Resistencia a la sequía y su relación con rasgos funcionales de especies tropicales en un ambiente urbano
| dc.contributor.advisor | Moreno Hurtado, Flavio Humberto | |
| dc.contributor.advisor | Cifuentes Gómez, Lucas | |
| dc.contributor.author | Vásquez Gómez, María Isabel | |
| dc.contributor.orcid | Vásquez Gómez, María Isabel [0009000424439947] | |
| dc.contributor.orcid | Cifuentes, Lucas [0000000316900073] | |
| dc.date.accessioned | 2025-12-02T15:53:08Z | |
| dc.date.available | 2025-12-02T15:53:08Z | |
| dc.date.issued | 2025-09-14 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | El cambio climático prevé escenarios de sequías más intensas y temperaturas más elevadas, afectando particularmente a los árboles urbanos por el fenómeno de isla de calor urbana. En este estudio se analizó la relación entre los rasgos funcionales y la tolerancia a la sequía en diez especies arbóreas ubicadas en el campus de la Universidad Nacional de Colombia, sede Medellín. La tolerancia se evaluó a través de dos indicadores fisiológicos: el punto de perdida de turgencia de las hojas (πTLP) y la variación diurna en el potencial hídrico en dos temporadas contrastantes de precipitación. También se calculó el margen de seguridad foliar (SM) para determinar si las especies están operando cerca de su umbral de turgencia. Encontramos que la mayoría de las especies ajustaron sus potenciales hídricos entre temporadas, lo que sugiere una respuesta activa a la disminución en la precipitación. Las especies tolerantes a la sequía se caracterizaron por una alta inversión en sus tejidos, como madera y hojas más densas, pero SM más estrechos – pero positivos- en ambas temporadas. Por el contrario, las especies con lámina foliar más delgada, mayor tamaño de vasos del xilema y alta capacitancia, presentaron poca variación en el potencial hídrico a lo largo del día, πTLP menos negativos y mayores cambios en el SM entre temporadas. Estos resultados resaltan rasgos funcionales importantes para tomar decisiones a la hora de escoger especies para reforestar áreas urbanas (Tomado de la fuente) | spa |
| dc.description.abstract | Climate change is expected to bring more intense droughts and higher temperatures, particularly affecting urban trees due to urban heat island effects. This study analyzed the relationship between functional traits and drought tolerance (DT) in ten native tree species located on the Medellín campus of the Universidad Nacional de Colombia. DT was assessed using two physiological indicators: the leaf turgor loss point (πTLP) and the diurnal variation in water potential across contrasting rainfall seasons. We also calculated the leaf safety margin (SM) to determine whether species are operating near their turgor threshold. We found that most species adjusted their water potentials between seasons, suggesting an active response to reduced rainfall. Drought-tolerant species were characterized by high tissue investment traits, such as greater wood and leaf tissue density, but narrower– but consistently positive- SM in both seasons. In contrast, species with thinner leaves, larger xylem vessel diameters, and higher capacitance showed minimal variation in water potential throughout the day, less negative πTLP, and a huge change in SM between seasons. These results highlight important functional traits for decision-making when selecting species for urban reforestation. | eng |
| dc.description.curriculararea | Bosques Y Conservación Ambiental.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Bosques y Conservación Ambiental | |
| dc.format.extent | 1 recurso en línea (60 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89174 | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Ciencias Agrarias | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental | |
| dc.relation.references | Anderegg, W. R. L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F. A., Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5024–5029. https://doi.org/10.1073/pnas.1525678113 | |
| dc.relation.references | Bartlett, M. K., Klein, T., Jansen, S., Choat, B., & Sack, L. (2016). The correlations and sequence of plant stomatal , hydraulic , and wilting responses to drought. Proceedings of the National Academy of Sciences, 113(46), 13098–13103. https://doi.org/10.1073/pnas.1604088113 | |
| dc.relation.references | Bartlett, M. K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., & Sack, L. (2012). Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 3(5), 880–888. https://doi.org/10.1111/j.2041-210X.2012.00230 | |
| dc.relation.references | Bartlett, M. K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., & Sack, L. (2012). Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 3(5), 880–888. https://doi.org/10.1111/j.2041-210X.2012.00230 | |
| dc.relation.references | Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecology Letters, 15(5), 393–405. https://doi.org/10.1111/j.1461-0248.2012.01751 | |
| dc.relation.references | Binks, O., Meir, P., Rowland, L., Da Costa, L., Vasconcelos, S. S., De Oliveira, A. A. R., Ferreira, L., Christoffersen, B., Nardini, A., & Mencuccini, M. (2016). Plasticity in leaf‐level water relations of tropical rainforest trees in response to experimental drought. New Phytologist, 211, 477–488. | |
| dc.relation.references | Blackman, C. J. (2018). Leaf turgor loss as a predictor of plant drought response strategies. Tree Physiology, 38, 655–657. https://doi.org/10.1093/treephys/tpy047 | |
| dc.relation.references | Brune, M. (2016). Urban trees under climate change. Climate Service Center Germany, 123. http://www.climate-service-center.de/about/news_and_events/news/063058/index.php.en | |
| dc.relation.references | Bucci, S. J., Goldstein, G., Meinzer, F. C., Franco, A. C., Campanello, P., & Scholz, F. (2005). Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees, 19, 296–304. https://doi.org/10.1007/s00468-004-0391-2 | |
| dc.relation.references | Chen, Z., Li, S., Wan, X., & Liu, S. (2022). Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 13(September), 1–18. https://doi.org/10.3389/fpls.2022.926535 | |
| dc.relation.references | Choat, B., Cobb, A. R., & Jansen, S. (2008). Structure and function of bordered pits new discoveries and impacts on whole‐plant hydraulic function. New Phytologist, 177(3), 608–626. | |
| dc.relation.references | Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. https://doi.org/10.1038/nature11688 | |
| dc.relation.references | Czaja, M., Kołton, A., & Muras, P. (2020). The complex issue of urban trees-stress factor accumulation and ecological service possibilities. Forests, 11(9), 1–24. https://doi.org/10.3390/F11090932 | |
| dc.relation.references | da Silva, D. B., de Vasconcellos, T. J., & Callado, C. H. (2023). Effects of urbanization on the wood anatomy of Guarea guidonia, an evergreen species of the Atlantic Forest. Trees - Structure and Function, 37(1), 99–110. https://doi.org/10.1007/s00468-020-02080-w | |
| dc.relation.references | Da Sois, L., Mencuccini, M., Castells, E., Sanchez-martinez, P., & Martínez-vilalta, J. (2024). How are physiological responses to drought modulated by water relations and leaf economics ’ traits in woody plants ? Agricultural Water Management, 291. | |
| dc.relation.references | Dadkhah-Aghdash, H., Rasouli, M., Rasouli, K., & Salimi, A. (2022). Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-19865-3 | |
| dc.relation.references | de Sousa Leite, T., Oliveira de Freitas, R. M., da Silva Dias, N., Dallabona Dombroski, J. L., & Nogueira, N. W. (2023). The interplay between leaf water potential and osmotic adjustment on photosynthetic and growth parameters of tropical dry forest trees. Journal of Forestry Research, 34(1), 177–186. https://doi.org/10.1007/s11676-022-01495-0 | |
| dc.relation.references | Díaz-Barradas, M. C., Zunzunegui, M., Ain-Lhout, F., Jáuregui, J., Boutaleb, S., Álvarez-Cansino, L., & Esquivias, M. P. (2010). Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant Soil, 337, 217–231. https://doi.org/10.1007/s11104-010-0518-8 | |
| dc.relation.references | Esperon-Rodriguez, M., Ordoñez, C., van Doorn, N. S., Hirons, A., & Messier, C. (2022). Using climate analogues and vulnerability metrics to inform urban tree species selection in a changing climate: The case for Canadian cities. Landscape and Urban Planning, 228(August). https://doi.org/10.1016/j.landurbplan.2022.104578 | |
| dc.relation.references | Esperon-Rodriguez, M., Rymer, P. D., Power, S. A., Challis, A., Marchin, R. M., & Tjoelker, M. G. (2020). Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban Forestry & Urban Greening, 54(January), 126771. https://doi.org/10.1016/j.ufug.2020.126771 | |
| dc.relation.references | Farrell, C., Szota, C., & Arndt, S. K. (2017). Does the turgor loss point characterize drought response in dryland plants? Plant Cell and Environment, 40(8), 1500–1511. https://doi.org/10.1111/pce.12948 | |
| dc.relation.references | Filho, W. L., Icaza, L. E., Neht, A., Klavins, M., & Morgan, E. A. (2017). Coping with the impacts of Urban Heat Islands A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. Journal of Cleaner Production, 171, 1140–1149. https://doi.org/10.1016/j.jclepro.2017.10.086 | |
| dc.relation.references | Friendly, M., & Fox, J. (2024). Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis Version (p. 43). | |
| dc.relation.references | Fu, X., & Meinzer, F. C. (2018). Metrics and proxies for stringency of regulation of plant water status (iso / anisohydry): a global data set reveals coordination and trade- offs among water transport traits. Tree Physiology, 122–134. https://doi.org/10.1093/treephys/tpy087 | |
| dc.relation.references | Gonzalez, I., & Déjean, S. (2025). Canonical Correlation Analysis Version (p. 14). | |
| dc.relation.references | Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20(4), 539–553. https://doi.org/10.1111/ele.12748 | |
| dc.relation.references | Hartmann, H., Link, R. M., & Schuldt, B. (2021). A whole-plant perspective of isohydry : stem-level support for leaf-level plant water regulation. Tree Physiology, 41, 901–905. | |
| dc.relation.references | Hiromi, T., Ichie, T., Kenzo, T., & Ninomiya, I. (2012). Interspecific variation in leaf water use associated with drought tolerance in four emergent dipterocarp species of a tropical rain forest in Borneo Interspecific variation in leaf water use associated with drought tolerance in four emergent dipterocarp sp. Journal of Forest Research, 17(4), 369–377. https://doi.org/10.1007/s10310-011-0303-4 | |
| dc.relation.references | Inoue, Y., Araki, M. G., Kitaoka, S., Tsurita, T., Sakata, T., Saito, S., & Kenzo, T. (2023). Seasonal changes in leaf water relations in regards to leaf drought tolerance in mature Cryptomeria japonica canopy trees. Journal of Forest Research, 28(4), 280–288. https://doi.org/10.1080/13416979.2023.2205719 | |
| dc.relation.references | IPCC. (2021). Climate Change 2021: The Physical Science Basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, M. Huang, O. Yelekci, R. Yu, B. Zhou, E. Lonnoy, T. Maycock, T. Waterfield, K. Leitzell, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (p. 2391). https://doi.org/10.1017/9781009157896 | |
| dc.relation.references | Johnson, D. M., Berry, Z. C., Baker, K. V., Smith, D. D., McCulloh, K. A., & Domec, J. C. (2018). Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Functional Ecology, 32(4), 894–903. https://doi.org/10.1111/1365-2435.13049 | |
| dc.relation.references | Kuang, Y., Xu, Y., Zhang, L., Hou, E., & Shen, W. (2017). Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Frontiers in Plant Science, 8(May), 1–13. https://doi.org/10.3389/fpls.2017.00802 | |
| dc.relation.references | Li, Y., Ling, L., Xia, D., Ji, Y., Wang, J., Li, C., Meng, Y., Fang, X., & Chen, Y. (2021). A comparative study on phenotypic plasticity of seven urban street tree species in two contrasting environments. Polish Journal of Environmental Studies, 30(1), 739–750. https://doi.org/10.15244/pjoes/122613 | |
| dc.relation.references | Lüttge, U., & Buckeridge, M. (2023). Trees: structure and function and the challenges of urbanization. Trees - Structure and Function, 37(1), 9–16. https://doi.org/10.1007/s00468-020-01964-1 | |
| dc.relation.references | Maréchaux, I., Bartlett, M. K., Iribar, A., Sack, L., & Chave, J. (2017). Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biology Letters, 13(1). https://doi.org/10.1098/rsbl.2016.0819 | |
| dc.relation.references | Maréchaux, I., Bartlett, M. K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., & Chave, J. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29(10), 1268–1277. https://doi.org/10.1111/1365-2435.12452 | |
| dc.relation.references | Maréchaux, I., Saint-André, L., Bartlett, M. K., Sack, L., & Chave, J. (2020). Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. Journal of Ecology, 108(3), 1030–1045. https://doi.org/10.1111/1365-2745.13321 | |
| dc.relation.references | Martínez‐Vilalta, J., & García-Forner, N. (2017). Plant Cell Environment - 2016 - Martínez‐Vilalta - Water potential regulation stomatal behaviour and hydraulic transport.pdf. Plant Cell and Environment, 40, 962–976. https://doi.org/10.1111/pce.12846 | |
| dc.relation.references | Mcdowell, N. G. (2011). Mechanisms Linking Drought , Hydraulics , Carbon Metabolism , and Vegetation Mortality. Plant Physiology, 155, 1051–1059. https://doi.org/10.1104/pp.110.170704 | |
| dc.relation.references | Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A., & Woodruff, D. R. (2009). Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23(5), 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577 | |
| dc.relation.references | Meinzer, F. C., Woodru, D. R., Goldstein, G., Campanello, P. I., Gatti, M. G., & Villalobos-Vega, R. (2008). Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia, 156, 31–41. https://doi.org/10.1007/s00442-008-0974-5 | |
| dc.relation.references | Meinzer, F., Woodruff, D., Marias, D., McCulloh, K. A., & Sevanto, S. (2014). Dynamics of leaf water relations components in co‐occurring iso‐ and anisohydric conifer species. Plant Cell Environment, 37, 2577–2586. | |
| dc.relation.references | Mitchell, P. J., Veneklaas, E. J., Lambers, H., & Burgess, S. S. O. (2008). Leaf water relations during summer water deficit : differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell and Environment, 31, 1791–1802. https://doi.org/10.1111/j.1365-3040.2008.01882 | |
| dc.relation.references | Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266 | |
| dc.relation.references | Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225 | |
| dc.relation.references | Piao, S., & Wang, X. (2023). Biological systems under climate change: What do we learn from the IPCC AR6. Global Change Biology, 29(18), 5120–5121. https://doi.org/10.1111/gcb.16857 | |
| dc.relation.references | Ratzmann, G., Meinzer, F. C., & Tietjen, B. (2019). Iso/Anisohydry: Still a Useful Concept. Trends in Plant Science, 24(3), 191–194. https://doi.org/10.1016/j.tplants.2019.01.001 | |
| dc.relation.references | Reich, P. B. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211 | |
| dc.relation.references | Savi, T., Bertuzzi, S., Branca, S., Tretiach, M., & Nardini, A. (2015). Drought‐induced xylem cavitation and hydraulic deterioration risk factors for urban trees. 205, 1106–1116. | |
| dc.relation.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019 | |
| dc.relation.references | Scoffoni, C., & Sack, L. (2017). The causes and consequences of leaf hydraulic decline with dehydration. Journal of Experimental Botany, 68(16), 4479–4496. https://doi.org/10.1093/jxb/erx252 | |
| dc.relation.references | Silveira, I., Rifai, S. W., & Rosado, B. H. P. (2024). 2015 / 16 El Niño increased water demand and pushed plants from a Mesic tropical montane grassland beyond their hydraulic safety limits. Austral Ecology, 49, 1–17. https://doi.org/10.1111/aec.13343 | |
| dc.relation.references | Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C., Ewango, C. E. N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R. V., Baker, T. R., Brienen, R. J. W., Feldpausch, T. R., Galbraith, D., Gloor, M., Malhi, Y., … Phillips, O. L. (2020). Long-term thermal sensitivity of earth’s tropical forests. Science, 368(6493), 869–874. https://doi.org/10.1126/science.aaw7578 | |
| dc.relation.references | Sun, L., Chen, J., Li, Q., & Huang, D. (2020). Dramatic uneven urbanization of large cities throughout the world in recent decades. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19158-1 | |
| dc.relation.references | Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., & Gulias, J. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. | |
| dc.relation.references | Yan, C., Ni, M., Cao, K., & Zhu, S. (2020). Leaf hydraulic safety margin and safety – efficiency trade-off across angiosperm woody species. Biology Letters, 16. | |
| dc.relation.references | Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3). https://doi.org/https://doi.org/10.3390/horticulturae7030050 | |
| dc.relation.references | Zhang, C., Huang, N., Zhang, F., Wu, T., He, X., Wang, J., & Li, Y. (2023). Intraspecific variations of leaf hydraulic, economic, and anatomical traits in Cinnamomum camphora along an urban-rural gradient. Science of the Total Environment, 904(June), 166741. https://doi.org/10.1016/j.scitotenv.2023.166741 | |
| dc.relation.references | Zhu, S. D., Chen, Y. J., Ye, Q., He, P. C., Liu, H., Li, R. H., Fu, P. L., Jiang, G. F., & Cao, K. F. (2018). Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology, 38(5), 658–663. https://doi.org/10.1093/treephys/tpy013 | |
| dc.relation.references | Ziegler, C., Coste, S., Stahl, C., Delzon, S., Levionnois, S., Cazal, J., Cochard, H., Esquivel-Muelbert, A., Goret, J. Y., Heuret, P., Jaouen, G., Santiago, L. S., & Bonal, D. (2019). Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought. Annals of Forest Science, 76(4). https://doi.org/10.1007/s13595-019-0905-0 | |
| dc.relation.references | Ziegler, C., Levionnois, S., Bonal, D., Heuret, P., Stahl, C., & Coste, S. (2023). Large leaf hydraulic safety margins limit the risk of drought‐induced leaf hydraulic dysfunction in Neotropical rainforest canopy tree species. Functional Ecology, 37(6), 1717–1731. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura | |
| dc.subject.lemb | Ärboles - Resistencia a la sequia | |
| dc.subject.lemb | Ecología urbana | |
| dc.subject.proposal | Margen de seguridad | spa |
| dc.subject.proposal | Punto de pérdida de turgencia | spa |
| dc.subject.proposal | Cambio climático | spa |
| dc.subject.proposal | Ärboles urbanos | spa |
| dc.subject.proposal | Potencial hídrico | spa |
| dc.subject.proposal | Ecología urbana | spa |
| dc.subject.proposal | Safety margin | eng |
| dc.subject.proposal | Turgor los point | eng |
| dc.subject.proposal | Climate change | eng |
| dc.subject.proposal | Urban trees | eng |
| dc.subject.proposal | hydric potential | eng |
| dc.subject.proposal | Urban ecophysiology | eng |
| dc.subject.wikidata | Cambio climático | |
| dc.subject.wikidata | Potencial hídrico | |
| dc.title | Resistencia a la sequía y su relación con rasgos funcionales de especies tropicales en un ambiente urbano | |
| dc.title.translated | Drought resistance and its relationship with functional traits of tropical species in an urban environment | |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Bosques y Conservación Ambiental.pdf
- Tamaño:
- 858.01 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

