Decoloración y mineralización de un agua residual industrial textil mediante un proceso Electro-Fenton con generación de H2O2 in-situ
dc.contributor.advisor | Dobrosz-Gómez, Izabela | |
dc.contributor.advisor | Gómez García, Miguel Ángel | |
dc.contributor.author | Salazar Sogamoso, Luis Miguel | |
dc.contributor.cvlac | Salazar Sogamoso, Luis Miguel [0000113075] | spa |
dc.contributor.orcid | Salazar Sogamoso, Luis Miguel [0009000959607089] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma) | spa |
dc.date.accessioned | 2025-04-22T20:53:34Z | |
dc.date.available | 2025-04-22T20:53:34Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | La industria textil es conocida en el mundo como uno de los mayores consumidores de agua (en promedio 200-400 m3/ton de fibra procesada), siendo responsable de cerca del 20% de las aguas residuales que se generan en el sector industrial. Estos efluentes poseen una amplia variedad de sustancias químicas, que le confieren características de toxicidad, recalcitrancia y baja biodegradabilidad. Su descarga indebida a los cuerpos de agua puede afectar nocivamente la salud de los ecosistemas. En este sentido, resulta prioritario contar con métodos de tratamiento eficientes que garanticen una gestión sostenible del recurso hídrico, tal es el caso de los procesos avanzados de oxidación (PAOs). Con este precedente, en esta Tesis de Maestría se evaluó el desempeño técnico, económico y ambiental del proceso secuencial Coagulación-Floculación-Electro-Fenton-Neutralización, para el tratamiento de un efluente industrial textil contaminado con el colorante negro ácido 194 (NA194). Para esto se planeó y ejecutó un diseño experimental de tipo central compuesto inscrito con tres factores (j = 3.33 – 13.33 mA/cm2, [Fe2+] = 0.1 – 3.0 mM, [NaCl] = 0 – 2000 mg/L), con el fin de determinar las mejores condiciones operacionales (j = 5.10 mA/cm2, [Fe2+] = 1.88 mM y [NaCl] = 107.43 mg/L). Bajo estas condiciones, en un tiempo de 120 minutos se logró reducir la fracción residual de DQO hasta un valor de 0.33 (67% de eficiencia en la remoción de DQO) con un alto grado de mineralización (61%, COT/COT0 = 0.39) y bajo costo operacional (COpTEF-N = 5.92 USD/m3). Adicionalmente, se evidenció que la combinación secuencial CF-EF-N permite mejorar las características del efluente textil, mientras se reduce la huella ambiental, en comparación con el proceso Fenton (huella de carbono EF-N: 14.74 kg CO2-Eq/m3 vs. Fenton-N: 20.74 kg CO2-Eq/m3). Así, el tratamiento EF-N puede ser considerado una alternativa sostenible para futuras aplicaciones a gran escala (Texto tomado de la fuente). | spa |
dc.description.abstract | The textile industry is known as one of the largest consumers of water worldwide (on average 200-400 m3 per tonne of processed fiber). It is responsible for about 20% of wastewater generated in the industrial sector. These effluents contain a wide variety of chemicals, which give them toxic, recalcitrant, and low-biodegradability characteristics. Their discharge into water bodies can negatively impact ecosystem health. Therefore, it is a priority to implement efficient treatment methods that ensure sustainable management of water resources, such as advanced oxidation processes (AOPs). In this context, this Master's Thesis evaluates the technical, economic and environmental performance of the sequential Coagulation-Flocculation-Electro-Fenton-Neutralization (CF-EF-N) process for treating a textile industrial effluent contaminated with Acid Black 194 (AB194) dye. For this purpose, a central composite inscribed design with three factors (j = 3.33 – 13.33 mA/cm2, [Fe2+] = 0.1 – 3.0 mM, [NaCl] = 0 – 2000 mg/L) was planned and executed to determine the optimal operational conditions (j = 5.10 mA/cm2, [Fe2+] = 1.88 mM y [NaCl] = 107.43 mg/L). Under these conditions, the residual COD fraction reached 0.33 (67% removal efficiency), with a high degree of mineralization (61%, TOC/TOC0 = 0.39) and a low operational cost (COpTEF-N = 5.92 USD/m3) after a 120-minute treatment time. Furthermore, the CF-EF-N sequential combination significantly improved the characteristics of the textile effluent and reduced the environmental footprint compared to the Fenton process (environmental footprint: EF-N: 14.74 kg CO2-Eq/m3 vs. Fenton-N: 20.74 kg CO2-Eq/m3). Thus, the EF-N treatment can be considered a sustainable alternative for future large-scale applications. | eng |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.description.researcharea | Procesos Avanzados de Oxidación | spa |
dc.format.extent | xviii, 217 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88070 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Adachi, A., El Ouadrhiri, F., Kara, M., El Manssouri, I., Assouguem, A., Almutairi, M. H., Bayram, R., Mohamed, H. R. H., Peluso, I., Eloutassi, N., & Lahkimi, A. (2022). Decolorization and Degradation of Methyl Orange Azo Dye in Aqueous Solution by the Electro Fenton Process: Application of Optimization. Catalysts, 12(6). https://doi.org/10.3390/catal12060665 | spa |
dc.relation.references | Afanga, H., Zazou, H., Titchou, F. E., Gaayda, J. El, Sopaj, F., Akbour, R. A., & Hamdani, M. (2021). Electrochemical oxidation of Naphthol Blue Black with different supporting electrolytes using a BDD /carbon felt cell. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104498 | spa |
dc.relation.references | Ahangarnokolaei, M.A., Attarian, P., Ayati, B., Ganjidoust, H., Rizzo, L. (2021). Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. Journal of Environmental Chemical Engineering, 9, 10625. https://doi.org/10.1016/j.jece.2021.106251 | spa |
dc.relation.references | Ahmad, I., & Basu, D. (2024). Experimental Study and Response Surface Methodology Optimization of Electro-Fenton Process Reactive Orange 16 Dye Treatment. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 48(3), 1715–1729. https://doi.org/10.1007/s40996-024-01442-5 | spa |
dc.relation.references | Ahmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Advances, 5(39), 30801–30818. https://doi.org/10.1039/c4ra16959j | spa |
dc.relation.references | Alnuaimi, M. M., Rauf, M. A., & Ashraf, S. S. (2008). A comparative study of Neutral Red decoloration by photo-Fenton and photocatalytic processes. Dyes and Pigments, 76(2), 332–337. https://doi.org/10.1016/j.dyepig.2006.08.051 | spa |
dc.relation.references | American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). (2017). Standard Methods for the Examination of Water and Wastewater. 23rd ed. Washington, DC. ISBN: 978-0-87553-287-5. | spa |
dc.relation.references | Amor, C., Torres-Socías, E. D., Peres, J. A., Maldonado, M. I., Oller, I., Malato, S., & Lucas, M. S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. Journal of Hazardous Materials, 286, 261-268. https://doi.org/10.1016/j.jhazmat.2014.12.036 | spa |
dc.relation.references | Antonin, V. S., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2019). Comparative study on the degradation of cephalexin by four electrochemical advanced oxidation processes: Evolution of oxidation intermediates and antimicrobial activity. Chemical Engineering Journal, 372, 1104–1112. https://doi.org/10.1016/j.cej.2019.04.185 | spa |
dc.relation.references | Aoudj, S., Bahloul, K., & Khelifa, A. (2021). Degradation of Dyes by Electrochemical Advanced Oxidation Processes. En: Muthu, S.S., Khadir, A. (eds), Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. (pp. 129–174). Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_5 | spa |
dc.relation.references | Arabaci, G., & Usluoglu, A. (2014). The enzymatic decolorization of textile dyes by the immobilized polyphenol oxidase from quince leaves. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/685975 | spa |
dc.relation.references | Arvesen, A., Hauan, I. B., Bolsøy, B. M., & Hertwich, E. G. (2015). Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway. Applied Energy, 157, 144–151. https://doi.org/10.1016/j.apenergy.2015.08.013 | spa |
dc.relation.references | Arzate, S., Pfister, S., Oberschelp, C., Sánchez-Pérez, J.A. (2019). Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Science of the Total Environment, 694, 133572. https://doi.org/10.1016/j. scitotenv.2019.07.378. | spa |
dc.relation.references | Asgari, G., Alahabadi, A., Shomoossi, N., Yazdani Aval, M., Shabanloo, A., Darvishmotevalli, M., Zolghadr, H., & Salari, M. (2023). Mineralization and biodegradability improvement of textile wastewater using persulfate/dithionite process. Biomass Conversion and Biorefinery, 14, 21363–21373. https://doi.org/10.1007/s13399-023-04128-6 | spa |
dc.relation.references | Asghar, A., Raman, A. A. A., & Daud, W. M. A. W. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. Journal of Cleaner Production, 87(1), 826–838. https://doi.org/10.1016/j.jclepro.2014.09.010 | spa |
dc.relation.references | ASTM D2035-19. (2019). Standard Practice for Coagulation-Flocculation Jar Test of Water. ASTM International. https://doi.org/10.1520/D2035-19 | spa |
dc.relation.references | Atia, N. G., Bassily, M. A., & Elamer, A. A. (2020). Do life-cycle costing and assessment integration support decision-making towards sustainable development? Journal of Cleaner Production, 267, 122056. https://doi.org/10.1016/j.jclepro.2020.122056 | spa |
dc.relation.references | Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230. https://doi.org/10.1016/j.cscee.2022.100230 | spa |
dc.relation.references | Belalcázar-Saldarriaga, A., Prato-Garcia, D., & Vasquez-Medrano, R. (2018). Photo-Fenton processes in raceway reactors: Technical, economic, and environmental implications during treatment of colored wastewaters. Journal of Cleaner Production, 182, 818–829. https://doi.org/10.1016/j.jclepro.2018.02.058 | spa |
dc.relation.references | Bilińska, L., Gmurek, M., & Ledakowicz, S. (2016). Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment. Chemical Engineering Journal, 306, 550–559. https://doi.org/10.1016/j.cej.2016.07.100 | spa |
dc.relation.references | Bisinella de Faria, A.B., Spérandio, M., Ahmadi, A., Tiruta-Barna, L. (2015). Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA). Water Research, 84, 99-111. https://doi.org/10.1016/j.watres.2015.06.048 | spa |
dc.relation.references | Blanco, J., Torrades, F., de la Varga, M., & García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394–399. https://doi.org/10.1016/j.desal.2011.11.055 | spa |
dc.relation.references | Boulahbel, I., Bechiri, O., Meddah, S., & Samar, M. E. (2022). Degradation of Rhodamine B dye in aqueous medium using electro-Fenton and sono-electro-Fenton process. Desalination and Water Treatment, 271, 297–306. https://doi.org/10.5004/dwt.2022.28807 | spa |
dc.relation.references | Bravo-Yumi, N., Pacheco-Álvarez, M. O., Olvera-Vargas, H., Brillas, E., & Peralta-Hernández, J. M. (2024). Electrochemical treatment on a pilot scale of a mixture with high concentrations of dyes from the tanning/textile industry. Journal of Electroanalytical Chemistry, 972, 118616. https://doi.org/10.1016/j.jelechem.2024.118616 | spa |
dc.relation.references | Brillas, E. (2021). Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production, 290, 125841. https://doi.org/10.1016/j.jclepro.2021.125841 | spa |
dc.relation.references | Brillas, E. (2022). Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017–2021. Science of the Total Environment, 819, 153102. https://doi.org/10.1016/j.scitotenv.2022.153102 | spa |
dc.relation.references | Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016 | spa |
dc.relation.references | Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570–6631. https://doi.org/10.1021/cr900136g | spa |
dc.relation.references | Campos-Martin, J. M., Blanco-Brieva, G., & Fierro, J. L. G. (2006). Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angewandte Chemie - International Edition, 45(42), 6962–6984. https://doi.org/10.1002/anie.200503779 | spa |
dc.relation.references | Cárdenas, H. A. (2019). Riesgos Ambientales y Sociales en el Sector Textil. https://www.asobancaria.com/2016/02/01/pilotos-de-innovacion/ | spa |
dc.relation.references | Chai, Y., Chen, X., Wang, Y., Guo, X., Zhang, R., Wei, H., Jin, H., Li, Z., & Ma, L. (2023). Environmental and economic assessment of advanced oxidation for the treatment of unsymmetrical dimethylhydrazine wastewater from a life cycle perspective. Science of the Total Environment, 873, 162264. https://doi.org/10.1016/j.scitotenv.2023.162264 | spa |
dc.relation.references | Chakroun, S., Elleuch, H., Sghaier, D., & Gaied, M. (2021). Acid Black 194 Dye Clarications Onto Natural And Acid/Base Activated Smectitic Clays. Research Square. https://doi.org/10.21203/rs.3.rs-1173338/v1 | spa |
dc.relation.references | Chakroun, S., Mechti, W., Herchi, M., & Gaied, M. E. (2018). Characterization of Ain M’Dheker clay deposits for sunflower oil and Acid Black 194 dye clarification. Arabian Journal of Geosciences, 11(60). https://doi.org/10.1007/s12517-017-3335-z | spa |
dc.relation.references | Chatzisymeon, E., Foteinis, S., Mantzavinos, D., Tsoutsos, T. (2013). Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment. Journal of Cleaner Production, 54, 229–234. https://doi.org/10.1016/j.jclepro.2013.05.013 | spa |
dc.relation.references | Chen, D., Geng, H., Hou, P., Li, Y., Long, S., Yin, M., Wang, X., & Zhao, L. (2023). Fabrication of a novel gas diffusion electrode (g-C3N4/CB/PTFE-GF) for electro-Fenton treatment of amaranth dye. Journal of Water Process Engineering, 56, 104357. https://doi.org/10.1016/j.jwpe.2023.104357 | spa |
dc.relation.references | Chen, S., Tang, L., Feng, H., Zhou, Y., Zeng, G., Lu, Y., Yu, J., Ren, X., Peng, B., & Liu, X. (2019). Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation. Science of the Total Environment, 670, 921–931. https://doi.org/10.1016/j.scitotenv.2019.03.086 | spa |
dc.relation.references | Chavaco, L. C., Arcos, C. A., & Prato-Garcia, D. (2017). Decolorization of reactive dyes in solar pond reactors: Perspectives and challenges for the textile industry. Journal of Environmental Management, 198, 203–212. https://doi.org/10.1016/j.jenvman.2017.04.077 | spa |
dc.relation.references | Clematis, D., & Panizza, M. (2021). Electro-Fenton, solar photoelectro-Fenton and UVA photoelectro-Fenton: Degradation of Erythrosine B dye solution. Chemosphere, 270, 129480. https://doi.org/10.1016/j.chemosphere.2020.129480 | spa |
dc.relation.references | Collivignarelli, M. C., Abbà, A., Carnevale Miino, M., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Managementt, 236, 727–745. https://doi.org/10.1016/j.jenvman.2018.11.094 | spa |
dc.relation.references | Conde, J. J., Abelleira, S., Estévez, S., González-Rodríguez, J., Feijoo, G., & Moreira, M. T. (2023). Improving the sustainability of heterogeneous Fenton-based methods for micropollutant abatement by electrochemical coupling. Journal of Environmental Management, 332, 117308. https://doi.org/10.1016/j.jenvman.2023.117308 | spa |
dc.relation.references | Congreso de la República de Colombia. (2020). Informe de ponencia para primer debate del Proyecto de Ley No. 111 de 2020 Cámara “Por medio de la cual se crea el Sistema de Gestión Integral de Residuos Textiles”. https://www.camara.gov.co/gestion-integral-residuos-textiles | spa |
dc.relation.references | Cordeiro-Junior, P. J. M., Kronka, M. S., Goulart, L. A., Veríssimo, N. C., Mascaro, L. H., Santos, M. C. dos, Bertazzoli, R., & Lanza, M. R. de V. (2020). Catalysis of oxygen reduction reaction for H2O2 electrogeneration: The impact of different conductive carbon matrices and their physicochemical properties. Journal of Catalysis, 392, 56–68. https://doi.org/10.1016/j.jcat.2020.09.020 | spa |
dc.relation.references | Cruz-González, K., Torres-Lopez, O., García-León, A. M., Brillas, E., Hernández-Ramírez, A., & Peralta-Hernández, J. M. (2012). Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination, 286, 63–68. https://doi.org/10.1016/j.desal.2011.11.005 | spa |
dc.relation.references | da Costa Soares, I. C., da Silva, D. R., do Nascimento, J. H. O., Garcia-Segura, S., & Martínez-Huitle, C. A. (2017). Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies. Environmental Science and Pollution Research, 24(31), 24167–24176. https://doi.org/10.1007/s11356-017-0041-z | spa |
dc.relation.references | da Cruz Santana Neves, N. S., de Lucena, A. L. A., de Oliveira Marques Cavalcanti, V., Galdino, B. R., Rodríguez-Díaz, J. M., Duarte, M. M. M. B., Benachour, M., & Napoleão, D. C. (2024). Application of renewable energy in sanitizer industry wastewater treatment through combined photo-Fenton and electro-Fenton processes. Catalysis Communications, 186, 106828. https://doi.org/10.1016/j.catcom.2023.106828 | spa |
dc.relation.references | da Silva, V. E. C., Tadayozzi, Y. S., Putti, F. F., Santos, F. A., & Forti, J. C. (2022). Degradation of commercial glyphosate-based herbicide via advanced oxidative processes in aqueous media and phytotoxicity evaluation using maize seeds. Science of the Total Environment, 840, 156656. https://doi.org/10.1016/j.scitotenv.2022.156656 | spa |
dc.relation.references | de Jesus, J. O. N., Medeiros, D. L., Esquerre, K. P. O., Sahin, O., & de Araujo, W. C. (2024). Water Treatment with Aluminum Sulfate and Tanin-Based Biocoagulant in an Oil Refinery: The Technical, Environmental, and Economic Performance. Sustainability (Switzerland), 16(3), 1191. https://doi.org/10.3390/su16031191 | spa |
dc.relation.references | De Souza, Z. S. B., Silva, M. P., Fraga, T. J. M., & Sobrinho, M. A. M. (2021). A comparative study of photo-Fenton process assisted by natural sunlight, UV-A, or visible LED light irradiation for degradation of real textile wastewater: factorial designs, kinetics, cost assessment, and phytotoxicity studies. Environmental Science and Pollution Research, 28, 23912–23928. https://doi.org/10.1007/s11356-020-12106-y/Published | spa |
dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2022a). Clasificación industrial internacional uniforme de todas las actividades económicas (CIIU). https://www.dane.gov.co/files/sen/nomenclatura/ciiu/CIIU_Rev_4_AC2022.pdf | spa |
dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2022b). Encuesta Anual Manufacturera (EAM). https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam | spa |
dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2022c). Boletín Técnico Producto Interno Bruto (PIB). II trimestre 2022 preliminar. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales | spa |
dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2024a). Boletín Técnico Producto Interno Bruto (PIB). II trimestre 2024 preliminar. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales | spa |
dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2024b). Encuesta Ambiental Industrial (EAI). https://www.dane.gov.co/files/operaciones/EAI/bol-EAI-2022.pdf | spa |
dc.relation.references | Destefani, L., Marconsini, L. T., Profeti, L. P. R., Campos, O. S., Profeti, D., & Ribeiro, J. (2023). An overview of electrochemical advanced oxidation processes applied for the removal of azo-dyes. Brazilian Journal of Chemical Engineering, 40(3), 623–653. https://doi.org/10.1007/s43153-023-00300-7 | spa |
dc.relation.references | Devi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643–657. https://doi.org/10.1016/j.scitotenv.2016.07.032 | spa |
dc.relation.references | Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195, 93–99. https://doi.org/10.1016/j.jenvman.2017.04.010 | spa |
dc.relation.references | Divyapriya, G., Scaria, J., Singh, T. S. A., Nidheesh, P. v., Babu, D. S., & Kumar, M. S. (2021). Advanced Treatment of Real Wastewater Effluents by an Electrochemical Approach. En Inamuddin, M. I. Ahamed, & E. Lichtfouse (Eds.), Water Pollution and Remediation: Heavy Metals. Environmental Chemistry for a Sustainable World (Vol. 53, pp. 85–122). Springer Cham. https://doi.org/10.1007/978-3-030-52421-0_4 | spa |
dc.relation.references | Dobrosz-Gómez, I., & Gómez-García, M. Á. (2022a). Treatment of soluble coffee industrial effluent by electro-coagulation–electro-oxidation process: Multiobjective optimization and kinetic study. International Journal of Environmental Science and Technology, 19(7), 6071-6088. https://doi.org/10.1007/s13762-021-03562-1 | spa |
dc.relation.references | Dobrosz-Gómez, I., Gómez-García, M.-Á., & Ibarra-Taquez, H. N. (2022b). Corrigendum to “Integration of environmental and economic performance of Electro-Coagulation-Anodic Oxidation sequential process for the treatment of soluble coffee industrial effluent” [Sci. Total Environ. 764 (2021) 142818]. Science of The Total Environment, 837, 155880. https://doi.org/10.1016/j.scitotenv.2022.155880 | spa |
dc.relation.references | Dobrosz-Gómez, I., Quintero-Arias, J. D., & Gómez-García, M. Á. (2024a). Coagulation-Flocculation - Fenton-Neutralization sequential process for the treatment of industrial effluent polluted with AB194 dye. Case Studies in Chemical and Environmental Engineering, 9, 100720. https://doi.org/10.1016/j.cscee.2024.100720 | spa |
dc.relation.references | Dobrosz-Gómez, I., Salazar-Sogamoso, L. M., Castaño-Sánchez, J. C., Salazar-López, D. O., & Gómez-García, M. Á. (2024b). Environmental and Economic Evaluation of the Sequential Combination of Coagulation–Flocculation with Different Electro-Fenton-Based Configurations for the Treatment of Raw Textile Wastewater. Water (Switzerland), 16(15). https://doi.org/10.3390/w16152154 | spa |
dc.relation.references | Dobrosz-Gómez, I., Quintero-Arias, J. D., & Gómez-García, M. Á. (2024c). Fenton advanced oxidation process for the treatment of industrial textile wastewater highly polluted with acid-black 194 dye. Case Studies in Chemical and Environmental Engineering, 9, 100672. https://doi.org/10.1016/j.cscee.2024.100672 | spa |
dc.relation.references | Doumic, L. I., Soares, P. A., Ayude, M. A., Cassanello, M., Boaventura, R. A. R., & Vilar, V. J. P. (2015). Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chemical Engineering Journal, 277, 86–96. https://doi.org/10.1016/j.cej.2015.04.074 | spa |
dc.relation.references | Dulova, N., Kattel, E., & Trapido, M. (2017). Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition. Chemical Engineering Journal, 318, 254–263. https://doi.org/10.1016/j.cej.2016.07.006 | spa |
dc.relation.references | Dung, N. T., Duong, L. T., Hoa, N. T., Thao, V. D., Ngan, L. V., & Huy, N. N. (2022). A comprehensive study on the heterogeneous electro-Fenton degradation of tartrazine in water using CoFe2O4/carbon felt cathode. Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132141 | spa |
dc.relation.references | El Colombiano. (31 de octubre de 2015). El río Medellín amaneció de color rojo. https://www.elcolombiano.com/antioquia/el-rio-medellin-amanecio-de-color-rojo-XH3018312 | spa |
dc.relation.references | El Espectador. (20 de enero de 2014). Otra empresa multada por verter contenidos colorantes al río Medellín. https://www.elespectador.com/colombia/medellin/otra-empresa-multada-por-verter-contenidos-colorantes-al-rio-medellin-article-469767/ | spa |
dc.relation.references | El Khorassani, H., Trebuchon, P., Bitar, H., & Thomas, O. (1999). A simple UV spectrophotometric procedure for the survey of industrial sewage system. Water Science & Technology, 39(10-11), 77-82. https://doi.org/10.2166/wst.1999.0633 | spa |
dc.relation.references | El Tiempo. (05 de febrero de 2019). El misterio de la quebrada en Manizales que amaneció teñida de rojo. https://www.eltiempo.com/colombia/otras-ciudades/contaminacion-de-la-quebrada-olivares-en-manizales-caldas-323152 | spa |
dc.relation.references | El Tiempo. (05 de febrero de 2020). ¿Qué hay detrás del extraño color azul en una quebrada en Manizales? https://www.eltiempo.com/colombia/otras-ciudades/contaminacion-con-colorantes-en-quebrada-preocupa-a-manizales-458858 | spa |
dc.relation.references | Environmental Protection Agency (EPA). (2023). Sulfur Hexafluoride (SF6) Basics. https://www.epa.gov/eps-partnership/sulfur-hexafluoride-sf6-basics | spa |
dc.relation.references | Eslami, A., Moradi, M., Ghanbari, F., & Mehdipour, F. (2013). Decolorization and COD removal from real textile wastewater by chemical and electrochemical Fenton processes: a comparative study. Journal of Environmental Health Sciences & Engineering, 11(31), 1–8. https://doi.org/10.1186/2052-336X-11-31 | spa |
dc.relation.references | Espinoza-Montero, P. J., Alulema-Pullupaxi, P., Frontana-Uribe, B. A., & Barrera-Diaz, C. E. (2022). Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode. Current Opinion in Solid State and Materials Science, 26(3). https://doi.org/10.1016/j.cossms.2022.100988 | spa |
dc.relation.references | European Commission. (2003). Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques for the Textiles Industry. | spa |
dc.relation.references | Expósito, A. J., Monteagudo, J. M., Díaz, I., & Durán, A. (2016). Photo-fenton degradation of a beverage industrial effluent: Intensification with persulfate and the study of radicals. Chemical Engineering Journal, 306, 1203–1211. https://doi.org/10.1016/j.cej.2016.08.048 | spa |
dc.relation.references | Ferreira, S. L. C., Dos Santos, W. N. L., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehlert matrix: A chemometric tool for analytical chemistry - Review. Talanta, 63(4), 1061–1067. https://doi.org/10.1016/j.talanta.2004.01.015 | spa |
dc.relation.references | Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011 | spa |
dc.relation.references | Ferreira, S. L. C., Lemos, V. A., de Carvalho, V. S., da Silva, E. G. P., Queiroz, A. F. S., Felix, C. S. A., da Silva, D. L. F., Dourado, G. B., & Oliveira, R. v. (2018). Multivariate optimization techniques in analytical chemistry - an overview. Microchemical Journal, 140, 176–182. https://doi.org/10.1016/j.microc.2018.04.002 | spa |
dc.relation.references | Foteinis, S., Monteagudo, J. M., Durán, A., & Chatzisymeon, E. (2018). Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Science of the Total Environment, 612, 605–612. https://doi.org/10.1016/j.scitotenv.2017.08.277 | spa |
dc.relation.references | Garcia-Herrero, I., Margallo, M., Onandía, R., Aldaco, R., & Irabien, A. (2017). Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach. Science of the Total Environment, 580, 147–157. https://doi.org/10.1016/j.scitotenv.2016.10.202 | spa |
dc.relation.references | Garcia-Segura, S., Centellas, F., Arias, C., Garrido, J. A., Rodríguez, R. M., Cabot, P. L., & Brillas, E. (2011). Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 58(1), 303–311. https://doi.org/10.1016/j.electacta.2011.09.049 | spa |
dc.relation.references | Ghanbari, F., & Moradi, M. (2015). A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1), 499–506. https://doi.org/10.1016/j.jece.2014.12.018 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2018). Optimization of sequential chemical coagulation—Electro-oxidation process for the treatment of an industrial textile wastewater. Journal of Water Process Engineering, 22, 73-79. https://doi.org/10.1016/j.jwpe.2018.01.005 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M.-Á. (2019). Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of The Total Environment, 651, 551-560. https://doi.org/10.1016/j.scitotenv.2018.09.125 | spa |
dc.relation.references | GilPavas, E. (2020a). Procesos Avanzados de Oxidación para la degradación de índigo y materia orgánica de aguas Residuales de una Industria textil. [Tesis de Doctorado en Ingeniería – Ingeniería Química, Universidad Nacional de Colombia]. Repositorio Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/78505 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M.-Á. (2020b). Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment. Journal of Electroanalytical Chemistry, 878, 114578. https://doi.org/10.1016/j.jelechem.2020.114578 | spa |
dc.relation.references | Grisales, C. M., Salazar, L. M., & Garcia, D. P. (2019). Treatment of synthetic dye baths by Fenton processes: evaluation of their environmental footprint through life cycle assessment. Environmental Science and Pollution Research, 26(5), 4300–4311. https://doi.org/10.1007/s11356-018-2757-9 | spa |
dc.relation.references | Gómez, C., Gómez-García, M. A., & Dobrosz-Gómez, I. (2023). Analysis of the Capacity of the Fenton Process for the Treatment of Polluted Wastewater from the Leather Dyeing Industry. The Scientific World Journal. https://doi.org/10.1155/2023/4724606 | spa |
dc.relation.references | Gu, L., Nie, J. Y., Zhu, N. wen, Wang, L., Yuan, H. P., & Shou, Z. (2012). Enhanced Fenton’s degradation of real naphthalene dye intermediate wastewater containing 6-nitro-1-diazo-2-naphthol-4-sulfonic acid: A pilot scale study. Chemical Engineering Journal, 189–190, 108–116. https://doi.org/10.1016/j.cej.2012.02.038 | spa |
dc.relation.references | Gutiérrez-Soto, G., Salcedo-Martínez, S., Contreras-Cordero, J., & Hernández-Luna, C. E. (2011). Characterization of the Major Laccase from Trametes maxima CU1 and Decolorization of Nine Commercially Significant Dyes by the Enzyme. Water Research & Development, 1(1), 10–19. https://www.researchgate.net/publication/267772147 | spa |
dc.relation.references | Hatayi, F., Khodabakhsh, M. R., Isari, A. A., Moradi, S., & Kakavandi, B. (2020). LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: Optimization, performance and reaction mechanism studies. Journal of Water Process Engineering, 38, 101693. https://doi.org/10.1016/j.jwpe.2020.101693 | spa |
dc.relation.references | He, Z., Huang, C., Wang, Q., Jiang, Z., Chen, J., & Song, S. (2011). Preparation of a Praseodymium Modified Ti/SnO 2-Sb/PbO 2 Electrode and its Application in the Anodic Degradation of the Azo Dye Acid Black 194. International Journal of Electrochemical Science, 6, 4341–4354. www.electrochemsci.org | spa |
dc.relation.references | Hernández-Rodríguez, M. J., Fernández-Rodríguez, C., Doña-Rodríguez, J. M., González-Díaz, O. M., Zerbani, D., & Pérez Peña, J. (2014). Treatment of effluents from wool dyeing process by photo-Fenton at solar pilot plant. Journal of Environmental Chemical Engineering, 2(1), 163–171. https://doi.org/10.1016/j.jece.2013.12.007 | spa |
dc.relation.references | Hien, S. A., Trellu, C., Oturan, N., Assémian, A. S., Briton, B. G. H., Drogui, P., Adouby, K., & Oturan, M. A. (2022). Comparison of homogeneous and heterogeneous electrochemical advanced oxidation processes for treatment of textile industry wastewater. Journal of Hazardous Materials, 437, 129326. https://doi.org/10.1016/j.jhazmat.2022.129326 | spa |
dc.relation.references | Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090 | spa |
dc.relation.references | Hudaib, B. (2021). Treatment of real industrial wastewater with high sulfate concentrations using modified Jordanian kaolin sorbent: batch and modelling studies. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08351 | spa |
dc.relation.references | Huijbregts, M., Steinmann, Z., Elshout, P., Stam, G., Verones, F., Vieira, M., Hollander, A., Zijp, M., & van Zelm, M. (2017). ReCiPe 2016 v1.1 A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. www.rivm.nl/en | spa |
dc.relation.references | Huong, T., Bechelany, M., & Cretin, M. (2017). Carbon felt based-electrodes for energy and environmental applications: A review. Carbon, 122, 564–591. https://doi.org/10.1016/j.carbon.2017.06.078ï | spa |
dc.relation.references | Ibarra-Taquez, H. N., GilPavas, E., Blatchley, E. R., Gómez-García, M.Á., & Dobrosz-Gómez, I. (2017). Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. Journal of Environmental Management, 200, 530-538. https://doi.org/10.1016/j.jenvman.2017.05.095 | spa |
dc.relation.references | Ibarra-Taquez, H. N., Dobrosz-Gómez, I., & Gómez, M. Á. (2018). Multi-objective optimization of the Fenton process for the treatment of soluble coffee wastewater. Informacion Tecnologica, 29(5), 111–121. https://doi.org/10.4067/S0718-07642018000500111 | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2002). Guía para el monitoreo de vertimientos, aguas superficiales y subterráneas. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3834 | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2007a). Instructivo para la toma de muestras de agua residual. | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2007b). Demanda Bioquímica de Oxígeno – 5 días Incubación y Electrometría. | spa |
dc.relation.references | Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). (2019). Estudio Nacional del Agua 2018. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=46410 | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2020). Instructivo de Ensayo. Determinación de Sólidos Sedimentables. | spa |
dc.relation.references | Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). (2023). Estudio Nacional del Agua 2022. https://www.andi.com.co/Uploads/ENA%202022_compressed.pdf | spa |
dc.relation.references | International Organization for Standardization. (2006). ISO 14040:2006. Environmental management – Life cycle assessment – Principles and framework. https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en | spa |
dc.relation.references | International Organization for Standardization. (2006). ISO 14044:2006. Environmental management – Life cycle assessment – Requirements and guidelines. https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en | spa |
dc.relation.references | International Organization for Standardization. (2011). ISO 7887:2011. Water quality – Examination and determination of colour. https://www.iso.org/standard/46425.html | spa |
dc.relation.references | International Trade Center – ITC. (2024). https://www.trademap.org/Index.aspx | spa |
dc.relation.references | Ioannou-Ttofa, L., Foteinis, S., Chatzisymeon, E., Michael-Kordatou, I., & Fatta-Kassinos, D. (2017). Life cycle assessment of solar-driven oxidation as a polishing step of secondary-treated urban effluents. Journal of Chemical Technology and Biotechnology, 92(6), 1315–1327. https://doi.org/10.1002/jctb.5126 | spa |
dc.relation.references | IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. Pichs-Madruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, … C. Péan, Eds.). https://doi.org/10.59327/IPCC/AR6-9789291691647 | spa |
dc.relation.references | Jakóbczyk, P., Skowierzak, G., Kaczmarzyk, I., Nadolska, M., Wcisło, A., Lota, K., Bogdanowicz, R., Ossowski, T., Rostkowski, P., Lota, G., & Ryl, J. (2022). Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments. Chemosphere, 304. https://doi.org/10.1016/j.chemosphere.2022.135381 | spa |
dc.relation.references | Jiao, Y., Ma, L., Tian, Y., & Zhou, M. (2020). A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal. Chemosphere, 252, 126483. https://doi.org/10.1016/j.chemosphere.2020.126483 | spa |
dc.relation.references | Jose, R. L., Gigimol, M. G., & Mathew, B. (2020). Adsorptive Removal of Anionic Azo Dye Acid Black 194 from Aqueous Solution using NNMBA-Crosslinked Poly N-Vinyl Pyrrolidone Hydrogel. Asian Journal of Chemistry, 32(2), 311–316. https://doi.org/10.14233/ajchem.2020.22338 | spa |
dc.relation.references | Jun, L. Y., Yon, L. S., Mubarak, N. M., Bing, C. H., Pan, S., Danquah, M. K., Abdullah, E. C., & Khalid, M. (2019). An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. Journal of Environmental Chemical Engineering, 7(2), 102961. https://doi.org/10.1016/j.jece.2019.102961 | spa |
dc.relation.references | Kabir, M. B., Baig, S., Anis, A., Haque, Z., & Islam, M. S. (2020). Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: Kinetics and cost analysis. Environmental Nanotechnology, Monitoring and Management, 14, 100335. https://doi.org/10.1016/j.enmm.2020.100335 | spa |
dc.relation.references | Kacem, S. Ben, Clematis, D., Elaoud, S. C., & Panizza, M. (2024). Response surface methodology for low-energy consumption electro-Fenton process for xanthene dye electrochemical degradation. Journal of Applied Electrochemistry, 54(9), 2095–2110. https://doi.org/10.1007/s10800-024-02087-y | spa |
dc.relation.references | Kadam, S. R., Jadhav, N. L., Pandit, A. B., & Pejaver, M. K. (2021). Degradation kinetics and mechanism of hazardous metribuzin herbicide using advanced oxidation processes (HC & HC + H2O2). Chemical Engineering and Processing - Process Intensification, 166, 108486. https://doi.org/10.1016/j.cep.2021.108486 | spa |
dc.relation.references | Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 04(01), 22–26. https://doi.org/10.4236/ns.2012.41004 | spa |
dc.relation.references | Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060 | spa |
dc.relation.references | Kaur, P., Kushwaha, J. P., & Sangal, V. K. (2018). Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process. Chemosphere, 207, 690–698. https://doi.org/10.1016/j.chemosphere.2018.05.114 | spa |
dc.relation.references | Khan, H., Hussain, S., Ud Din, M. A., Arshad, M., Wahab, F., Hassan, U., & Khan, A. (2023). Multiple design and modelling approaches for the optimisation of carbon felt electro-Fenton treatment of dye laden wastewater. Chemosphere, 338, 139510. https://doi.org/10.1016/j.chemosphere.2023.139510 | spa |
dc.relation.references | Klöpffer, W., & Grahl, B. (2014). Life cycle assessment (LCA). A guide to best practice. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527655625 | spa |
dc.relation.references | Korpe, S., & Rao, P. V. (2021). Application of advanced oxidation processes and cavitation techniques for treatment of tannery wastewater - A review. Journal of Environmental Chemical Engineering, 9(3). https://doi.org/10.1016/j.jece.2021.105234 | spa |
dc.relation.references | Kuleyin, A., Gök, A., & Akbal, F. (2021). Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. Journal of Environmental Chemical Engineering, 9(1), 104782. https://doi.org/10.1016/j.jece.2020.104782 | spa |
dc.relation.references | Laveglia, A., Sambataro, L., Ukrainczyk, N., De Belie, N., & Koenders, E. (2022). Hydrated lime life-cycle assessment: Current and future scenarios in four EU countries. Journal of Cleaner Production, 369, 133224. https://doi.org/10.1016/j.jclepro.2022.133224 | spa |
dc.relation.references | Ledakowicz, S.; Bilińska, L.; Żyłła, R. (2012). Application of Fenton’s Reagent in the Textile Wastewater Treatment Under Industrial Conditions. Ecological Chemistry and Engineering, 19(2), 163-174. https://doi.org/10.2478/v10216-011-0013-z | spa |
dc.relation.references | Lee, B. C. Y., Mahtab, M. S., Neo, T. H., Farooqi, I. H., & Khursheed, A. (2022). A comprehensive review of Design of experiment (DOE) for water and wastewater treatment application - Key concepts, methodology and contextualized application. Journal of Water Process Engineering, 47, 102673. https://doi.org/10.1016/j.jwpe.2022.102673 | spa |
dc.relation.references | Li, J., Zhao, L., Qin, L., Tian, X., Wang, A., Zhou, Y., Meng, L., & Chen, Y. (2016). Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo – Fenton processes. Chemosphere, 146, 442-449. https://doi.org/10.1016/j.chemosphere.2015.12.069 | spa |
dc.relation.references | Li, Y., Zhang, S., Zhang, W., Xiong, W., Ye, Q., Hou, X., Wang, C., Wang, P. (2019). Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. Journal of Environment Management, 238, 442–450. https://doi:10.1016/j.jenvman.2019.01 | spa |
dc.relation.references | Liu, W., & Yu, Y. (2021). Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environmental Technology and Innovation, 23, 101644. https://doi.org/10.1016/j.eti.2021.101644 | spa |
dc.relation.references | Lofrano, G., Faiella, M., Carotenuto, M., Murgolo, S., Mascolo, G., Pucci, L., & Rizzo, L. (2021). Thirty contaminants of emerging concern identified in secondary treated hospital wastewater and their removal by solar Fenton (like) and sulphate radicals-based advanced oxidation processes. Journal of Environmental Chemical Engineering, 9(6), 106614. https://doi.org/10.1016/j.jece.2021.106614 | spa |
dc.relation.references | Lu, J., Chen, Z., Ayele, B. A., Liu, X., & Chen, Q. (2020). Electrocatalytic activities of engineered carbonaceous cathodes for generation of hydrogen peroxide and oxidation of recalcitrant reactive dye. Journal of Electroanalytical Chemistry, 878, 114579. https://doi.org/10.1016/j.jelechem.2020.114579 | spa |
dc.relation.references | Lukka-Thuyavan, Y., Arthanareeswaran, G., Ismail, A. F., Goh, P. S., Shankar, M. v., & Lakshmana Reddy, N. (2020). Treatment of synthetic textile dye effluent using hybrid adsorptive ultrafiltration mixed matrix membranes. Chemical Engineering Research and Design, 159, 92–104. https://doi.org/10.1016/j.cherd.2020.04.005 | spa |
dc.relation.references | Macías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., & Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environmental Science and Pollution Research, 28, 23791–23811. https://doi.org/10.1007/s11356-020-11333-7 | spa |
dc.relation.references | Madhav, S., Ahamad, A., Singh, P., & Mishra, P. K. (2018). A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environmental Quality Management, 27(3), 31–41. https://doi.org/10.1002/tqem.21538 | spa |
dc.relation.references | Magdaleno, A. L., Brillas, E., Garcia-Segura, S., & dos Santos, A. J. (2024). Comparison of electrochemical advanced oxidation processes for the treatment of complex synthetic dye mixtures. Separation and Purification Technology, 345, 127295. https://doi.org/10.1016/j.seppur.2024.127295 | spa |
dc.relation.references | Magdy, M., Gar Alalm, M., & El-Etriby, H. K. (2021). Comparative life cycle assessment of five chemical methods for removal of phenol and its transformation products. Journal of Cleaner Production, 291, 125923. https://doi.org/10.1016/j.jclepro.2021.125923 | spa |
dc.relation.references | Mahmud, R., Moni, S. M., High, K., & Carbajales-Dale, M. (2021). Integration of techno-economic analysis and life cycle assessment for sustainable process design – A review. Journal of Cleaner Production, 317, 128247. https://doi.org/10.1016/j.jclepro.2021.128247 | spa |
dc.relation.references | Malinovic, B. N., Pavlovic, M. G., & Djuricic, T. (2017). Electrocoagulation of textile wastewater containing a mixture of organic dyes by iron electrode. Journal of Electrochemical Science and Engineering, 7(2), 103–110. https://doi.org/10.5599/jese.366 | spa |
dc.relation.references | Manenti, D. R., Soares, P. A., Módenes, A. N., Espinoza-Quiñones, F. R., Boaventura, R. A. R., Bergamasco, R., & Vilar, V. J. P. (2015). Insights into solar photo-Fenton process using iron(III)-organic ligand complexes applied to real textile wastewater treatment. Chemical Engineering Journal, 266, 203–212. https://doi.org/10.1016/j.cej.2014.12.077 | spa |
dc.relation.references | Maniakova, G., Kowalska, K., Murgolo, S., Mascolo, G., Libralato, G., Lofrano, G., Sacco, O., Guida, M., & Rizzo, L. (2020). Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity. Separation and Purification Technology, 236, 116249. https://doi.org/10.1016/j.seppur.2019.116249 | spa |
dc.relation.references | Martínez Cajigas, M. E., & Osorio Trujillo, A. F. (2018). Validación de un método para el análisis de color real en agua. Revista de La Facultad de Ciencias, 7(1), 143–155. https://doi.org/10.15446/rev.fac.cienc.v7n1.68086 | spa |
dc.relation.references | Martínez-Huitle, C.A., Vieira dos Santos, E., Medeiros de Araújo, D., Panizza, M. (2012). Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 674, 103–107. https://doi.org/10.1016/j.jelechem.2012.02.005 | spa |
dc.relation.references | Martínez-Pachón, D., Botero-Coy, A. M., Hernández, F., León-López, N., Torres-Palma, R. A., & Moncayo-Lasso, A. (2022). Elimination of contaminants of emerging concern and their environmental risk in world-real municipal wastewaters by electrochemical advanced oxidation processes. Journal of Environmental Chemical Engineering, 10(3), 107803. https://doi.org/10.1016/j.jece.2022.107803 | spa |
dc.relation.references | Martínez-Sánchez, C., Robles, I., & Godínez, L. A. (2022). Review of recent developments in electrochemical advanced oxidation processes: application to remove dyes, pharmaceuticals, and pesticides. International Journal of Environmental Science and Technology, 19(12), 12611–12678. https://doi.org/10.1007/s13762-021-03762-9 | spa |
dc.relation.references | Matyszczak, G., Sędkowska, A., & Kuś, S. (2020). Comparative degradation of Metanil Yellow in the electro-Fenton process with different catalysts: A simplified kinetic model study. Dyes and Pigments, 174, 108076. https://doi.org/10.1016/j.dyepig.2019.108076 | spa |
dc.relation.references | Matzek, L. W., & Carter, K. E. (2016). Activated persulfate for organic chemical degradation: A review. Chemosphere, 151, 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055 | spa |
dc.relation.references | Meddah, S., el Hadi Samar, M., Bououdina, M., & Khezami, L. (2022). Outstanding performance of electro-Fenton/ultra-violet/ultra-sound assisted-persulfate process for the complete degradation of hazardous pollutants in contaminated water. Process Safety and Environmental Protection, 165, 739–753. https://doi.org/10.1016/j.psep.2022.08.002 | spa |
dc.relation.references | Midassi, S., Bedoui, A., & Bensalah, N. (2020). Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism. Chemosphere, 260. https://doi.org/10.1016/j.chemosphere.2020.127558 | spa |
dc.relation.references | Ministerio de Ambiente Vivienda y Desarrollo Territorial (MAVDT). (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. https://www.minambiente.gov.co/wp-content/uploads/2021/10/Politica-nacional-Gestion-integral-de-recurso-Hidrico-web.pdf | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible (MADS). (2015a). Resolución 0631 de 2015. Diario Oficial No. 49.486 de 18 de abril de 2015. https://www.minambiente.gov.co/wp-content/uploads/2021/11/resolucion-631-de-2015.pdf | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible (MADS). (2015). Decreto 1076 de 2015. Diario Oficial No. 49523 del 26 de mayo de 2015. https://www.minambiente.gov.co/documento-normativa/decreto-1076-de-2015/ | spa |
dc.relation.references | Monteagudo, J. M., Durán, A., Martín, I. S., & Aguirre, M. (2010). Catalytic degradation of Orange II in a ferrioxalate-assisted photo-Fenton process using a combined UV-A/C-solar pilot-plant system. Applied Catalysis B: Environmental, 95(1–2), 120–129. https://doi.org/10.1016/j.apcatb.2009.12.018 | spa |
dc.relation.references | Montgomery, D., 2012. Design and Analysis of Experiments. 8th ed. s.l.: John Wiley & Sons Inc. | spa |
dc.relation.references | Montoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., & Torres-Palma, R. A. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes - Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management, 261, 110224. https://doi.org/10.1016/j.jenvman.2020.110224 | spa |
dc.relation.references | Mueses, M., Castillo-Castellón, J., Colina-Marquez, J., & Machuca-Martínez, F. (2021). The History and Prospective of the AOPs for Environmental Applications in Colombia. Chemistry Select, 6(44), 12482-12495. https://doi.org/10.1002/slct.202103326 | spa |
dc.relation.references | Munteanu, G., Karakashkova, P., & Eliyas, A. (2021). Parameter optimization of a semi-batch water decontamination slurry photocatalytic reactor using Taguchi-Grey technique. Bulgarian Chemical Communications, 53(4), 442–446. https://doi.org/10.34049/bcc.53.4.5442 | spa |
dc.relation.references | Muthu, S. S. (2015). Handbook of Life Cycle Assessment (LCA) of textiles and clothing. (S. S. Muthu, Ed.). Elsevier Inc. https://doi.org/10.1016/C2014-0-00761-7 | spa |
dc.relation.references | Muthu, S. S. (2017). Sustainability in the Textile Industry. (S. S. Muthu, Ed.). Springer Singapore. https://doi.org/10.1007/978-981-10-2639-3 | spa |
dc.relation.references | Myers, R., Montgomery, D., & Anderson-Cook, C. (2016). Response Surface Methodology: process and product optimization using designed experiments (4th ed.). John Wiley & Sons, Inc. | spa |
dc.relation.references | Naciones Unidas. (2019). El costo ambiental de estar a la moda. https://news.un.org/es/story/2019/04/1454161 | spa |
dc.relation.references | Nakamura, K. C., Guimarães, L. S., Magdalena, A. G., Angelo, A. C. D., de Andrade, A. R., Garcia-Segura, S., & Pipi, A. R. F. (2019). Electrochemically-driven mineralization of Reactive Blue 4 cotton dye: On the role of in situ generated oxidants. Journal of Electroanalytical Chemistry, 840, 415–422. https://doi.org/10.1016/j.jelechem.2019.04.016 | spa |
dc.relation.references | Nidheesh, P. v., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210–227. https://doi.org/10.1016/j.chemosphere.2017.12.195 | spa |
dc.relation.references | Oh, W. da, Dong, Z., & Lim, T. T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Applied Catalysis B: Environmental, 194, 169–201. https://doi.org/10.1016/j.apcatb.2016.04.003 | spa |
dc.relation.references | Osman, M. E., Khattab, O.-K. H., Aoad, A. A., & Ali, S. A. (2015). Optimization of different parameters for decolorization of acid black 194 dye using the selected fungal species. International Journal of Current Microbiology and Applied Sciences, 4(3), 866–891. http://www.ijcmas.com | spa |
dc.relation.references | Özcan, A. A., & Özcan, A. (2018). Investigation of applicability of Electro-Fenton method for the mineralization of naphthol blue black in water. Chemosphere, 202, 618–625. https://doi.org/10.1016/j.chemosphere.2018.03.125 | spa |
dc.relation.references | Pan, Z. L., & Qian, X. F. (2022). Porous carbons for use in electro-Fenton and Fenton-like reactions. New Carbon Materials, 37(1), 180–195. https://doi.org/10.1016/S1872-5805(22)60578-X | spa |
dc.relation.references | Patel, D. K., Tipre, D. R., & Dave, S. R. (2017). Enzyme mediated bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. Journal of the Taiwan Institute of Chemical Engineers, 77, 1–9. https://doi.org/10.1016/j.jtice.2017.02.027 | spa |
dc.relation.references | Patil, A. D.; Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as a Advanced Oxidation Process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(10), 29-32. https://doi.org/10.9790/2402-081032932 | spa |
dc.relation.references | Pérez, J. F., Galia, A., Rodrigo, M. A., Llanos, J., Sabatino, S., Sáez, C., Schiavo, B., & Scialdone, O. (2017). Effect of pressure on the electrochemical generation of hydrogen peroxide in undivided cells on carbon felt electrodes. Electrochimica Acta, 248, 169–177. https://doi.org/10.1016/j.electacta.2017.07.116 | spa |
dc.relation.references | Petsi, P., Plakas, K., Frontistis, Z., & Sirés, I. (2023). A critical assessment of the effect of carbon-based cathode properties on the in situ electrogeneration of H2O2. Electrochimica Acta, 470. https://doi.org/10.1016/j.electacta.2023.143337 | spa |
dc.relation.references | Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84. https://doi.org/10.1080/10643380500326564 | spa |
dc.relation.references | Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61(2), 121-139. https://doi.org/10.1016/j.dyepig.2003.10.009 | spa |
dc.relation.references | Pinheiro, S. K. de P., Lima, A. K. M., Miguel, T. B. A. R., Filho, A. G. S., Ferreira, O. P., Pontes, M. da S., Grillo, R., & Miguel, E. de C. (2024). Assessing toxicity mechanism of silver nanoparticles by using brine shrimp (Artemia salina) as model. Chemosphere, 347, 140673. https://doi.org/10.1016/j.chemosphere.2023.140673 | spa |
dc.relation.references | Pinto, V. L., Cervantes, T. N. M., Soto, P. C., Sarto, G., Bessegato, G. G., & Almeida, L. C. de. (2023). Multivariate optimization of methylene blue dye degradation using electro-Fenton process with self-doped TiO2 nanotube anode. Chemosphere, 344, 140336. https://doi.org/10.1016/j.chemosphere.2023.140336 | spa |
dc.relation.references | Pouran, S., Aziz, A. R., & Wan Daud, W. M. A. (2015). Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. Journal of Industrial and Engineering Chemistry, 21, 53–69. https://doi.org/10.1016/j.jiec.2014.05.005 | spa |
dc.relation.references | Poza-Nogueiras, V., Gomis-Berenguer, A., Pazos, M., Sanroman, A., & Ania, C. O. (2022). Exploring the use of carbon materials as cathodes in electrochemical advanced oxidation processes for the degradation of antibiotics. Journal of Environmental Chemical Engineering, 10(3), 107506. https://doi.org/10.1016/j.jece.2022.107506 | spa |
dc.relation.references | Prasetyo, H., Norrdin, M. N. A. M., Othman, M. H. D., Jaafar, J., Yoshioka, T., Li, Z., & Rahman, M. A. (2022). Technologies for treating wastewater from textile industry: A review. Materials Today: Proceedings, 65, 3066–3072. https://doi.org/10.1016/j.matpr.2022.04.214 | spa |
dc.relation.references | Prato-García, D., & Robayo-Avendaño, A. (2019). Treatment of a synthetic colored effluent in raceway reactors: The role of operational conditions on the environmental performance of a photo-Fenton process. Science of the Total Environment, 697, 134182. https://doi.org/10.1016/j.scitotenv.2019.134182 | spa |
dc.relation.references | Procolombia. (5 de julio de 2024). Industria textil colombiana y su crecimiento a través de la innovación y la competitividad. https://procolombia.co/colombiatrade/exportador/articulos/industria-textil-colombiana-y-su-crecimiento-traves-de-la-innovacion-y-la-competitividad | spa |
dc.relation.references | Pulido, E., Santiago, D. E., León, E., Vaswani, J., & Herrera-Melián, J. A. (2023). Treatment of laundry wastewater by different processes: Optimization and life cycle assessment. Journal of Environmental Chemical Engineering, 11(2), 109302. https://doi.org/10.1016/j.jece.2023.109302 | spa |
dc.relation.references | Quintero-Arias, Jesús David. (2023). Proceso avanzado de oxidación Fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textiles. [Tesis de Doctorado, Universidad Nacional de Colombia]. Repositorio Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/86293 | spa |
dc.relation.references | Quintero-Arias, J. D., Gómez-García, M. Á., & Dobrosz-Gómez, I. (2024). The scope of alum coagulation-flocculation assisted by slaked lime for the treatment of industrial wastewater containing highly concentrated Acid Black 194 dye. Optimization, molecular weight distribution and toxicity analysis. Results in Engineering, 23, 102676. https://doi.org/10.1016/j.rineng.2024.102676 | spa |
dc.relation.references | Ramírez-Díaz, R. C., & Prato-Garcia, D. (2021). Can thermal intensification be considered a sustainable way for greening Fenton processes? Journal of Environmental Management, 289, 112551. https://doi.org/10.1016/j.jenvman.2021.112551 | spa |
dc.relation.references | Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029 | spa |
dc.relation.references | Ren, Y. Z., Franke, M., Anschuetz, F., Ondruschka, B., Ignaszak, A., & Braeutigam, P. (2014). Sonoelectrochemical degradation of triclosan in water. Ultrasonics Sonochemistry, 21(6), 2020–2025. https://doi.org/10.1016/j.ultsonch.2014.03.028 | spa |
dc.relation.references | Ren, Y. Z., Wu, Z. L., Franke, M., Braeutigam, P., Ondruschka, B., Comeskey, D. J., & King, P. M. (2013). Sonoelectrochemical degradation of phenol in aqueous solutions. Ultrasonics Sonochemistry, 20(2), 715–721. https://doi.org/10.1016/j.ultsonch.2012.09.004 | spa |
dc.relation.references | Ribeiro, J. P., Sarinho, L., & Nunes, M. I. (2024). Application of life cycle assessment to Fenton processes in wastewater treatment – A review. Journal of Water Process Engineering, 57, 104692. https://doi.org/10.1016/j.jwpe.2023.104692 | spa |
dc.relation.references | Rocha, Y. A., Rezende, V., Maia, A., Fonseca, C., Guadagnin, W., & Santos, M. C. (2021). Integrated photo-Fenton and membrane-based techniques for textile effluent reclamation. Separation and Purification Technology, 272, 118932. https://doi.org/10.1016/j.seppur.2021.118932 | spa |
dc.relation.references | Rodrigues, C. S. D., Madeira, L. M., & Boaventura, R. A. R. (2009). Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation. Journal of Hazardous Materials, 172(2–3), 1551–1559. https://doi.org/10.1016/j.jhazmat.2009.08.027 | spa |
dc.relation.references | Rodrigues, C.S.D.; Madeira, L.M.; Boaventura, R.A.R. (2014). Decontamination of an Industrial Cotton Dyeing Wastewater by Chemical and Biological Processes. Industrial & Engineering Chemistry Research, 53(6), 2412-2421. https://doi.org/10.1021/ie402750p | spa |
dc.relation.references | Rodríguez, R., Espada, J., Pariente, M., Melero, J., Martínez, F., & Molina, R. (2016). Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater. Journal of Cleaner Production, 124, 21–29. https://doi.org/10.1016/j.jclepro.2016.02.064 | spa |
dc.relation.references | Salazar, L. M., Grisales, C. M., & Garcia, D. P. (2019). How does intensification influence the operational and environmental performance of photo-Fenton processes at acidic and circumneutral pH. Environmental Science and Pollution Research, 26(5), 4367–4380. https://doi.org/10.1007/s11356-018-2388-1 | spa |
dc.relation.references | Samanta, C. (2008). Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Applied Catalysis A: General, 350(2), 133–149. https://doi.org/10.1016/j.apcata.2008.07.043 | spa |
dc.relation.references | Samsami, S., Mohamadi, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034 | spa |
dc.relation.references | Santana, I. L. da S., Silva, M. G., Ourem, G. P., Neves, N. S. da C. S., Cavalcanti, V. de O. M., Alex, A. L., Duarte, M. M. M. B., & Napoleão, D. C. (2024). Degradation of direct black 22 textile dye using the photo-Fenton and electro-Fenton processes: a comparative study. Chemical Papers, 78(6), 3515–3524. https://doi.org/10.1007/s11696-024-03325-5 | spa |
dc.relation.references | Santander-Muñoz, M., Cardozo-Castillo, P., & Valderrama-Campusano, L. (2021). Removal of sulfate ions by precipitation and flotation. Ingenieria e Investigacion, 41(3). https://doi.org/10.15446/ing.investig.v41n3.90349 | spa |
dc.relation.references | Santos, M. C., Antonin, V. S., Souza, F. M., Aveiro, L. R., Pinheiro, V. S., Gentil, T. C., Lima, T. S., Moura, J. P. C., Silva, C. R., Lucchetti, L. E. B., Codognoto, L., Robles, I., & Lanza, M. R. V. (2022). Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes – A review on the relevance of materials and methods. Chemosphere, 307, 135763. https://doi.org/10.1016/j.chemosphere.2022.135763 | spa |
dc.relation.references | Sebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., & Citterio, A. (2012). Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes and Pigments, 94(2), 258–265. https://doi.org/10.1016/j.dyepig.2011.12.014 | spa |
dc.relation.references | Shahamat, Y., Masihpour, M., Borghei, P., & Rahmati, S. (2022). Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. Inorganic Chemistry Communications, 143, 109785. https://doi.org/10.1016/j.inoche.2022.109785 | spa |
dc.relation.references | Silva, L. G. M., Moreira, F. C., Cechinel, M. A. P., Mazur, L. P., de Souza, A. A. U., Souza, S. M. A. G. U., Boaventura, R. A. R., & Vilar, V. J. P. (2020). Integration of Fenton’s reaction based processes and cation exchange processes in textile wastewater treatment as a strategy for water reuse. Journal of Environmental Management, 272, 111082. https://doi.org/10.1016/j.jenvman.2020.111082 | spa |
dc.relation.references | Sobczak, M., Bujnowicz, S., & Bilińska, L. (2024). Fenton and electro-Fenton treatment for industrial textile wastewater recycling. Comparison of by-products removal, biodegradability, toxicity, and re-dyeing. Water Resources and Industry, 31, 100256. https://doi.org/10.1016/j.wri.2024.100256 | spa |
dc.relation.references | Solano, A.M.S., de Araújo, C.K.C., de Melo, J.V., Peralta-Hernandez, J.M., da Silva, D.R., Martínez-Huitle, C.A. (2013). Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology. Applied Catalysis B: Environmental, 130, 112-120. https://doi.org/10.1016/j.apcatb.2012.10.023 | spa |
dc.relation.references | Tanveer, R., Yasar, A., Tabinda, A. ul B., Ikhlaq, A., Nissar, H., & Nizami, A. S. (2022). Comparison of ozonation, Fenton, and photo-Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation. Journal of Water Process Engineering, 46, 102547. https://doi.org/10.1016/j.jwpe.2021.102547 | spa |
dc.relation.references | Temur Ergan, B., Soybelli, M., & Gengeç, E. (2021). Impact of thermal modification of carbon felt on the performance of oxygen reduction reaction and mineralisation of dye in on-line electro fenton system. International Journal of Environmental Analytical Chemistry, 103(20), 9730–9746. https://doi.org/10.1080/03067319.2021.2015341 | spa |
dc.relation.references | Temur Ergan, B., Aydin, E. S., & Gengec, E. (2024). Degradation kinetics of Jean-wash-wastewater by using Electro-Fenton system with an effective biochar cathode thermally modified by CO2. Process Safety and Environmental Protection, 192, 837–848. https://doi.org/10.1016/j.psep.2024.10.106 | spa |
dc.relation.references | Titchou, F. E., Zazou, H., Afanga, H., el Gaayda, J., Ait Akbour, R., Hamdani, M., & Oturan, M. A. (2021). Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media. Journal of Electroanalytical Chemistry, 897, 115560. https://doi.org/10.1016/j.jelechem.2021.115560 | spa |
dc.relation.references | Titchou, F. E., Zazou, H., Afanga, H., Jamila, E. G., Ait Akbour, R., Hamdani, M., & Oturan, M. A. (2022). Comparative study of the removal of direct red 23 by anodic oxidation, electro-Fenton, photo-anodic oxidation and photoelectro-Fenton in chloride and sulfate media. Environmental Research, 204, 112353. https://doi.org/10.1016/j.envres.2021.112353 | spa |
dc.relation.references | Torres, R. A., Sarria, V., Torres, W., Peringer, P., & Pulgarín, C. (2003). Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: Toward an electrochemical–biological coupling. Water Research, 37(13), 3118–3124. https://doi.org/10.1016/S0043-1354(03)00179-9 | spa |
dc.relation.references | Torres-Segundo, C., Vergara-Sánchez, J., Reyes-Romero, P. G., Gómez-Diaz, A., Rodriguez-Albarrán, M. J., & Martínez-Valencia, H. (2019). Effect on discoloration by nonthermal plasma in dissolved textile dyes: Acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939–947. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Torres | spa |
dc.relation.references | Tunç, S., Gürkan, T., & Duman, O. (2012). On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181–182, 431–442. https://doi.org/10.1016/j.cej.2011.11.109 | spa |
dc.relation.references | Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555–565. https://doi.org/10.1016/j.rser.2013.08.013 | spa |
dc.relation.references | Unidad de Planeación Minero Energética – UPME. (2023). Proyección de la demanda de energía eléctrica, potencia máxima y gas natural 2023 - 2037. https://www1.upme.gov.co/DemandayEficiencia | spa |
dc.relation.references | United Nations. (2024). Sostenibilidad. https://www.un.org/es/impacto-academico/sostenibilidad | spa |
dc.relation.references | Vidal, J., Villegas, L., Peralta-Hernández, J. M., & Salazar González, R. (2016). Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(4), 289–296. https://doi.org/10.1080/10934529.2015.1109385 | spa |
dc.relation.references | Villaseñor-Basulto, D., Picos-Benítez, A., Bravo-Yumi, N., Perez-Segura, T., Bandala, E. R., & Peralta-Hernández, J. M. (2021). Electro-Fenton mineralization of diazo dye Black NT2 using a pre-pilot flow plant. Journal of Electroanalytical Chemistry, 895, 115492. https://doi.org/10.1016/j.jelechem.2021.115492 | spa |
dc.relation.references | Vlasopoulos, N., Memon, F.A., Butler, D., Murphy, R. (2006). Life cycle assessment of wastewater treatment technologies treating petroleum process waters. Science of the Total Environment, 367, 58–70, https://doi.org/10.1016/j.scitotenv.2006.03.007. | spa |
dc.relation.references | Vogel, A. (1989). Vogel’s textbook of quantitative chemical analysis, 5a ed. Harlow: Longman House, New York, pp. 877. | spa |
dc.relation.references | Waly, A. I., Khedr, M. A., Ali, H. M., & Ahmed, I. M. (2022). Application of amino-functionalized cellulose-poly(glycidyl methacrylate) graft copolymer (AM-Cell-g-PGMA)adsorbent for dyes removal from wastewater. Cleaner Engineering and Technology, 6, 100374. https://doi.org/10.1016/j.clet.2021.100374 | spa |
dc.relation.references | Wang, J., Li, C., Rauf, M., Luo, H., Sun, X., & Jiang, Y. (2021). Gas diffusion electrodes for H2O2 production and their applications for electrochemical degradation of organic pollutants in water: A review. In Science of the Total Environment (Vol. 759). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.143459 | spa |
dc.relation.references | Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059 | spa |
dc.relation.references | Wang, R., Cao, J., Song, J., Liu, J., & Zhang, Y. (2022). Application of boron doped diamond for electro-Fenton and photoelectro-Fenton decolorization of azo dye from dye-containing wastewater: Acid Red 1. International Journal of Electrochemical Science, 17(2), 220249. https://doi.org/10.20964/2022.02.45 | spa |
dc.relation.references | Wang, Y., Pan, Z., Zhang, W., Borhani, T. N., Li, R., & Zhang, Z. (2022). Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review. Environmental Research, 207, 112219. https://doi.org/10.1016/j.envres.2021.112219 | spa |
dc.relation.references | Wang, Z. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry and Engineering, 1(12), 1551–1554. https://doi.org/10.1021/sc400174a | spa |
dc.relation.references | Wang, Z., Yu, C., Fang, C., & Mallavarapu, M. (2014a). Dye removal using iron-polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology and Innovation, 1–2(C), 29–34. https://doi.org/10.1016/j.eti.2014.08.003 | spa |
dc.relation.references | Wang, Z., Fang, C., & Megharaj, M. (2014b). Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustainable Chemistry and Engineering, 2(4), 1022–1025. https://doi.org/10.1021/sc500021n | spa |
dc.relation.references | Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218–1230. https://doi.org/10.1007/s11367-016-1087-8 | spa |
dc.relation.references | Xu, X. R., & Li, X. Z. (2010). Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology, 72(1), 105–111. https://doi.org/10.1016/j.seppur.2010.01.012 | spa |
dc.relation.references | Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16(2), 1193–1226. https://doi.org/10.1007/s13762-018-2130-z | spa |
dc.relation.references | Ye, Z., Brillas, E., Centellas, F., Cabot, P. L., & Sirés, I. (2019). Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode. Applied Catalysis B: Environmental, 257. https://doi.org/10.1016/j.apcatb.2019.117907 | spa |
dc.relation.references | Zhang, Q., Zhou, M., Du, X., Su, P., Fu, W., & Song, G. (2022). Highly efficient dual-cathode Electro-Fenton process without aeration at a wide pH range: Simultaneously enhancing Fe(II) regeneration and mineralization efficiency. Chemical Engineering Journal, 429. https://doi.org/10.1016/j.cej.2021.132436 | spa |
dc.relation.references | Zhou, M., Oturan, M., & Sirés, I. (2018a). The Handbook of Environmental Chemistry (Vol. 61). Springer Nature Singapore Pte Ltd. https://doi.org/doi.org/10.1007/978-981-10-6406-7 | spa |
dc.relation.references | Zhou, W., Gao, J., Ding, Y., Zhao, H., Meng, X., Wang, Y., Kou, K., Xu, Y., Wu, S., & Qin, Y. (2018b). Drastic enhancement of H2O2 electro-generation by pulsed current for ibuprofen degradation: Strategy based on decoupling study on H2O2 decomposition pathways. Chemical Engineering Journal, 338, 709–718. https://doi.org/10.1016/j.cej.2017.12.152 | spa |
dc.relation.references | Zhou, W., Meng, X., Gao, J., & Alshawabkeh, A. N. (2019a). Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review. Chemosphere, 225, 588–607. https://doi.org/10.1016/j.chemosphere.2019.03.042 | spa |
dc.relation.references | Zhou, W., Rajic, L., Chen, L., Kou, K., Ding, Y., Meng, X., Wang, Y., Mulaw, B., Gao, J., Qin, Y., & Alshawabkeh, A. N. (2019b). Activated carbon as effective cathode material in iron-free Electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption. Electrochimica Acta, 296, 317–326. https://doi.org/10.1016/j.electacta.2018.11.052 | spa |
dc.relation.references | Zou, M., Wei, J., Qian, Y., Xu, Y., Fang, Z., Yang, X., & Wang, Z. (2024). Life cycle assessment of homogeneous Fenton process as pretreatment for refractory pharmaceutical wastewater. Frontiers of Chemical Science and Engineering, 18(49). https://doi.org/10.1007/s11705-024-2408-2 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Agua residual textil | spa |
dc.subject.proposal | Decoloración | spa |
dc.subject.proposal | Electro-Fenton | spa |
dc.subject.proposal | Mineralización | spa |
dc.subject.proposal | Negro Ácido 194 | spa |
dc.subject.proposal | Optimización | spa |
dc.subject.proposal | Análisis de Ciclo de Vida | spa |
dc.subject.proposal | Textile wastewater | eng |
dc.subject.proposal | Decolorization | eng |
dc.subject.proposal | Electro-Fenton | eng |
dc.subject.proposal | Mineralization | eng |
dc.subject.proposal | Acid Black 194 | eng |
dc.subject.proposal | Optimization | eng |
dc.subject.proposal | Life Cycle Assessment | eng |
dc.subject.unesco | Industria textil | spa |
dc.subject.unesco | Textile industry | eng |
dc.subject.unesco | Tratamiento de desechos | spa |
dc.subject.unesco | Waste treatment | eng |
dc.title | Decoloración y mineralización de un agua residual industrial textil mediante un proceso Electro-Fenton con generación de H2O2 in-situ | spa |
dc.title.translated | Discoloration and mineralization of a textile industrial wastewater by using an Electro-Fenton process with in-situ H2O2 generation | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Minciencias 852-2019: Convocatoria de Proyectos Conectando Conocimiento 2019, Proyecto: 202010034716, Contrato: 172-2021 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1113665837.2024.pdf
- Tamaño:
- 3.74 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: