Metodología de mallado para simulaciones numéricas de flujos turbulentos a bajo costo computacional

dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorTovar Tuirán, Jair Hernando
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2022-08-18T20:32:40Z
dc.date.available2022-08-18T20:32:40Z
dc.date.issued2022-03
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEn este trabajo de investigación se construyeron mallas computacionales estructuradas paramétricas, para la solución numérica de dos casos de flujo turbulento. El propósito principal de este trabajo fue analizar la influencia de ciertos parámetros de mallado, en la predicción numérica de variables de flujo turbulento. Para ello se llevaron a cabo simulaciones UDNS con mallas de bajo costo computacional, las cuales fueron definidas a partir de parámetros de mallado tales como: tamaños de malla, relaciones de aspecto y secciones de refinamiento. El primer caso seleccionado consistió en un chorro circular supersónico expulsado de una tobera, para flujo compresible; y el segundo caso de interés se fundamentó en un flujo interno a través de un canal con un cambio de sección abrupto, para flujo incompresible. Se analizaron estadísticas de turbulencia de primer y segundo orden obtenidas con experimentos numéricos realizados usando diferentes topologías de malla. Los resultados fueron validados con datos experimentales y resultados numéricos LES y DNS reportados por otros investigadores. Se encontró que mediante el ajuste paramétrico de mallado, es posible obtener discretizaciones espaciales de bajo costo computacional pero que permiten la predicción de las características de flujos turbulentos, sin la necesidad de recurrir a modelos de turbulencia explícitos. Los resultados muestran que, en efecto, aunque no se alcanzan los niveles de precisión numérica de enfoques DNS, es posible tener predicciones comparables con aquellas dadas por tales enfoques numéricos de alta precisión. (Texto tomado de la fuente)spa
dc.description.abstractIn this research work, parametric structured computational grids were constructed for the numerical solution of two turbulent flow cases. The main purpose of this work was to analyze the influence of certain meshing parameters in the numerical prediction of turbulent flow variables. For this purpose, UDNS simulations were carried out with low computational cost meshes, which were defined from meshing parameters such as: mesh sizes, aspect ratios and refinement sections. The first case selected consisted of a supersonic circular jet ejected from a nozzle, for compressible flow; and the second case of interest was based on an internal flow through a channel with an abrupt section change, for incompressible flow. First and second order turbulence statistics obtained from numerical experiments using different mesh topologies were analyzed. The results were validated with experimental data and numerical LES and DNS results reported by other researchers. It was found that by means of parametric mesh adjustment, it is possible to obtain spatial discretizations of low computational cost but which allow the prediction of turbulent flow characteristics, without the need to resort to explicit turbulence models. The results show that, indeed, although the numerical accuracy levels of DNS approaches are not reached, it is possible to have predictions comparable to those given by such high-accuracy numerical approaches.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería Mecánicaspa
dc.description.researchareaSimulación Computacionalspa
dc.format.extentxiv, 118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81966
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesB. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schönung. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech., 127(-1):473{496, feb 1983. doi: 10.1017/s0022112083002839spa
dc.relation.referencesJ. Bellan. Large-Eddy Simulation of Supersonic Round Jets: Effects of Reynolds and Mach Numbers. AIAA Journal, 54(5):1482{1498, may 2016. doi: 10.2514/1.j054548.spa
dc.relation.referencesG. Biswas, M. Breuer, and F. Durst. Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers. J. Fluids Eng., 126(3):362-374, may 2004. doi: 10.1115/1.1760532.spa
dc.relation.referencesBlog Ingeniería. Blog Ingeniería, el blog para ingenieros. https://blogingenieria.com/curiosidades/supercavitacion-velocidad-supersonica/, 2021. Online; Accesado en 08 de Noviembre de 2021.spa
dc.relation.referencesD. J. Bodony and S. K. Lele. On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Physics of Fluids, 17(8):085103, aug 2005. doi: 10.1063/1.2001689.spa
dc.relation.referencesF. Bonelli, A. Viggiano, and V. Magi. High-speed turbulent gas jets: an LES investigation of Mach and Reynolds number effects on the velocity decay and spreading rate. Flow, Turbulence and Combustion, 107(3):519-550, feb 2021. doi: 10.1007/s10494-021-00242-5.spa
dc.relation.referencesC. Bosshard, A. Dehbi, M. Deville, E. Leriche, R. Puragliesi, and A. Soldati. Large Eddy Simulation of the Differentially Heated Cubic Cavity Flow by the Spectral Element Method. Computers and Fluids, 86:210-227, 2013. doi: 10.1016/j.compuid.2013.07.007.spa
dc.relation.referencesC. Bosshard, M. O. Deville, A. Dehbi, and E. Leriche. UDNS or LES, That Is the Question. Open Journal of Fluid Dynamics, 5:339-352, 12 2015. doi: 10.4236/ojfd.2015.54034.spa
dc.relation.referencesR. Bouffanais, M. O. Deville, and E. Leriche. Large-Eddy Simulation of the Flow in a Lid-Driven Cubical Cavity. Phys. Fluids, 19, 2007. doi: 10.1063/1.2723153.spa
dc.relation.referencesG. A. Brès, F. E. Ham, J. W. Nichols, and S. K. Lele. Unstructured Large-Eddy Simulations of Supersonic Jets. AIAA Journal, 55(4):1164-1184, apr 2017. doi: 10.2514/1.j055084.spa
dc.relation.referencesJ. Bridges and M. Wernet. Turbulence Associated with Broadband Shock Noise in Hot Jets. In AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, may 2008. doi: 10.2514/6.2008-2834.spa
dc.relation.referencesG. Castiglioni and J. A. Domaradzki. A numerical dissipation rate and viscosity in flow simulations with realistic geometry using low-order compressible Navier-Stokes solvers. Computers and Fluids, 119:37-46, 2015. doi: 10.1016/j.compfluid.2015.07.004.spa
dc.relation.referencesA. Darisse, J. Lemay, and A. Benaïssa. Budgets of turbulent kinetic energy, Reynolds stresses, variance of temperature fluctuations and turbulent heat fluxes in a round jet. Journal of Fluid Mechanics, 774:95-142, jun 2015. doi: 10.1017/jfm.2015.245.spa
dc.relation.referencesJ. R. DeBonis and J. N. Scott. Large-Eddy Simulation of a Turbulent Compressible Round Jet. AIAA Journal, 40(7):1346-1354, jul 2002. doi: 10.2514/2.1794.spa
dc.relation.referencesC. D. Donaldson and R. S. Snedeker. A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech., 45(02):281, jan 1971. doi: 10.1017/s0022112071000053.spa
dc.relation.referencesJ. Freund, S. Lele, and P. Moin. Direct simulation of a Mach 1.92 jet and its sound field. AIAA, jun 1998. doi: 10.2514/6.1998-2291.spa
dc.relation.referencesD. V. Gaitonde. Analysis of the Near Field in a Plasma-Actuator-Controlled Supersonic Jet. J. Propul. Power, 28(2):281-292, mar 2012. doi: 10.2514/1.b34289.spa
dc.relation.referencesL. Gamet and J. L. Estivalezes. Application of Large-Eddy Simulations and Kirchhoff Method to Jet Noise Prediction. AIAA Journal, 36(12):2170-2178, dec 1998. doi: 10.2514/2.341.spa
dc.relation.referencesW. K. George. Lectures in Turbulence for the 21st Century. Department of Thermo and Fluid Engineering, Chalmers University of Technology, Göteborg, Sweden, 2005.spa
dc.relation.referencesD. González, D. Gaitonde, and M. Lewis. Large-eddy simulations of plasma-based asymmetric control of supersonic round jets. International Journal of Computational Fluid Dynamics, 29(3-5):240-256, mar 2015. doi: 10.1080/10618562.2015.1053877.spa
dc.relation.referencesC. J. Greenshields, H. G. Weller, L. Gasparini, and J. M. Reese. Implementation of semidiscrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids, 63:1-21, May 2009. doi: 10.1002/fld.2069.spa
dc.relation.referencesJ. Hart. Comparison of Turbulence Modeling Approaches to the Simulation of a Dimpled Sphere. Procedia Engineering, 147:68-73, 2016. doi: 10.1016/j.proeng.2016.06.191.spa
dc.relation.referencesJ. I. Hileman, B. S. Thurow, E. J. Caraballo, and M. Samimy. Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech., 544(-1):277-307, nov 2005. doi: 10.1017/s002211200500666x.spa
dc.relation.referencesD. Jehad, G. Hashim, A. Kadhim Zarzoor, and N. A. Che Sidik. Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models. Journal of Advanced Research Design, 4:2289-7984, 01 2015.spa
dc.relation.referencesS. Jovic and D. M. Driver. Backward-facing step measurements at low Reynolds number, Re(sub h)=5000. In NASA Technical Memorandum 108807, 1994.spa
dc.relation.referencesN. Kasagi and A. Matsunaga. Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow. Int. J. Heat and Fluid Flow, 16(6):477-485, dec 1995. doi: 10.1016/0142-727x(95)00041-n.spa
dc.relation.referencesA. Khavaran, E. Krejsa, and C. Kim. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model. In 30th Aeroespace Sciences Meeting and Exhibit. AIAA-92-0500, jan 1992. doi: 10.2514/6.1992-500.spa
dc.relation.referencesJ. Kim, S. J. Kline, and J. P. Johnston. Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step. J. Fluids Eng., 102(3):302-308, sep 1980. doi: 10.1115/1.3240686.spa
dc.relation.referencesJ. Kostas, J. Soria, and M. Chong. Particle image velocimetry measurements of a backward-facing step flow. Experiments in Fluids, 33(6):838-853, dec 2002. doi: 10.1007/s00348-002-0521-9.spa
dc.relation.referencesA. Kurganov and E. Tadmor. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys., 160(1):241-282, may 2000. doi: 10.1006/jcph.2000.6459.spa
dc.relation.referencesJ. C. Lau, P. J. Morris, and M. J. Fisher. Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech., 93(1):1-27, jul 1979. doi: 10.1017/s0022112079001750.spa
dc.relation.referencesH. Le, P. Moin, and J. Kim. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech., 330:349-374, jan 1997. doi: 10.1017/s0022112096003941.spa
dc.relation.referencesE. Leriche. Direct Numerical Simulation of Lid Driven Cavity at High Reynolds Numbers. J. Sci. Comput., 27:335-345, 2006. doi: 10.1007/s10915-005-9032-1.spa
dc.relation.referencesJ. Liu, K. Kailasanath, R. Ramamurti, D. Munday, E. Gutmark, and R. Lohner. Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Properties. AIAA Journal, 47(8):1849-1865, aug 2009. doi: 10.2514/1.43281.spa
dc.relation.referencesS.-C. Lo, G. Blaisdell, and A. Lyrintzis. Numerical Simulation of Supersonic Jet Flows and their Noise. In 14th AIAA/CEAS Aeroacoustics Conference. AIAA 2008-2970, may 2008. doi: 10.2514/6.2008-2970.spa
dc.relation.referencesS.-C. Lo, G. Blaisdell, and A. Lyrintzis. Numerical Investigation of 3-D Supersonic Jet Flows Using Large Eddy Simulation. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA 2011-1155, jan 2011. doi: 10.2514/6.2011-1155.spa
dc.relation.referencesC. Loh and L. Hultgren. Near-Field Noise Computation for a Supersonic Circular Jet. In 11th AIAA/CEAS Aeroacoustics Conference. AIAA 2005-3042, may 2005. doi: 10.2514/6.2005-3042.spa
dc.relation.referencesR. R. Mankbadi, M. E. Hayer, and L. A. Povinelli. Structure of supersonic jet flow and its radiated sound. AIAA Journal, 32(5):897-906, may 1994. doi: 10.2514/3.12072.spa
dc.relation.referencesL. F. G. Marcantoni, J. P. Tamagno, and S. A. Elaskar. High Speed Flow Simulation using OpenFOAM. Asociación Argentina de Mecánica Computacional, XXXI:2939-2959, nov 2012.spa
dc.relation.referencesR. Maulik and O. San. Explicit and implicit LES closures for Burgers turbulence. J. Comput. Appl. Math., 327:12-40, 2018. doi: 10.1016/j.cam.2017.06.003.spa
dc.relation.referencesR. C. Moura, S. J. Sherwin, and J. Peiró. Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys., 298:695-710, 2015. doi: 10.1016/j.jcp.2015.06.020.spa
dc.relation.referencesE. Murakami and D. Papamoschou. Eddy Convection in Coaxial Supersonic Jets. AIAA Journal, 38(4):628-635, apr 2000. doi: 10.2514/2.1034.spa
dc.relation.referencesA. Nigro, C. D. Bartolo, A. Crivellini, M. Franciolini, A. Colombo, and F. Bassi. A low-dissipation DG method for the under-resolved simulation of low Mach number turbulent flows. Computers and Mathematics with Applications, 77:1739-1755, 2019. doi: 10.1016/j.camwa.2018.09.049.spa
dc.relation.referencesOpenFOAM. OpenFOAM v5 User Guide. https://cfd.direct/openfoam/user-guide, 2021. Online; Accesado en Octubre de 2021.spa
dc.relation.referencesJ. Panda and R. Seasholtz. Velocity and temperature measurement in supersonic free jets using spectrally resolved Rayleigh scattering. In 37th AIAA Aerospace Sciences Meeting and Exhibit. AIAA-99-0296, jan 1999. doi: 10.2514/6.1999-296.spa
dc.relation.referencesB. Panjwani, I. S. Ertesvag, A. Gruber, and K. E. Rian. Large Eddy Simulation of Backward Facing Step Flow. In Fifth National Conference on Computational Mechanics, Trondheim 26-27, pages 353-369, may 2009.spa
dc.relation.referencesS. B. Pope. Turbulent Flows. Cambridge University Press, 2000. ISBN 9780521598866. URL https://books.google.com.co/books?id=HZsTw9SMx-0C.spa
dc.relation.referencesH. P. Rani, T. W. H. Sheu, and E. S. F. Tsai. Eddy structures in a transitional backward-facing step flow. J. Fluid Mech., 588:43-58, sep 2007. doi: 10.1017/s002211200700763x.spa
dc.relation.referencesS. Rodriguez. LES and DNS Turbulence Modeling. Springer International Publishing, 2019. doi: 10.1007/978-3-030-28691-0_5.spa
dc.relation.referencesA. Rona and X. Zhang. Time accurate numerical study of turbulent supersonic jets. J. Sound Vib., 270(1-2):297-321, feb 2004. doi: 10.1016/s0022-460x(03)00537-6.spa
dc.relation.referencesM. Samimy, J.-H. Kim, J. Kastner, I. Adamovich, and Y. Utikn. Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech., 578:305-330, apr 2007. doi: 10.1017/s0022112007004867.spa
dc.relation.referencesJ. M. Seiner. Fluid Dynamics and Noise Emission Associated With Supersonic Jets. In T. G. Gatski et al. (eds.), Studies in Turbulence, pages 297-323. Springer New York, 1992. doi: 10.1007/978-1-4612-2792-2_22.spa
dc.relation.referencesE. Shehadi. Large Eddy Simulation of Turbulent Flow over a Backward-Facing Step. Master's thesis, Uppsala Universitet, Mar. 2018.spa
dc.relation.referencesS. Shih, D. Hixon, R. Mankbadi, and L. Povinelli. Prediction of flow and acoustic fields of a supersonic jet. In AIAA Paper 96-0751, jan 1996. doi: 10.2514/6.1996-751.spa
dc.relation.referencesC. Tam, M. Golebiowski, and J. Seiner. On the two components of turbulent mixing noise from supersonic jets. In AIAA Meeting Papers on Disc, NAG1-1776, AIAA Paper 96-1716, may 1996. doi: 10.2514/6.1996-1716.spa
dc.relation.referencesB. A. Toms. Large-eddy Simulation of Flow over a Backward Facing Step: Assessment of Inflow Boundary Conditions, Eddy Viscosity Models, and Wall Functions. J. Appl. Mech. Eng., 04(03), 2015. doi: 10.4172/2168-9873.1000169.spa
dc.relation.referencesK. Viswanathan, N. Reddy, and L. Sankar. A fluid/acoustic coupled simulation of supersonic jet noise. In 32nd Aerospace Sciences Meeting and Exhibit, jan 1994. doi: 10.2514/6.1994-137.spa
dc.relation.referencesJ. C. Vogel and J. K. Eaton. Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step. J. Heat Transfer, 107(4):922-929, nov 1985. doi: 10.1115/1.3247522.spa
dc.relation.referencesP. O. Witze. Centerline Velocity Decay of Compressible Free Jets. AIAA Journal, 12(4):417-418, apr 1974. doi: 10.2514/3.49262.spa
dc.relation.referencesS. Ye, Y. Lin, L. Xu, and J. Wu. Improving Initial Guess for the Iterative Solution of Linear Equation Systems in Incompressible Flow. Mathematics, 8(1):119, jan 2020. doi: 10.3390/math8010119.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcNumerical analysis
dc.subject.ddc530 - Física::532 - Mecánica de fluidosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc510 - Matemáticas::518 - Análisis numéricospa
dc.subject.lembGeneración numérica de mallasspa
dc.subject.lembNumerical grid generationeng
dc.subject.lembAnálisis numéricospa
dc.subject.proposalDinámica de fluidos computacionalspa
dc.subject.proposalComputational Fluid Dynamicseng
dc.subject.proposalunder-resolved Direct Numerical Simulationeng
dc.subject.proposalLarge-Eddy Simulationeng
dc.subject.proposalLid-Driven Cavityeng
dc.subject.proposalDifferentially Heated Cavityeng
dc.subject.proposalOpenFoameng
dc.subject.proposalSupersonic jetseng
dc.subject.proposalChorros supersónicosspa
dc.subject.proposalUnder-expanded jetseng
dc.subject.proposalchorros sub-expandidosspa
dc.subject.proposalTurbulent floweng
dc.subject.proposalFlujo turbulentospa
dc.subject.proposalBackward-facing stepeng
dc.subject.proposalSeparationeng
dc.subject.proposalReattachmenteng
dc.subject.proposalReenganchespa
dc.titleMetodología de mallado para simulaciones numéricas de flujos turbulentos a bajo costo computacionalspa
dc.title.translatedMeshing methodology for numerical simulations of turbulent flows at low computational costeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022416879.2022.pdf
Tamaño:
17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: