Brain activity reconstruction from non-stationary M/EEG data using spatiotemporal constraints

dc.contributor.advisorCastellanos Domínguez, César Germán (Thesis advisor)spa
dc.contributor.authorGrisales Franco, Fily Mateosspa
dc.date.accessioned2019-07-02T13:48:47Zspa
dc.date.available2019-07-02T13:48:47Zspa
dc.date.issued2016spa
dc.description.abstractMagneto/Electroencephalography (M/EEG)-based neuroimaging is a widely used noninvasive technique for functional analysis of neuronal activity. One of the most prominent advantages of using M/EEG measures is the very low implementation cost and its height temporal resolution. However, the number of locations measuring magnetic/electrical is relatively small (a couple of hundreds at best) while the discretized brain activity generators (sources) are several thousand. This fact corresponds an ill-posed mathematical problem commonly known as the M/EEG inverse problem. To solve such problems, additional information must be apriori assumed to obtain a unique and optimal solution. In the present work, a methodology to improve the accuracy and interpretability of the inverse problem solution is proposed, using physiologically motivated assumptions. Firstly, a method constraining the solution to a sparse representation in the space-time domain is introduce given a set of methodologies to syntonize the present parameters. Secondly, we propose a new source connectivity approach explicitly including spatiotemporal information of the neural activity extracted from M/EEG recordings. The proposed methods are compared with the state-of-art techniques in a simulated environment, and afterward, are validated using real-world data. In general, the contributed approaches are efficient and competitive compared to state-of-art brain mapping methodsspa
dc.description.abstractResumen : El mapeo cerebral basado en señales de magneto/electroencefalografía (M/EEG), es una técnica muy usada para el análisis de la actividad neuronal en forma no invasiva. Una de las ventajas que provee la utilización de señales M/EEG es su bajo costo de implementación además de su sobresaliente resolución temporal. Sin embargo el número de posiciones magnéticas/eléctricas medidas son extremadamente bajas comparadas con la cantidad de puntos discretizados dentro del cerebro sobre los cuales se debe realizar la estimación de la actividad. Esto conlleva a un problema mal condicionado comúnmente conocido como el problema inverso de M/EEG. Para resolver este tipo de problemas, información apriori debe ser supuesta para así obtener una solución única y óptima. En el presente trabajo investigativo, se propone una metodología para mejorar la exactitud e interpretación a la solución del problema inverso teniendo en cuenta el contexto fisiológico del problema. En primer lugar se propone un algoritmo en el cual se representa la actividad cerebral a través de un conjunto de funciones espacio-temporales dando metodologías para sintonizar los parámetros presentes. En segundo lugar, proponemos un nuevo enfoque mediante conectividad en fuentes que explícitamente incluye información espacial y temporal de la actividad neuronal extraída del M/EEG. Los métodos propuestos son comparados con métodos del estado del arte usando señales simuladas, y finalmente son validados usando datos reales de M/EEG. En general, los métodos propuestos son eficientes y competitivos en comparación a los métodos de referenciaspa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/54853/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/58198
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.ispartofDepartamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.referencesGrisales Franco, Fily Mateos (2016) Brain activity reconstruction from non-stationary M/EEG data using spatiotemporal constraints. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalM/EEGspa
dc.subject.proposalInverse problemspa
dc.subject.proposalBrain mappingspa
dc.subject.proposalSource connectivityspa
dc.subject.proposalProblema inversospa
dc.subject.proposalMapeo cerebralspa
dc.subject.proposalConectividad en fuentesspa
dc.titleBrain activity reconstruction from non-stationary M/EEG data using spatiotemporal constraintsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1059700212.2016.pdf
Tamaño:
6.87 MB
Formato:
Adobe Portable Document Format