Resistencia a la sequía y su relación con rasgos funcionales de especies tropicales en un ambiente urbano

dc.contributor.advisorMoreno Hurtado, Flavio Humberto
dc.contributor.advisorCifuentes Gómez, Lucas
dc.contributor.authorVásquez Gómez, María Isabel
dc.contributor.orcidVásquez Gómez, María Isabel [0009000424439947]
dc.contributor.orcidCifuentes, Lucas [0000000316900073]
dc.date.accessioned2025-12-02T15:53:08Z
dc.date.available2025-12-02T15:53:08Z
dc.date.issued2025-09-14
dc.descriptionIlustraciones
dc.description.abstractEl cambio climático prevé escenarios de sequías más intensas y temperaturas más elevadas, afectando particularmente a los árboles urbanos por el fenómeno de isla de calor urbana. En este estudio se analizó la relación entre los rasgos funcionales y la tolerancia a la sequía en diez especies arbóreas ubicadas en el campus de la Universidad Nacional de Colombia, sede Medellín. La tolerancia se evaluó a través de dos indicadores fisiológicos: el punto de perdida de turgencia de las hojas (πTLP) y la variación diurna en el potencial hídrico en dos temporadas contrastantes de precipitación. También se calculó el margen de seguridad foliar (SM) para determinar si las especies están operando cerca de su umbral de turgencia. Encontramos que la mayoría de las especies ajustaron sus potenciales hídricos entre temporadas, lo que sugiere una respuesta activa a la disminución en la precipitación. Las especies tolerantes a la sequía se caracterizaron por una alta inversión en sus tejidos, como madera y hojas más densas, pero SM más estrechos – pero positivos- en ambas temporadas. Por el contrario, las especies con lámina foliar más delgada, mayor tamaño de vasos del xilema y alta capacitancia, presentaron poca variación en el potencial hídrico a lo largo del día, πTLP menos negativos y mayores cambios en el SM entre temporadas. Estos resultados resaltan rasgos funcionales importantes para tomar decisiones a la hora de escoger especies para reforestar áreas urbanas (Tomado de la fuente)spa
dc.description.abstractClimate change is expected to bring more intense droughts and higher temperatures, particularly affecting urban trees due to urban heat island effects. This study analyzed the relationship between functional traits and drought tolerance (DT) in ten native tree species located on the Medellín campus of the Universidad Nacional de Colombia. DT was assessed using two physiological indicators: the leaf turgor loss point (πTLP) and the diurnal variation in water potential across contrasting rainfall seasons. We also calculated the leaf safety margin (SM) to determine whether species are operating near their turgor threshold. We found that most species adjusted their water potentials between seasons, suggesting an active response to reduced rainfall. Drought-tolerant species were characterized by high tissue investment traits, such as greater wood and leaf tissue density, but narrower– but consistently positive- SM in both seasons. In contrast, species with thinner leaves, larger xylem vessel diameters, and higher capacitance showed minimal variation in water potential throughout the day, less negative πTLP, and a huge change in SM between seasons. These results highlight important functional traits for decision-making when selecting species for urban reforestation.eng
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.format.extent1 recurso en línea (60 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89174
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.relation.referencesAnderegg, W. R. L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F. A., Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5024–5029. https://doi.org/10.1073/pnas.1525678113
dc.relation.referencesBartlett, M. K., Klein, T., Jansen, S., Choat, B., & Sack, L. (2016). The correlations and sequence of plant stomatal , hydraulic , and wilting responses to drought. Proceedings of the National Academy of Sciences, 113(46), 13098–13103. https://doi.org/10.1073/pnas.1604088113
dc.relation.referencesBartlett, M. K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., & Sack, L. (2012). Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 3(5), 880–888. https://doi.org/10.1111/j.2041-210X.2012.00230
dc.relation.referencesBartlett, M. K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., & Sack, L. (2012). Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 3(5), 880–888. https://doi.org/10.1111/j.2041-210X.2012.00230
dc.relation.referencesBartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecology Letters, 15(5), 393–405. https://doi.org/10.1111/j.1461-0248.2012.01751
dc.relation.referencesBinks, O., Meir, P., Rowland, L., Da Costa, L., Vasconcelos, S. S., De Oliveira, A. A. R., Ferreira, L., Christoffersen, B., Nardini, A., & Mencuccini, M. (2016). Plasticity in leaf‐level water relations of tropical rainforest trees in response to experimental drought. New Phytologist, 211, 477–488.
dc.relation.referencesBlackman, C. J. (2018). Leaf turgor loss as a predictor of plant drought response strategies. Tree Physiology, 38, 655–657. https://doi.org/10.1093/treephys/tpy047
dc.relation.referencesBrune, M. (2016). Urban trees under climate change. Climate Service Center Germany, 123. http://www.climate-service-center.de/about/news_and_events/news/063058/index.php.en
dc.relation.referencesBucci, S. J., Goldstein, G., Meinzer, F. C., Franco, A. C., Campanello, P., & Scholz, F. (2005). Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees, 19, 296–304. https://doi.org/10.1007/s00468-004-0391-2
dc.relation.referencesChen, Z., Li, S., Wan, X., & Liu, S. (2022). Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 13(September), 1–18. https://doi.org/10.3389/fpls.2022.926535
dc.relation.referencesChoat, B., Cobb, A. R., & Jansen, S. (2008). Structure and function of bordered pits new discoveries and impacts on whole‐plant hydraulic function. New Phytologist, 177(3), 608–626.
dc.relation.referencesChoat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. https://doi.org/10.1038/nature11688
dc.relation.referencesCzaja, M., Kołton, A., & Muras, P. (2020). The complex issue of urban trees-stress factor accumulation and ecological service possibilities. Forests, 11(9), 1–24. https://doi.org/10.3390/F11090932
dc.relation.referencesda Silva, D. B., de Vasconcellos, T. J., & Callado, C. H. (2023). Effects of urbanization on the wood anatomy of Guarea guidonia, an evergreen species of the Atlantic Forest. Trees - Structure and Function, 37(1), 99–110. https://doi.org/10.1007/s00468-020-02080-w
dc.relation.referencesDa Sois, L., Mencuccini, M., Castells, E., Sanchez-martinez, P., & Martínez-vilalta, J. (2024). How are physiological responses to drought modulated by water relations and leaf economics ’ traits in woody plants ? Agricultural Water Management, 291.
dc.relation.referencesDadkhah-Aghdash, H., Rasouli, M., Rasouli, K., & Salimi, A. (2022). Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-19865-3
dc.relation.referencesde Sousa Leite, T., Oliveira de Freitas, R. M., da Silva Dias, N., Dallabona Dombroski, J. L., & Nogueira, N. W. (2023). The interplay between leaf water potential and osmotic adjustment on photosynthetic and growth parameters of tropical dry forest trees. Journal of Forestry Research, 34(1), 177–186. https://doi.org/10.1007/s11676-022-01495-0
dc.relation.referencesDíaz-Barradas, M. C., Zunzunegui, M., Ain-Lhout, F., Jáuregui, J., Boutaleb, S., Álvarez-Cansino, L., & Esquivias, M. P. (2010). Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant Soil, 337, 217–231. https://doi.org/10.1007/s11104-010-0518-8
dc.relation.referencesEsperon-Rodriguez, M., Ordoñez, C., van Doorn, N. S., Hirons, A., & Messier, C. (2022). Using climate analogues and vulnerability metrics to inform urban tree species selection in a changing climate: The case for Canadian cities. Landscape and Urban Planning, 228(August). https://doi.org/10.1016/j.landurbplan.2022.104578
dc.relation.referencesEsperon-Rodriguez, M., Rymer, P. D., Power, S. A., Challis, A., Marchin, R. M., & Tjoelker, M. G. (2020). Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban Forestry & Urban Greening, 54(January), 126771. https://doi.org/10.1016/j.ufug.2020.126771
dc.relation.referencesFarrell, C., Szota, C., & Arndt, S. K. (2017). Does the turgor loss point characterize drought response in dryland plants? Plant Cell and Environment, 40(8), 1500–1511. https://doi.org/10.1111/pce.12948
dc.relation.referencesFilho, W. L., Icaza, L. E., Neht, A., Klavins, M., & Morgan, E. A. (2017). Coping with the impacts of Urban Heat Islands A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. Journal of Cleaner Production, 171, 1140–1149. https://doi.org/10.1016/j.jclepro.2017.10.086
dc.relation.referencesFriendly, M., & Fox, J. (2024). Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis Version (p. 43).
dc.relation.referencesFu, X., & Meinzer, F. C. (2018). Metrics and proxies for stringency of regulation of plant water status (iso / anisohydry): a global data set reveals coordination and trade- offs among water transport traits. Tree Physiology, 122–134. https://doi.org/10.1093/treephys/tpy087
dc.relation.referencesGonzalez, I., & Déjean, S. (2025). Canonical Correlation Analysis Version (p. 14).
dc.relation.referencesGreenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20(4), 539–553. https://doi.org/10.1111/ele.12748
dc.relation.referencesHartmann, H., Link, R. M., & Schuldt, B. (2021). A whole-plant perspective of isohydry : stem-level support for leaf-level plant water regulation. Tree Physiology, 41, 901–905.
dc.relation.referencesHiromi, T., Ichie, T., Kenzo, T., & Ninomiya, I. (2012). Interspecific variation in leaf water use associated with drought tolerance in four emergent dipterocarp species of a tropical rain forest in Borneo Interspecific variation in leaf water use associated with drought tolerance in four emergent dipterocarp sp. Journal of Forest Research, 17(4), 369–377. https://doi.org/10.1007/s10310-011-0303-4
dc.relation.referencesInoue, Y., Araki, M. G., Kitaoka, S., Tsurita, T., Sakata, T., Saito, S., & Kenzo, T. (2023). Seasonal changes in leaf water relations in regards to leaf drought tolerance in mature Cryptomeria japonica canopy trees. Journal of Forest Research, 28(4), 280–288. https://doi.org/10.1080/13416979.2023.2205719
dc.relation.referencesIPCC. (2021). Climate Change 2021: The Physical Science Basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, M. Huang, O. Yelekci, R. Yu, B. Zhou, E. Lonnoy, T. Maycock, T. Waterfield, K. Leitzell, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (p. 2391). https://doi.org/10.1017/9781009157896
dc.relation.referencesJohnson, D. M., Berry, Z. C., Baker, K. V., Smith, D. D., McCulloh, K. A., & Domec, J. C. (2018). Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Functional Ecology, 32(4), 894–903. https://doi.org/10.1111/1365-2435.13049
dc.relation.referencesKuang, Y., Xu, Y., Zhang, L., Hou, E., & Shen, W. (2017). Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Frontiers in Plant Science, 8(May), 1–13. https://doi.org/10.3389/fpls.2017.00802
dc.relation.referencesLi, Y., Ling, L., Xia, D., Ji, Y., Wang, J., Li, C., Meng, Y., Fang, X., & Chen, Y. (2021). A comparative study on phenotypic plasticity of seven urban street tree species in two contrasting environments. Polish Journal of Environmental Studies, 30(1), 739–750. https://doi.org/10.15244/pjoes/122613
dc.relation.referencesLüttge, U., & Buckeridge, M. (2023). Trees: structure and function and the challenges of urbanization. Trees - Structure and Function, 37(1), 9–16. https://doi.org/10.1007/s00468-020-01964-1
dc.relation.referencesMaréchaux, I., Bartlett, M. K., Iribar, A., Sack, L., & Chave, J. (2017). Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biology Letters, 13(1). https://doi.org/10.1098/rsbl.2016.0819
dc.relation.referencesMaréchaux, I., Bartlett, M. K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., & Chave, J. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29(10), 1268–1277. https://doi.org/10.1111/1365-2435.12452
dc.relation.referencesMaréchaux, I., Saint-André, L., Bartlett, M. K., Sack, L., & Chave, J. (2020). Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. Journal of Ecology, 108(3), 1030–1045. https://doi.org/10.1111/1365-2745.13321
dc.relation.referencesMartínez‐Vilalta, J., & García-Forner, N. (2017). Plant Cell Environment - 2016 - Martínez‐Vilalta - Water potential regulation stomatal behaviour and hydraulic transport.pdf. Plant Cell and Environment, 40, 962–976. https://doi.org/10.1111/pce.12846
dc.relation.referencesMcdowell, N. G. (2011). Mechanisms Linking Drought , Hydraulics , Carbon Metabolism , and Vegetation Mortality. Plant Physiology, 155, 1051–1059. https://doi.org/10.1104/pp.110.170704
dc.relation.referencesMeinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A., & Woodruff, D. R. (2009). Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23(5), 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577
dc.relation.referencesMeinzer, F. C., Woodru, D. R., Goldstein, G., Campanello, P. I., Gatti, M. G., & Villalobos-Vega, R. (2008). Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia, 156, 31–41. https://doi.org/10.1007/s00442-008-0974-5
dc.relation.referencesMeinzer, F., Woodruff, D., Marias, D., McCulloh, K. A., & Sevanto, S. (2014). Dynamics of leaf water relations components in co‐occurring iso‐ and anisohydric conifer species. Plant Cell Environment, 37, 2577–2586.
dc.relation.referencesMitchell, P. J., Veneklaas, E. J., Lambers, H., & Burgess, S. S. O. (2008). Leaf water relations during summer water deficit : differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell and Environment, 31, 1791–1802. https://doi.org/10.1111/j.1365-3040.2008.01882
dc.relation.referencesOliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266
dc.relation.referencesPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225
dc.relation.referencesPiao, S., & Wang, X. (2023). Biological systems under climate change: What do we learn from the IPCC AR6. Global Change Biology, 29(18), 5120–5121. https://doi.org/10.1111/gcb.16857
dc.relation.referencesRatzmann, G., Meinzer, F. C., & Tietjen, B. (2019). Iso/Anisohydry: Still a Useful Concept. Trends in Plant Science, 24(3), 191–194. https://doi.org/10.1016/j.tplants.2019.01.001
dc.relation.referencesReich, P. B. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
dc.relation.referencesSavi, T., Bertuzzi, S., Branca, S., Tretiach, M., & Nardini, A. (2015). Drought‐induced xylem cavitation and hydraulic deterioration risk factors for urban trees. 205, 1106–1116.
dc.relation.referencesSchindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
dc.relation.referencesScoffoni, C., & Sack, L. (2017). The causes and consequences of leaf hydraulic decline with dehydration. Journal of Experimental Botany, 68(16), 4479–4496. https://doi.org/10.1093/jxb/erx252
dc.relation.referencesSilveira, I., Rifai, S. W., & Rosado, B. H. P. (2024). 2015 / 16 El Niño increased water demand and pushed plants from a Mesic tropical montane grassland beyond their hydraulic safety limits. Austral Ecology, 49, 1–17. https://doi.org/10.1111/aec.13343
dc.relation.referencesSullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C., Ewango, C. E. N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R. V., Baker, T. R., Brienen, R. J. W., Feldpausch, T. R., Galbraith, D., Gloor, M., Malhi, Y., … Phillips, O. L. (2020). Long-term thermal sensitivity of earth’s tropical forests. Science, 368(6493), 869–874. https://doi.org/10.1126/science.aaw7578
dc.relation.referencesSun, L., Chen, J., Li, Q., & Huang, D. (2020). Dramatic uneven urbanization of large cities throughout the world in recent decades. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19158-1
dc.relation.referencesWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., & Gulias, J. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.
dc.relation.referencesYan, C., Ni, M., Cao, K., & Zhu, S. (2020). Leaf hydraulic safety margin and safety – efficiency trade-off across angiosperm woody species. Biology Letters, 16.
dc.relation.referencesYang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3). https://doi.org/https://doi.org/10.3390/horticulturae7030050
dc.relation.referencesZhang, C., Huang, N., Zhang, F., Wu, T., He, X., Wang, J., & Li, Y. (2023). Intraspecific variations of leaf hydraulic, economic, and anatomical traits in Cinnamomum camphora along an urban-rural gradient. Science of the Total Environment, 904(June), 166741. https://doi.org/10.1016/j.scitotenv.2023.166741
dc.relation.referencesZhu, S. D., Chen, Y. J., Ye, Q., He, P. C., Liu, H., Li, R. H., Fu, P. L., Jiang, G. F., & Cao, K. F. (2018). Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology, 38(5), 658–663. https://doi.org/10.1093/treephys/tpy013
dc.relation.referencesZiegler, C., Coste, S., Stahl, C., Delzon, S., Levionnois, S., Cazal, J., Cochard, H., Esquivel-Muelbert, A., Goret, J. Y., Heuret, P., Jaouen, G., Santiago, L. S., & Bonal, D. (2019). Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought. Annals of Forest Science, 76(4). https://doi.org/10.1007/s13595-019-0905-0
dc.relation.referencesZiegler, C., Levionnois, S., Bonal, D., Heuret, P., Stahl, C., & Coste, S. (2023). Large leaf hydraulic safety margins limit the risk of drought‐induced leaf hydraulic dysfunction in Neotropical rainforest canopy tree species. Functional Ecology, 37(6), 1717–1731.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.subject.lembÄrboles - Resistencia a la sequia
dc.subject.lembEcología urbana
dc.subject.proposalMargen de seguridadspa
dc.subject.proposalPunto de pérdida de turgenciaspa
dc.subject.proposalCambio climáticospa
dc.subject.proposalÄrboles urbanosspa
dc.subject.proposalPotencial hídricospa
dc.subject.proposalEcología urbanaspa
dc.subject.proposalSafety margineng
dc.subject.proposalTurgor los pointeng
dc.subject.proposalClimate changeeng
dc.subject.proposalUrban treeseng
dc.subject.proposalhydric potentialeng
dc.subject.proposalUrban ecophysiologyeng
dc.subject.wikidataCambio climático
dc.subject.wikidataPotencial hídrico
dc.titleResistencia a la sequía y su relación con rasgos funcionales de especies tropicales en un ambiente urbano
dc.title.translatedDrought resistance and its relationship with functional traits of tropical species in an urban environment
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Bosques y Conservación Ambiental.pdf
Tamaño:
858.01 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: