Interacción hidromecánica en un macizo rocoso alrededor de un túnel

dc.contributor.advisorRodríguez Pineda, Carlos Eduardospa
dc.contributor.authorValbuena Cerinza, Jeferssonspa
dc.date.accessioned2024-06-07T20:29:15Z
dc.date.available2024-06-07T20:29:15Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl vínculo entre las propiedades mecánicas y de flujo de un macizo rocoso, en relación con la construcción de un túnel circular, es evaluado mediante diferentes modelos numéricos hipotéticos. Para tal fin, se utilizó principalmente el programa de elementos finitos Plaxis 2D®. Con base en estas simulaciones se realizó un análisis comparativo que da cuenta de la influencia de los siguientes aspectos en la estabilidad del túnel y en los cambios del flujo debidos a su construcción: modelo estructural, coeficiente de presión lateral, coeficiente de Biot, separación y apertura de las discontinuidades, condición de saturación, cobertura y diámetro del túnel. Los parámetros de evaluación fueron: deformación máxima alrededor del túnel, subsidencia, esfuerzo desviador, caudal de infiltración y factor de seguridad. Se encontró que el parámetro de presión lateral modifica de manera significativa la distribución y concentración de esfuerzos alrededor del túnel; el coeficiente de Biot afecta directamente al valor de los esfuerzos efectivos, por lo que no debe subestimarse y las deformaciones alrededor del túnel, la subsidencia y los esfuerzos desviadores son menores en los modelos homogéneos en relación con los modelos anisotrópicos. Consecuentemente, los factores de seguridad son mayores en los modelos homogéneos. Respecto al caudal de infiltración, se observa un claro incremento en su valor con el aumento de la apertura de las discontinuidades y el número de intersecciones con el túnel. Por lo anterior, a pesar de las dificultades que pueden presentarse en la obtención de información, se hace el llamado a caracterizar adecuadamente los macizos rocosos en las simulaciones numéricas, en orden de realizar diseños más útiles y realistas. (Texto tomado de la fuente).spa
dc.description.abstractThe link between the mechanical and flow properties of a rock mass regarding the construction of a circular tunnel is assessed by means of different hypothetical numerical models. For this purpose, the finite element program Plaxis 2D® was mainly used. Based on these simulations, a comparative analysis was carried out to analyze the influence of the following aspects on the tunnel stability and flow changes due to its construction: structural model, lateral pressure coefficient, Biot coefficient, discontinuity separation and opening, saturation condition, overburden and tunnel diameter. The evaluation parameters were: maximum deformation around the tunnel, subsidence, deviatoric stress, seepage discharge, and safety factor. It was found that the lateral pressure parameter significantly modifies the distribution and concentration of stresses around the tunnel; the Biot coefficient directly affects the value of the effective stresses, and therefore should not be underestimated; and the deformations around the tunnel, subsidence, and deviatoric stresses are lower in the homogeneous models in relation to the anisotropic models. Consequently, the safety factors are higher in the homogeneous models. Regarding the seepage discharge, a significant increment in its value is observed with the increase in the discontinuities opening and the number of intersections with the tunnel. Therefore, despite the difficulties that may arise in obtaining information, a call is made to adequately characterize the rock masses in numerical simulations, in order to obtain more useful and realistic designs.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaModelación y análisis en geotecnia – Excavaciones subterráneasspa
dc.format.extentxiv, 168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86218
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesBarton, N. R. (1972). A model study of rock-joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(5), 579–582. https://doi.org/10.1016/0148-9062(72)90010-1spa
dc.relation.referencesBentley (2021a). Material Models Manual. Plaxis 2D.spa
dc.relation.referencesBentley (2021b). PLAXIS 2D-Reference Manual.spa
dc.relation.referencesBentley (2022). Modelling rock discontinuities with Jointed Rock vs Discontinuity elements. Plaxis 2D.spa
dc.relation.referencesChapman, D., Metje, N. y Stärk, A. (2018). Introduction to tunnel construction (Second edition). Applied geotechnics. CRC Press, Taylor & Francis Group.spa
dc.relation.referencesFu, J., Yang, J., Klapperich, H. y Wang, S. (2016). Analytical Prediction of Ground Movements due to a Nonuniform Deforming Tunnel. International Journal of Geomechanics, 16(4), Artículo 04015089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000580spa
dc.relation.referencesGercek, H. (2007). Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44(1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011spa
dc.relation.referencesGolpasand, M.-R. B. ;Do. (2018). Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling. Geomechanics and Engineering. https://doi.org/10.12989/gae.2018.16.6.643spa
dc.relation.referencesGonzález de Vallejo, L. I. (D.L. 2012). Ingeniería geológica. Pearson Educación.spa
dc.relation.referencesGonzález y Sagaseta (2001). Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics, 28(6-7), 445–468. https://doi.org/10.1016/S0266-352X(01)00007-6spa
dc.relation.referencesHakami, E. (1995). Aperture distribution of rock fractures (tech. rep.). Royal Inst. of Tech.spa
dc.relation.referencesHoek. (2006). Practical Rock Engineering.spa
dc.relation.referencesHudson y Harrison. (1997). Engineering Rock Mechanics: an introduction to the principles. ELSEVIER SCIENCE Ltd.spa
dc.relation.referencesIslam et al. (2013). Experimentally Evaluating Shale Dilation Behavior. The American Association of Petroleum Geologists.spa
dc.relation.referencesKarimi-Khajelangi, B. y Noorian-Bidgoli, M. (2022). Numerical study of the effect of rock anisotropy on stresses around an opening located in the fractured rock mass. Journal of Petroleum Science and Engineering, 208, 109593. https://doi.org/10.1016/j.petrol.2021.109593spa
dc.relation.referencesKolymbas. (2005). Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer.spa
dc.relation.referencesKrishna, S. S. y Lokhande, R. D. (2022). Study on the Effect of Surface Subsidence Due to Tunneling Under Various Loading Conditions. Geotechnical and Geological Engineering, 40(2), 923–943. https://doi.org/10.1007/s10706-021-01936-3spa
dc.relation.referencesKutter et al. (2000). Hydromechanical Behaviour of Rock Joints: The Effect of recessed Flow Channels in Smooth - and Roughwalled Fractures. International Society for Rock Mechanics.spa
dc.relation.referencesLee, J., Lee, D. y Park, D. (2014). Experimental Investigation on the Coefficient of Lateral Earth Pressure at Rest of Silty Sands: Effect of Fines. Geotechnical Testing Journal, 37(6), 20130204. https://doi.org/10.1520/GTJ20130204spa
dc.relation.referencesMa, S. y Gutierrez, M. (2021). Determination of the poroelasticity of shale. Acta Geotechnica, 16(2), 581–594. https://doi.org/10.1007/s11440-020-01062-zspa
dc.relation.referencesMabe Fogang, P., Liu, Y., Zhao, J.‑L., Ka, T. A. y Xu, S. (2023). Analytical Prediction of Tunnel Deformation Beneath an Inclined Plane: Complex Potential Analysis. Applied Sciences, 13(5), 3252. https://doi.org/10.3390/app13053252spa
dc.relation.referencesMaidl, B., Thewes, M., Maidl, U., David, S. y Frank, S. (2014). Handbook of tunnel engineering II: Basics and additional services for design and construction. Ernst & Sohn. https://onlinelibrary.wiley.com/doi/book/10.1002/9783433603536 https://doi.org/10.1002/9783433603536spa
dc.relation.referencesMontgomery D.C. (2004). Diseño y análisis de experimentos. LIMUSA, S.A.spa
dc.relation.referencesMontiel, E., & Tlalolini, A. (2018). Didáctica para mostrar La influencia de la rigidez de las discontinuidades y la dilatancia en la estabilidad de las excavaciones PDF. Sociedad Mexicana de Ingeniería Geotécnica, A.C. https://www.scribd.com/document/419776379/Didactica-para-mostrar-la-influencia-de-la-rigidez-de-las-discontinuidades-y-la-dilatancia-en-la-estabilidad-de-las-excavaciones-pdfspa
dc.relation.referencesNeuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83. https://doi.org/10.1007/s10040-002-0230-8spa
dc.relation.referencesPolemis Júnior, K., Da Silva Filho, F. C. y Lima-Filho, F. P. (2021). Estimating the rock mass deformation modulus: A comparative study of empirical methods based on 48 rock mass scenarios. REM - International Engineering Journal, 74(1), 39–49. https://doi.org/10.1590/0370-44672019740150spa
dc.relation.referencesPriest, S. D. (1993). Discontinuity Analysis for Rock Engineering. Springer Netherlands. https://doi.org/10.1007/978-94-011-1498-1spa
dc.relation.referencesRaymer et al. (1980). An improved sonic transit time-to-porosity transform: Presented at 21st Annual Logging Symposium: In Proceedings of the. Lafayette.spa
dc.relation.referencesSelvadurai, A. P. S. y Suvorov, A. P. (2020). The influence of the pore shape on the bulk modulus and the Biot coefficient of fluid-saturated porous rocks. Scientific Reports, 10(1), 18959. https://doi.org/10.1038/s41598-020-75979-6spa
dc.relation.referencesSerafim y Pereira (1983). Consideration of the geomechanical classification of Bieniawski: Presentada en INTERNATIONAL SYMPOSIUM ON ENGINEERING GEOLOGY AND UNDERGROUND CONSTRUCTION. SPG – Sociedade Portuguesa De Geotecnia.spa
dc.relation.referencesSheorey, P. R. (1994). A theory for in situ stresses in isotropic and Transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1), 23–34. https://doi.org/10.1016/0148-9062(94)92312-4spa
dc.relation.referencesSingh, B. y Goel, R. K. (Eds.). (2012). Engineering rock mass classification: Tunnelling, foundations, and landslides. Butterworth-Heinemann.spa
dc.relation.referencesSonmez et al. (2006). Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences.spa
dc.relation.referencesTjie Liong (2014). Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research.spa
dc.relation.referencesWang, X., Li, S., Wei, Y., & Zhang, Y. (2022, March 30). Analysis of surface deformation and settlement characteristics caused by tunnel excavation and unloading. Geofluids. https://doi.org/10.1155/2022/5383257spa
dc.relation.referencesWittke, W. (2014). Rock mechanics based on an Anisotropic Jointed Rock Model (AJRM). Ernst.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalInteracción hidromecánicaspa
dc.subject.proposalModelo estructuralspa
dc.subject.proposalDiscontinuidadspa
dc.subject.proposalHydromechanical interactioneng
dc.subject.proposalStructural modeleng
dc.subject.proposalDiscontinuityeng
dc.subject.unescoRocaspa
dc.subject.unescoRockseng
dc.subject.unescoIngeniería geológicaspa
dc.subject.unescoEngineering geologyeng
dc.subject.unescoModelo de simulaciónspa
dc.subject.unescoSimulation modelseng
dc.titleInteracción hidromecánica en un macizo rocoso alrededor de un túnelspa
dc.title.translatedHydromechanical interaction in a rock mass around a tunneleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022365958.2024.pdf
Tamaño:
21.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: