strength and capillary water absorption. Mixtures with two types of cement, Portland Cement (OPC) of High Early Strengths of reference, and LC3, with dosages of percentage by weight between 0 and 15 % and ACR between 30 % and 60 %, are analysed. The unconfined compressive strength at 7 and 28 days was statistically evaluated through an experimental mix design, obtaining values between 4 and 14 MPa, showing a greater representativeness of the interaction between the amounts of ACR and the cementitious material. A significant influence of the type of cement on the mechanical and absorption response in the presence of recycled aggregate was found, where the alternative cement presented a higher water demand, which allowed a higher rate of strength increase by maintaining a more reactive porous medium. Thus, LC3 achieved a similar performance to the OPC mixes when accompanied by high levels of RCA (60%); contrary to what was found in the reference cement, which showed low performances in the properties studied when high amounts of cement were accompanied by recycled aggregate, having lower density and higher porosity, which affects the performance of the properties. The compatibility between LC3 and RCA is given by a higher densification with hydration products that filled the pores, with compounds associated with the reaction of limestone and metakaolin. Products with lower density than the C-S-H of conventional cements were developed, generating a greater extension of the network of gels that densify the matrix due to the stability in the reaction generated by the carbonates and the ionic mobility promoted by the metakaolin, resulting in better performance of its engineering properties. This was observed by thermal analysis to identify the hydration products, and by electron microscopy the refinement of the pores could be evidenced. This shows that the microstructural changes were influenced by the ability to develop different types of hydration products, achieving a higher compacted density and thus better performance, showing the potential of using alternative raw materials in the development of sustainable construction materials with low clinker content cements and construction and demolition waste.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y procesos
dc.description.researchareaAprovechamiento de residuos de construcción y demolición y tecnologías de bajo impacto
dc.format.extent114 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88538
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.relation.indexedLaReferencia
dc.relation.referencesK. Richardson et al., “Earth beyond six of nine planetary boundaries,” Science Advance, 2023, doi: 10.1126/sciadv.adh2458
dc.relation.referencesB. Huang et al., “A Life Cycle Thinking Framework to Mitigate the Environmental Impact of Building Materials,” Nov. 20, 2020, Cell Press. doi: 10.1016/j.oneear.2020.10.010
dc.relation.referencesGobierno de Colombia, “Estrategia Nacional de Economía Circular,” 2021
dc.relation.referencesY. Villagrán‐zaccardi et al., “Overview of cement and concrete production in Latin America and the Caribbean with a focus on the goals of reaching carbon neutrality,” RILEM Technical Letters, vol. 7, pp. 30–46, Jul. 2022, doi: 10.21809/rilemtechlett.2022.155
dc.relation.referencesK. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, Dec. 2018, doi: 10.1016/j.cemconres.2017.08.017
dc.relation.referencesE. Naboni and L. Havinga, Regenerative Design in Digital Practice: A Handbook for the Built Environment. Eurac Research, 2019
dc.relation.referencesS. Krumdieck, Transition Engineering: Building a Sustainable Future. CRC Press - Taylor & Francis Group, 2020
dc.relation.referencesF. Pacheco Torgal and S. Jalali, Eco-efficient Construction and Building Materials. Springer London, 2011. doi: 10.1007/978-0-85729-892-8
dc.relation.referencesJ. C. Morel, R. Charef, E. Hamard, A. Fabbri, C. Beckett, and Q. B. Bui, “Earth as construction material in the circular economy context: Practitioner perspectives on barriers to overcome,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 376, no. 1834, Royal Society Publishing, Sep. 27, 2021. doi: 10.1098/rstb.2020.0182
dc.relation.referencesE. Hamard, A. Fabbri, and J. C. Morel, “General Introduction,” in RILEM State-of-the-Art Reports, vol. 35, Springer Science and Business Media B.V., 2022, pp. 1–15. doi: 10.1007/978-3-030-83297-1_1
dc.relation.referencesM. R. Hall, R. Lindsay, and M. Krayenhoff, “Chapter 1 - Overview of modern earth building,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, Elsevier Ltd, 2012, pp. 3–16. doi: 10.1533/9780857096166.1.3
dc.relation.referencesH. Schroeder, “Chapter 4 - Modern earth building codes, standards and normative development,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, Elsevier Ltd, 2012, pp. 72–109. doi: 10.1533/9780857096166.1.72
dc.relation.referencesD. Gallipoli, A. W. Bruno, C. Perlot, and J. Mendes, “A geotechnical perspective of raw earth building,” Acta Geotech, vol. 12, no. 3, pp. 463–478, Jun. 2017, doi: 10.1007/s11440-016-0521-1
dc.relation.referencesJ. E. Aubert, P. Faria, P. Maillard, K. A. J. Ouedraogo, C. Ouellet-Plamondon, and E. Prud’homme, “Characterization of Earth Used in Earth Construction Materials,” in RILEM State-of-the-Art Reports, vol. 35, Springer Science and Business Media B.V., 2022, pp. 17–81. doi: 10.1007/978-3-030-83297-1_2
dc.relation.referencesV. Gupta, H. K. Chai, Y. Lu, and S. Chaudhary, “A state of the art review to enhance the industrial scale waste utilization in sustainable unfired bricks,” Sep. 10, 2020, Elsevier Ltd. doi: 10.1016/j.conbuildmat.2020.119220
dc.relation.referencesH. Van Damme and H. Houben, “Earth concrete. Stabilization revisited,” Dec. 01, 2018, Elsevier Ltd. doi: 10.1016/j.cemconres.2017.02.035
dc.relation.referencesA. Dawson, “Chapter 7 - Alternative and recycled materials for earth construction,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 2012. doi: 10.1533/9780857096166.1.172
dc.relation.referencesA. L. Murmu and A. Patel, “Towards sustainable bricks production: An overview,” Mar. 20, 2018, Elsevier Ltd. doi: 10.1016/j.conbuildmat.2018.01.038
dc.relation.referencesL. A. López Ruiz, X. Roca Ramón, and S. Gassó Domingo, “The circular economy in the construction and demolition waste sector – A review and an integrative model approach,” J Clean Prod, vol. 248, Mar. 2020, doi: 10.1016/j.jclepro.2019.119238
dc.relation.referencesA. C. Paula Junior, C. Jacinto, C. Turco, J. Fernandes, E. Teixeira, and R. Mateus, “Analysis of the effect of incorporating construction and demolition waste on the environmental and mechanical performance of earth-based mixtures,” Constr Build Mater, vol. 330, May 2022, doi: 10.1016/j.conbuildmat.2022.127244
dc.relation.referencesA. H. Narayanaswamy, P. Walker, B. V. Venkatarama Reddy, A. Heath, and D. Maskell, “Mechanical and thermal properties, and comparative life-cycle impacts, of stabilised earth building products,” Constr Build Mater, vol. 243, May 2020, doi: 10.1016/j.conbuildmat.2020.118096
dc.relation.referencesL. R. Garcez, C. E. T. Balestra, N. B. R. Monteiro, J. de A. Melo Filho, and M. A. Ramirez Gil, “Mechanical strength and Life Cycle Assessment (LCA) of soil-cement: comparison between mixtures of soil with ASTM type III cement, LC3, and the incorporation of by products and agroindustrial residues,” Constr Build Mater, vol. 411, Jan. 2024, doi: 10.1016/j.conbuildmat.2023.134331
dc.relation.referencesA. Alujas Diaz et al., “Properties and occurrence of clay resources for use as supplementary cementitious materials: a paper of RILEM TC 282-CCL,” Materials and Structures/Materiaux et Constructions, vol. 55, no. 5, Jun. 2022, doi: 10.1617/s11527-022-01972-2
dc.relation.referencesA. A. Firoozi, C. Guney Olgun, A. A. Firoozi, and M. S. Baghini, “Fundamentals of soil stabilization,” International Journal of Geo-Engineering, vol. 8, no. 1, Dec. 2017, doi: 10.1186/s40703-017-0064-9
dc.relation.referencesA. Anburuvel, “The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review,” Geotechnical and Geological Engineering, vol. 42, no. 1, pp. 1–42, Jan. 2024, doi: 10.1007/s10706-023-02554-x
dc.relation.referencesB. M. Das, Geotechnical Engineering Handbook. J. Ross Pub, 2011
dc.relation.referencesM. R. Hall, K. B. Najim, and P. Keikhaei Dehdezi, “Soil stabilization and earth construction: Materials, properties and techniques,” in Modern Earth Buildings: Materials, Engineering, Constructions and Applications, Elsevier Ltd, 2012, pp. 222–255. doi: 10.1533/9780857096166.2.222
dc.relation.referencesP. Sargent, “Chapter 21 - The development of alkali-activated mixtures for soil stabilisation,” in Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier Inc., 2015, pp. 555–604. doi: 10.1533/9781782422884.4.555
dc.relation.referencesK. Lemaire, D. Deneele, S. Bonnet, and M. Legret, “Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt,” Eng Geol, vol. 166, pp. 255–261, Nov. 2013, doi: 10.1016/j.enggeo.2013.09.012
dc.relation.referencesG. Das, A. Razakamanantsoa, G. Herrier, and D. Deneele, “Influence of pore fluid-soil structure interactions on compacted lime-treated silty soil,” Eng Geol, vol. 296, Jan. 2022, doi: 10.1016/j.enggeo.2021.106496
dc.relation.referencesF. M. . Lea, P. C. . Hewlett, and Martin. Liska, Lea’s chemistry of cement and concrete. Butterworth-Heinemann, 2019
dc.relation.referencesK. Scrivener, R. Snellings, and B. Lothenbach, A practical guide to microstructural analysis of cementitious materials. Taylor & Francis Group, 2016
dc.relation.referencesK. Mehta and P. Monteiro, Concrete. Microstructure, properties and materials. Mc Graw Hill, 2006. doi: 10.1036/0071462899
dc.relation.referencesZ. Zhang, G. W. Scherer, and A. Bauer, “Morphology of cementitious material during early hydration,” Cem Concr Res, vol. 107, pp. 85–100, May 2018, doi: 10.1016/j.cemconres.2018.02.004
dc.relation.referencesY. Baqer and X. Chen, “A review on reactive transport model and porosity evolution in the porous media,” Jul. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s11356-022-20466-w
dc.relation.referencesM. Sharma, S. Bishnoi, F. Martirena, and K. Scrivener, “Limestone Calcined Clay Cement and Concrete: A state-of-the-art review,” Cem Concr Res, vol. 149, Nov. 2021, doi: 10.1016/j.cemconres.2021.106564
dc.relation.referencesY. Dhandapani and M. Santhanam, “Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination,” Cem Concr Res, vol. 129, Mar. 2020, doi: 10.1016/j.cemconres.2019.105959
dc.relation.referencesC. Rodriguez and J. I. Tobón, “Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance,” Constr Build Mater, vol. 251, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.119050
dc.relation.referencesH. Yanguatin, J. Tobón, and J. Ramírez, “Pozzolanic reactivity of kaolin clays - A review,” Revista Ingeniería de Construcción, 2017, [Online]. Available: www.ricuc.cl
dc.relation.referencesD. Wang, C. Shi, N. Farzadnia, Z. Shi, and H. Jia, “A review on effects of limestone powder on the properties of concrete,” Constr Build Mater, vol. 192, pp. 153–166, Dec. 2018, doi: 10.1016/j.conbuildmat.2018.10.119
dc.relation.referencesX. Ouyang, D. A. Koleva, G. Ye, and K. van Breugel, “Understanding the adhesion mechanisms between C-S-H and fillers,” Cem Concr Res, vol. 100, pp. 275–283, Oct. 2017, doi: 10.1016/j.cemconres.2017.07.006
dc.relation.referencesF. Pacheco-Torgal, Y. Tam, J. Labrincha, Y. Ding, and J. De Brito, Handbook of recycled concrete and demolition waste. Woodhead Publishing, 2013
dc.relation.referencesS. Kenai, “Recycled aggregates,” in Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, Elsevier, 2018, pp. 79–120. doi: 10.1016/B978-0-08-102156-9.00003-1
dc.relation.referencesJ. Hubert, Z. Zhao, F. Michel, and L. Courard, “Effect of Crushing Method on the Properties of Produced Recycled Concrete Aggregates,” Buildings, vol. 13, no. 9, Sep. 2023, doi: 10.3390/buildings13092217
dc.relation.referencesD. Gómez-Cano, Y. P. Arias-Jaramillo, R. Beraal-Conea, and J. I. Tobón, “Effect of enhancement treatments applied to recycled concrete aggregates on concrete durability: A review,” Materiales de Construccion, vol. 73, no. 349, 2023, doi: 10.3989/mc.2023.296522
dc.relation.referencesR. K. Dhir, J. de Brito, R. V. Silva, and C. Q. Lye, “Properties and Composition of Recycled Aggregates,” in Sustainable Construction Materials, Elsevier, 2019, pp. 89–141. doi: 10.1016/b978-0-08-100985-7.00005-4
dc.relation.referencesD. Brandon and W. D. Kaplan, Microstructural Characterization of Materials, Second. John Wiley Sons Ltd, 2008
dc.relation.referencesV. S. Ramachandran, Handbook of thermal analysis of construction materials. Noyes Publications, 2002
dc.relation.referencesJ. I. Tobón, J. Paya, M. V. Borrachero, L. Soriano, and O. J. Restrepo, “Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials,” in Journal of Thermal Analysis and Calorimetry, Jan. 2012, pp. 233–239. doi: 10.1007/s10973-010-0997-0
dc.relation.referencesM. Földvári, Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary, 2011
dc.relation.referencesJ. Dixon and S. B. Weed, Minerals in Soil Environments, Second ed. Soil Science Society of America, 1989
dc.relation.referencesB. V. Venkatarama Reddy and P. Prasanna Kumar, “Cement stabilised rammed earth. Part A: Compaction characteristics and physical properties of compacted cement stabilised soils,” Materials and Structures/Materiaux et Constructions, vol. 44, no. 3, pp. 681–693, Apr. 2011, doi: 10.1617/s11527-010-9658-9
dc.relation.referencesB. V. R. Venkatarama and M. S. Latha, “Influence of soil grading on the characteristics of cement stabilised soil compacts,” Materials and Structures/Materiaux et Constructions, vol. 47, no. 10, pp. 1633–1645, 2014, doi: 10.1617/s11527-013-0142-1
dc.relation.referencesH. B. Nagaraj, A. Rajesh, and M. V. Sravan, “Influence of soil gradation, proportion and combination of admixtures on the properties and durability of CSEBs,” Constr Build Mater, vol. 110, pp. 135–144, May 2016, doi: 10.1016/j.conbuildmat.2016.02.023
dc.relation.referencesJ. D. Sitton, Y. Zeinali, W. H. Heidarian, and B. A. Story, “Effect of mix design on compressed earth block strength,” Constr Build Mater, vol. 158, pp. 124–131, Jan. 2018, doi: 10.1016/j.conbuildmat.2017.10.005
dc.relation.referencesC. Yin, W. Zhang, X. Jiang, and Z. Huang, “Effects of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer,” Materials, vol. 11, no. 10, Oct. 2018, doi: 10.3390/ma11101933
dc.relation.referencesM. Al-Mukhtar, A. Lasledj, and J. F. Alcover, “Lime consumption of different clayey soils,” Appl Clay Sci, vol. 95, pp. 133–145, 2014, doi: 10.1016/j.clay.2014.03.024
dc.relation.referencesE. Idriss et al., “Engineering and structural properties of compressed earth blocks (CEB) stabilized with a calcined clay-based alkali-activated binder,” Innovative Infrastructure Solutions, vol. 7, no. 2, Apr. 2022, doi: 10.1007/s41062-022-00760-9
dc.relation.referencesN. Ijaz, W. Ye, Z. ur Rehman, and Z. Ijaz, “Novel application of low carbon limestone calcined clay cement (LC3) in expansive soil stabilization: An eco-efficient approach,” J Clean Prod, vol. 371, Oct. 2022, doi: 10.1016/j.jclepro.2022.133492
dc.relation.referencesV. A. Reddy, C. H. Solanki, S. Kumar, K. R. Reddy, and Y.-J. Du, “Comparison of limestone calcined clay cement and ordinary Portland cement for stabilization/solidification of Pb-Zn smelter residue,” Environmental Science and Pollution Research, 2022, doi: 10.1007/s11356-021-16421-w/Published
dc.relation.referencesV. A. Reddy, C. H. Solanki, S. Kumar, K. R. Reddy, and Y. J. Du, “New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil,” Chemosphere, vol. 235, pp. 308–315, Nov. 2019, doi: 10.1016/j.chemosphere.2019.06.051
dc.relation.referencesJ. M. de Souza, R. C. Rudnick, and J. A. Lukiantchuki, “Evaluation of the incorporation of construction waste (CW) for the stabilization of soil-cement mixtures,” Ambiente Construído, vol. 20, no. 4, pp. 261–280, Dec. 2020, doi: 10.1590/s1678-86212020000400471
dc.relation.referencesM. Guo, G. Gong, Y. Yue, F. Xing, Y. Zhou, and B. Hu, “Performance evaluation of recycled aggregate concrete incorporating limestone calcined clay cement (LC3),” J Clean Prod, vol. 366, Sep. 2022, doi: 10.1016/j.jclepro.2022.132820
dc.relation.referencesG. W. Scherer and F. Bellmann, “Kinetic analysis of C-S-H growth on calcite,” Cem Concr Res, vol. 103, pp. 226–235, Jul. 2018, doi: 10.1016/j.cemconres.2016.07.017
dc.relation.referencesX. Gaviria, M. V. Borrachero, J. Payá, J. M. Monzó, and J. I. Tobón, “Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG),” J Therm Anal Calorim, vol. 132, no. 1, pp. 39–46, Apr. 2018, doi: 10.1007/s10973-017-6905-0
dc.relation.referencesICONTEC, “NTC 121 - Especificación de desempeño para cemento hidráulico,” 2021
dc.relation.referencesASTM, “D4318 − 17 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” 2017
dc.relation.referencesASTM, “D6913-17 - Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis,” 2017
dc.relation.referencesASTM, “D2487-17 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” 2017
dc.relation.referencesASTM, “D1557-21 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft 3 (2,700 kN-m/m 3 )),” 2021
dc.relation.referencesY. P. Arias, J. Payá, and J. C. Ochoa, “Halogen light thermogravimetric technique for determining the retained water in fine aggregates used for concrete mixing design,” J Therm Anal Calorim, vol. 123, no. 1, pp. 127–134, Jan. 2016, doi: 10.1007/s10973-015-4902-8
dc.relation.referencesF. Bergaya and G. Lagaly, Handbook of Clay Science. 2013
dc.relation.referencesASTM, “C618-23 - Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, Mar. 2023
dc.relation.referencesG. Minke, Building with Earth Design and Technology of a Sustainable Architecture. Birkhäuser - Publishers for Architecture, 2006
dc.relation.referencesUNE, “UNE 83982 - Determinación de la absorción de agua por capilaridad en hormigón endurecido,” 2008
dc.relation.referencesICONTEC, “NTC 5324 - Bloques de suelo-cemento para muros y divisiones,” 2004
dc.relation.referencesASTM, “C1585 - 21 - Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes,” 2021
dc.relation.referencesASTM, “D1633-17 - Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders,” 2017
dc.relation.referencesASTM, “C 1437 - Standard Test Method for Flow of Hydraulic Cement Mortar.” doi: 10.1520/C1437
dc.relation.referencesASTM, “C 109 - Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 50 mm [2 in.] Cube Specimens)
dc.relation.referencesASTM, “C311-24 - Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete,” ASTM International, West Conshohocken, PA, Jan. 2024
dc.relation.referencesR. Snellings et al., “Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test,” Materials and Structures/Materiaux et Constructions, vol. 51, no. 4, Aug. 2018, doi: 10.1617/s11527-018-1237-5
dc.relation.referencesP. Hou et al., “Mechanisms dominating thixotropy in limestone calcined clay cement (LC3),” Cem Concr Res, vol. 140, Feb. 2021, doi: 10.1016/j.cemconres.2020.106316
dc.relation.referencesY. Dhandapani and M. Santhanam, “Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance,” Cem Concr Compos, vol. 84, pp. 36–47, Nov. 2017, doi: 10.1016/j.cemconcomp.2017.08.012
dc.relation.referencesJ. R. González-López, C. A. Juárez-Alvarado, B. Ayub-Francis, and J. M. Mendoza-Rangel, “Compaction effect on the compressive strength and durability of stabilized earth blocks,” Constr Build Mater, vol. 163, pp. 179–188, Feb. 2018, doi: 10.1016/j.conbuildmat.2017.12.074
dc.relation.referencesL. Muchui Mugambi, S. Mujombi, V. Mutai, J. Ratumo Toeri, J. Mwiti Marangu, and L. Valentini, “Potential of Limestone Calcined Clay Cement (LC3) in soil stabilization for application in roads and pavements construction,” Case Studies in Construction Materials, vol. 21, Dec. 2024, doi: 10.1016/j.cscm.2024.e03706
dc.relation.referencesM. Földvári, Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary, 2011
dc.relation.referencesF. Zunino and K. Scrivener, “The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties,” Cem Concr Res, vol. 140, Feb. 2021, doi: 10.1016/j.cemconres.2020.106307
dc.relation.referencesL. Soriano, M. M. Tashima, M. Bonilla, J. Payá, J. Monzó, and M. V. Borrachero, “Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes,” J Therm Anal Calorim, vol. 120, no. 3, pp. 1511–1517, Jun. 2015, doi: 10.1007/s10973-015-4526-z
dc.relation.referencesF. Avet, E. Boehm-Courjault, and K. Scrivener, “Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 115, pp. 70–79, Jan. 2019, doi: 10.1016/j.cemconres.2018.10.011
dc.relation.referencesB. Lothenbach and A. Nonat, “Calcium silicate hydrates: Solid and liquid phase composition,” Dec. 01, 2015, Elsevier Ltd. doi: 10.1016/j.cemconres.2015.03.019
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.subject.lembEstabilización de suelos
dc.subject.lembMateriales de construcción
dc.subject.lembBiodegradación
dc.subject.lembAnálisis térmico
dc.subject.lembCemento
dc.subject.proposalEstabilización de suelosspa
dc.subject.proposalSoil stabilizationeng
dc.subject.proposalMateriales de construcción en tierraspa
dc.subject.proposalEarth construction materialseng
dc.subject.proposalLC3eng
dc.subject.proposalResiduos de construcción y demoliciónspa
dc.subject.proposalConstruction and demolition wasteseng
dc.subject.proposalAnalisis microestructuralspa
dc.subject.proposalMicrostructural analysiseng
dc.subject.proposalAnalisis termicospa
dc.subject.proposalThermal analysiseng
dc.subject.proposalDesempeño mecanicospa
dc.subject.proposalMechanical performanceeng
dc.titleDesarrollo microestructural y su incidencia en el desempeño de mezclas de tierra comprimida estabilizada con un cemento alternativo (LC3) y agregados de concreto recicladospa
dc.title.translatedMicrostructural development and its impact on the performance of compressed earth mixtures stabilized with an alternative cement (LC3) and recycled concrete aggregateseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Materiales y Procesos
Tamaño:
6.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: