Modelo de aprendizaje de máquinas para la predicción de la tasa de corrosión por CO2 en salmueras con iones divalentes y presencia de carbon quantum dots (CQDs)
| dc.contributor.advisor | Cortés Correa, Farid Bernardo | |
| dc.contributor.advisor | Torres Madroñero , Maria Constanza | |
| dc.contributor.advisor | Franco Ariza, Camilo Andres | |
| dc.contributor.author | Ortiz Pérez, Leidy Viviana | |
| dc.contributor.orcid | Cortés, Farid B. [0000000312073859] | |
| dc.contributor.orcid | Torres-Madronero, Maria C. [0000000297952459] | |
| dc.contributor.researchgroup | Fenómenos de Superficie Michael Polanyi | |
| dc.date.accessioned | 2025-10-28T20:25:42Z | |
| dc.date.available | 2025-10-28T20:25:42Z | |
| dc.date.issued | 2025-09-19 | |
| dc.description.abstract | La corrosión del acero al carbono en ambientes salinos saturados con CO₂ constituye un reto crítico para la confiabilidad de las infraestructuras en energía y procesos de Captura, Utilización y Almacenamiento de Carbono (CCUS). Las salmueras de formación con NaCl, CaCl₂ y CO₂ disuelto aceleran la degradación electroquímica, generando altas tasas de corrosión y riesgos operativos. Como alternativa de mitigación, los Carbon Quantum Dots (CQDs) se perfilan como inhibidores verdes prometedores por su dispersabilidad, estabilidad química y bajo impacto ambiental. Sin embargo, predecir con precisión estas tasas sigue siendo un desafío, ya que los modelos tradicionales no logran representar las complejas interacciones entre múltiples variables. En esta tesis se evaluó experimentalmente el efecto inhibidor de los CQDs mediante ensayos gravimétricos bajo diferentes condiciones de salinidad y tiempos de inmersión, y se desarrollaron modelos de aprendizaje de máquinas para predecir la tasa de corrosión en estos ambientes. Se evaluaron cinco algoritmos: Random Forest (RF), XGBoost, Support Vector Regression (SVR), K-Near Neighbors (KNN) y Multilayer Perceptron (MLP). El mejor desempeño predictivo se obtuvo con RF y XGBoost, alcanzando R² superiores a 0.91, RMSE de 1.1 mpy y MAE de 0.8 mpy. Estos resultados demuestran el potencial del aprendizaje de máquinas como herramienta poderosa y confiable para predecir el comportamiento corrosivo en salmueras complejas ricas en CO₂, apoyando la implementación de estrategias de mitigación de la corrosión más seguras, eficientes y sostenibles en aplicaciones industriales. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The corrosion of carbon steel in CO₂-saturated saline environments represents a critical challenge for the reliability of infrastructures in energy production and Carbon Capture, Utilization, and Storage (CCUS) processes. Formation brines containing NaCl, CaCl₂, and dissolved CO₂ accelerate electrochemical degradation, leading to high corrosion rates and significant operational risks. As a mitigation alternative, Carbon Quantum Dots (CQDs) have emerged as promising green inhibitors due to their dispersibility, chemical stability, and low environmental impact. However, accurately predicting corrosion rates remains a major challenge, since traditional models fail to capture the complex interactions among multiple variables. In this thesis, the inhibitory effect of CQDs was experimentally evaluated through gravimetric tests under different salinity conditions and immersion times, and machine learning models were developed to predict the corrosion rate in these environments. Five algorithms were evaluated: Random Forest (RF), XGBoost, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), and Multilayer Perceptron (MLP). The best predictive performance was obtained with RF and XGBoost, achieving R² values above 0.91, RMSE of 1.1 mpy, and MAE of 0.8 mpy. These results demonstrate the potential of machine learning as a powerful and reliable tool to predict corrosive behavior in complex CO₂-rich brines, supporting the implementation of safer, more efficient, and sustainable corrosion mitigation strategies in industrial applications. | eng |
| dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería - Analítica | |
| dc.description.methods | Investigación | |
| dc.description.researcharea | Aprendizaje de máquinas | |
| dc.format.extent | 1 recurso en línea (76 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89072 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | |
| dc.relation.references | F. Nath, M.N. Mahmood, N. Yousuf, Recent advances in CCUS: A critical review on technologies, regulatory aspects and economics, Geoenergy Science and Engineering 238 (2024) 212726. | |
| dc.relation.references | National Oceanic and Atmospheric Administration (NOAA), Despite pandemic shutdowns, carbon dioxide and methane surged in 2020, (n.d.). https://research.noaa.gov/2021/04/07/despite-pandemic-shutdowns-carbon-dioxide-and-methane-surged-in-2020/ (accessed September 5, 2025). | |
| dc.relation.references | GML, Carbon Cycle Greenhouse Gases, (n.d.). https://gml.noaa.gov/ccgg/ (accessed September 5, 2025). | |
| dc.relation.references | G.P.D. De Silva, P.G. Ranjith, M.S.A. Perera, Geochemical aspects of CO2 sequestration in deep saline aquifers: A review, Fuel 155 (2015) 128–143. | |
| dc.relation.references | A. Morgan, R. Grigg, W. Ampomah, A gate-to-gate life cycle assessment for the CO2-EOR operations at farnsworth unit (FWU), Energies (Basel) 14 (2021) 2499. | |
| dc.relation.references | K. Brown, S. Whittaker, M. Wilson, W. Srisang, H. Smithson, P. Tontiwachwuthikul, The history and development of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project in Saskatchewan, Canada (the world largest CO2 for EOR and CCS program), Petroleum 3 (2017) 3–9. | |
| dc.relation.references | P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, Global Warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Sustainable Development, and Efforts to Eradicate Poverty (2018) 32. | |
| dc.relation.references | Working Group III of the Intergovernmental Panel on Climate Change, IPCC Special Report on Carbon Dioxide Capture and Storage, 2005 (n.d.). https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ (accessed September 5, 2025). | |
| dc.relation.references | National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory, Trends in atmospheric carbon dioxide (CO2), (n.d.). https://gml.noaa.gov/ccgg/trends/ (accessed September 5, 2025). | |
| dc.relation.references | A. Dubey, A. Arora, Advancements in carbon capture technologies: A review, J Clean Prod 373 (2022) 133932. | |
| dc.relation.references | Y.A. Alli, N.E. Magida, F. Matebese, N. Romero, A.S. Ogunlaja, K. Philippot, Biomimetic photocatalysts for the transformation of CO2: design, properties, and mechanistic insights, Mater Today Energy 34 (2023) 101310. | |
| dc.relation.references | International Energy Agency, Net zero by 2050, IEA, Paris, (n.d.). https://www.iea.org/reports/net-zero-by-2050 (accessed September 8, 2025). | |
| dc.relation.references | P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, Global Warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Sustainable Development, and Efforts to Eradicate Poverty (2018) 32. | |
| dc.relation.references | E. Hanson, C. Nwakile, V.O. Hammed, Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions, Results in Surfaces and Interfaces 18 (2025) 100381. | |
| dc.relation.references | P.R. Yaashikaa, P.S. Kumar, A. Saravanan, S. Karishma, G. Rangasamy, A biotechnological roadmap for decarbonization systems combined into bioenergy production: Prelude of environmental life-cycle assessment, Chemosphere 329 (2023) 138670. | |
| dc.relation.references | W. Ampomah, A. Morgan, D.O. Koranteng, W.I. Nyamekye, CCUS perspectives: Assessing historical contexts, current realities, and future prospects, Energies (Basel) 17 (2024) 4248 | |
| dc.relation.references | Q. Deng, X. Ling, K. Zhang, L. Tan, G. Qi, J. Zhang, CCS and CCUS technologies: Giving the oil and gas industry a green future, Front Energy Res 10 (2022) 919330. | |
| dc.relation.references | L. Yang, W. Rui, Z. Qingmin, Z. Yuanlong, F. Xin, X. Zhaojie, CO2-enhanced oil recovery with CO2 utilization and storage: Progress and practical applications in China, Unconventional Resources 4 (2024) 100096. | |
| dc.relation.references | J.N. Turkson, M.A. Md Yusof, I. Fjelde, Y.A. Sokama-Neuyam, V. Darkwah-Owusu, B.N. Tackie-Otoo, C.D. Adenutsi, B. Amoyaw, L.J. Hyun, S. Kwon, Carbonated water injection for enhanced oil recovery and CO2 geosequestration in different CO2 repositories: a review of physicochemical processes and recent advances, Energy & Fuels 38 (2024) 6579–6612. | |
| dc.relation.references | H. Yu, H. Tang, X. Han, P. Song, R. Ma, L. Zhang, H. Jia, J. Lu, Y. Wang, Enhanced oil recovery and CO2 storage by enhanced carbonated water injection: a mini-review, Energy & Fuels 38 (2024) 12409–12432. | |
| dc.relation.references | A. Talebi, A. Hasan-Zadeh, Y. Kazemzadeh, M. Riazi, A review on the application of carbonated water injection for EOR purposes: Opportunities and challenges, J Pet Sci Eng 214 (2022) 110481. | |
| dc.relation.references | G. Schmitt, R.H. Hausler, H.P. Giddard, Advances in CO2 corrosion, NACE, Houston 1 (1984). | |
| dc.relation.references | A. Kahyarian, M. Singer, S. Nesic, Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review, J Nat Gas Sci Eng 29 (2016) 530–549. | |
| dc.relation.references | H. Mansoori, R. Mirzaee, F. Esmaeilzadeh, A. Vojood, A.S. Dowrani, Pitting corrosion failure analysis of a wet gas pipeline, Eng Fail Anal 82 (2017) 16–25. | |
| dc.relation.references | Y. Hua, R. Barker, A. Neville, Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2, J Supercrit Fluids 97 (2015) 224–237. | |
| dc.relation.references | M.B. Kermani, A. Morshed, Carbon dioxide corrosion in oil and gas productiona compendium, Corrosion 59 (2003). | |
| dc.relation.references | R. Barker, D. Burkle, T. Charpentier, H. Thompson, A. Neville, A review of iron carbonate (FeCO3) formation in the oil and gas industry, Corros Sci 142 (2018) 312–341. | |
| dc.relation.references | A.B. Forero, M. Núñez, I.S. Bott, Analysis of the corrosion scales formed on API 5L X70 and X80 steel pipe in the presence of CO2, Materials Research 17 (2014) 461–471. | |
| dc.relation.references | H. Fang, B. Brown, S. Nešić, Sodium chloride concentration effects on general CO2 corrosion mechanisms, Corrosion 69 (2013) 297–302. | |
| dc.relation.references | R. Elgaddafi, R. Ahmed, S. Shah, Corrosion of carbon steel in CO2 saturated brine at elevated temperatures, J Pet Sci Eng 196 (2021) 107638. | |
| dc.relation.references | H. Mansoori, F. ESMAEILZADEH, D. MOWLA, A.H. Mohammadi, Case study: production benefits from increasing C-values, Oil & Gas Journal 111 (2013) 64–73. | |
| dc.relation.references | R. Rizzo, S. Gupta, M. Rogowska, R. Ambat, Corrosion of carbon steel under CO2 conditions: Effect of CaCO3 precipitation on the stability of the FeCO3 protective layer, Corros Sci 162 (2020) 108214. | |
| dc.relation.references | S.N. Esmaeely, D. Young, B. Brown, S. Nešić, Effect of incorporation of calcium into iron carbonate protective layers in CO2 corrosion of mild steel, Corrosion 73 (2017) 238–246. | |
| dc.relation.references | L.M. Tavares, E.M. da Costa, J.J. de Oliveira Andrade, R. Hubler, B. Huet, Effect of calcium carbonate on low carbon steel corrosion behavior in saline CO2 high pressure environments, Appl Surf Sci 359 (2015) 143–152. | |
| dc.relation.references | C. Ding, K. Gao, C. Chen, Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel, International Journal of Minerals, Metallurgy and Materials 16 (2009) 661–666. | |
| dc.relation.references | X. Liu, J. Zheng, J. Fu, J. Ji, G. Chen, Multi-level optimization of maintenance plan for natural gas pipeline systems subject to external corrosion, J Nat Gas Sci Eng 50 (2018) 64–73. | |
| dc.relation.references | M.E.A. Ben Seghier, D. Höche, M. Zheludkevich, Prediction of the internal corrosion rate for oil and gas pipeline: Implementation of ensemble learning techniques, J Nat Gas Sci Eng 99 (2022) 104425. | |
| dc.relation.references | M. Askari, M. Aliofkhazraei, S. Afroukhteh, A comprehensive review on internal corrosion and cracking of oil and gas pipelines, J Nat Gas Sci Eng 71 (2019) 102971. | |
| dc.relation.references | A. Kahyarian, M. Achour, S. Nesic, Mathematical modeling of uniform CO2 corrosion, Trends in Oil and Gas Corrosion Research and Technologies (2017) 805–849. | |
| dc.relation.references | S. Nesic, M. Nordsveen, N. Maxwell, M. Vrhovac, Probabilistic modelling of CO2 corrosion laboratory data using neural networks, Corros Sci 43 (2001) 1373–1392. | |
| dc.relation.references | M. Jones, J. Owen, G. de Boer, R.C. Woollam, M.C. Folena, H. Farhat, R. Barker, Numerical exploration of a fully mechanistic mathematical model of aqueous CO2 corrosion in steel pipelines, Corros Sci 236 (2024) 112235. | |
| dc.relation.references | A. Charles, K. Sivaraj, S. Thanikaikarasan, Synthesis, characterization and corrosion studies of Schiff bases derived from pyrrole‐2‐carbaldehyde, Mater Today Proc 33 (2020) 3135–3138. | |
| dc.relation.references | Y. Tang, F. Zhang, S. Hu, Z. Cao, Z. Wu, W. Jing, Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies, Corros Sci 74 (2013) 271–282. | |
| dc.relation.references | X. Luo, X. Pan, S. Yuan, S. Du, C. Zhang, Y. Liu, Corrosion inhibition of mild steel in simulated seawater solution by a green eco-friendly mixture of glucomannan (GL) and bisquaternary ammonium salt (BQAS), Corros Sci 125 (2017) 139–151. | |
| dc.relation.references | Z. Dong, M. Zhang, W. Li, F. Wen, G. Dong, L. Zou, Y. Zhang, Development of a Predictive Model for Carbon Dioxide Corrosion Rate and Severity Based on Machine Learning Algorithms, Materials 17 (2024) 4046. | |
| dc.relation.references | X. Wu, J. Li, C. Deng, L. Yang, J. Lv, L. Fu, Novel carbon dots as effective corrosion inhibitor for N80 steel in 1 M HCl and CO2-saturated 3.5 wt% NaCl solutions, J Mol Struct 1250 (2022) 131897. | |
| dc.relation.references | W.T. Nash, C.J. Powell, T. Drummond, N. Birbilis, Automated corrosion detection using crowdsourced training for deep learning, Corrosion 76 (2020) 135–141. | |
| dc.relation.references | C.I. Ossai, A data-driven machine learning approach for corrosion risk assessment—a comparative study, Big Data and Cognitive Computing 3 (2019) 28. | |
| dc.relation.references | G. Sanchez, W. Aperador, A. Cerón, Corrosion grade classification: a machine learning approach, Indian Chemical Engineer 62 (2020) 277–286. | |
| dc.relation.references | M. Rogowska, J. Gudme, A. Rubin, K. Pantleon, R. Ambat, Effect of Fe ion concentration on corrosion of carbon steel in CO2 environment, Corrosion Engineering, Science and Technology 51 (2016) 25–36. | |
| dc.relation.references | L. Yan, Y. Diao, Z. Lang, K. Gao, Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach, Sci Technol Adv Mater 21 (2020) 359–370. | |
| dc.relation.references | M. Aghaaminiha, R. Mehrani, M. Colahan, B. Brown, M. Singer, S. Nesic, S.M. Vargas, S. Sharma, Machine learning modeling of time-dependent corrosion rates of carbon steel in presence of corrosion inhibitors, Corros Sci 193 (2021) 109904. | |
| dc.relation.references | S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines–A review, Corros Sci 49 (2007) 4308–4338 | |
| dc.relation.references | T.M. Mitchell, Does machine learning really work?, AI Mag 18 (1997) 11. | |
| dc.relation.references | A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow, “ O’Reilly Media, Inc.,” 2022. | |
| dc.relation.references | H.A. Al-Jamimi, S. Al-Azani, T.A. Saleh, Supervised machine learning techniques in the desulfurization of oil products for environmental protection: A review, Process Safety and Environmental Protection 120 (2018) 57–71. | |
| dc.relation.references | L. Breiman, Random forests, Mach Learn 45 (2001) 5–32. | |
| dc.relation.references | A. Paul, D.P. Mukherjee, P. Das, A. Gangopadhyay, A.R. Chintha, S. Kundu, Improved random forest for classification, IEEE Transactions on Image Processing 27 (2018) 4012–4024. | |
| dc.relation.references | T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016: pp. 785–794. | |
| dc.relation.references | S.R. Gunn, Support vector machines for classification and regression, Technical Report, Image Speech and Intelligent Systems Research Group, 1997 1 (1997) 1–52. | |
| dc.relation.references | T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans Inf Theory 13 (1967) 21–27. | |
| dc.relation.references | S. Xia, Z. Xiong, Y. Luo, L. Dong, G. Zhang, Location difference of multiple distances based k-nearest neighbors algorithm, Knowl Based Syst 90 (2015) 99–110. | |
| dc.relation.references | Z. Dong, L. Ding, Z. Meng, K. Xu, Y. Mao, X. Chen, H. Ye, A. Poursaee, Machine learning-based corrosion rate prediction of steel embedded in soil, Sci Rep 14 (2024) 18194. | |
| dc.relation.references | C. Ding, K. Gao, C. Chen, Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel, International Journal of Minerals, Metallurgy and Materials 16 (2009) 661–666. | |
| dc.relation.references | S. Navabzadeh Esmaeely, Y.-S. Choi, D. Young, S. Nešić, Effect of calcium on the formation and protectiveness of iron carbonate layer in CO2 corrosion, Corrosion 69 (2013) 912–920. | |
| dc.relation.references | A. Shamsa, R. Barker, Y. Hua, E. Barmatov, T.L. Hughes, A. Neville, The role of Ca2+ ions on Ca/Fe carbonate products on X65 carbon steel in CO2 corrosion environments at 80 and 150° C, Corros Sci 156 (2019) 58–70. | |
| dc.relation.references | X. Ren, Y. Lu, Q. Wei, L. Yu, K. Zhai, J. Tang, H. Wang, J. Xie, The influence of Ca2+ on the growth mechanism of corrosion product film on N80 steel in CO2 corrosion environments, Corros Sci 218 (2023) 111168. | |
| dc.relation.references | J. Li, J. Lv, L. Fu, M. Tang, X. Wu, New ecofriendly nitrogen-doped carbon quantum dots as effective corrosion inhibitor for saturated CO2 3% NaCl solution, Russian Journal of Applied Chemistry 93 (2020) 380–392. | |
| dc.relation.references | H. Cen, Z. Chen, X. Guo, N, S co-doped carbon dots as effective corrosion inhibitor for carbon steel in CO2-saturated 3.5% NaCl solution, J Taiwan Inst Chem Eng 99 (2019) 224–238. | |
| dc.relation.references | M. Aghaaminiha, R. Mehrani, M. Colahan, B. Brown, M. Singer, S. Nesic, S.M. Vargas, S. Sharma, Machine learning modeling of time-dependent corrosion rates of carbon steel in presence of corrosion inhibitors, Corros Sci 193 (2021) 109904. | |
| dc.relation.references | T. Wang, J. Li, Y. Liu, Based on Pearson correlation coefficient and Monte Carlo simulation method, the calculation formula of frictional resistance is optimized for soft shaft bending and pulling of steel wire, in: J Phys Conf Ser, IOP Publishing, 2021: p. 012088. | |
| dc.relation.references | K. Gilbert, P.C. Bennett, W. Wolfe, T. Zhang, K.D. Romanak, CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl−, SO42− and HCO3-: The effects of electrostricted water and ion hydration thermodynamics, Applied Geochemistry 67 (2016) 59–67. | |
| dc.relation.references | S.N. Esmaeely, D. Young, B. Brown, S. Nešić, Effect of incorporation of calcium into iron carbonate protective layers in CO2 corrosion of mild steel, Corrosion 73 (2017) 238–246. | |
| dc.relation.references | R. Rizzo, S. Gupta, M. Rogowska, R. Ambat, Corrosion of carbon steel under CO2 conditions: Effect of CaCO3 precipitation on the stability of the FeCO3 protective layer, Corros Sci 162 (2020) 108214. | |
| dc.relation.references | H.A. Alsaiari, N. Zhang, S. Work, A. Kan, M.B. Tomson, A new correlation to predict the stoichiometry of mixed scale: Iron-calcium carbonate, in: SPE International Oilfield Scale Conference and Exhibition, SPE, 2012: p. SPE-155127. | |
| dc.relation.references | M. Cui, S. Ren, H. Zhao, L. Wang, Q. Xue, Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution, Appl Surf Sci 443 (2018) 145–156. | |
| dc.relation.references | A. Yakusheva, A. Sayapina, L. Luchnikov, D. Arkhipov, G. Karunakaran, D. Kuznetsov, Carbon Quantum Dots’ Synthesis with a Strong Chemical Claw for Five Transition Metal Sensing in the Irving–Williams Series, Nanomaterials 12 (2022) 806. | |
| dc.relation.references | K. Luo, X. Jiang, Fluorescent carbon quantum dots with Fe (III/II) irons as bridge for the detection of ascorbic acid and H2O2, J Fluoresc 29 (2019) 769–777. | |
| dc.relation.references | X. Wu, J. Li, C. Deng, L. Yang, J. Lv, L. Fu, Novel carbon dots as effective corrosion inhibitor for N80 steel in 1 M HCl and CO2-saturated 3.5 wt% NaCl solutions, J Mol Struct 1250 (2022) 131897. | |
| dc.relation.references | L. Dong, Y. Ma, X. Jin, L. Feng, H. Zhu, Z. Hu, X. Ma, High-efficiency corrosion inhibitor of biomass-derived high-yield carbon quantum dots for Q235 carbon steel in 1 M HCl solution, ACS Omega 8 (2023) 46934–46945. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
| dc.subject.lemb | Aprendizaje automático (inteligencia artificial) | |
| dc.subject.lemb | Corrosion del acero | |
| dc.subject.proposal | Aprendizaje de máquinas | spa |
| dc.subject.proposal | CO2 corrosión | spa |
| dc.subject.proposal | Carbon quantum dots | spa |
| dc.subject.proposal | Machine learning | eng |
| dc.subject.proposal | CO₂ corrosion | eng |
| dc.subject.proposal | Carbon quantum dots | eng |
| dc.subject.wikidata | Gravimetría | |
| dc.title | Modelo de aprendizaje de máquinas para la predicción de la tasa de corrosión por CO2 en salmueras con iones divalentes y presencia de carbon quantum dots (CQDs) | |
| dc.title.translated | Machine learning model for predicting the rate of corrosion by CO2 in brines with divalent ions and the presence of carbon quantum dots (CQDs) | |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Analítica.pdf
- Tamaño:
- 1.52 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

