Brain activity reconstruction from non-stationary M/EEG data using spatiotemporal constraints
dc.contributor.advisor | Castellanos Domínguez, César Germán (Thesis advisor) | spa |
dc.contributor.author | Grisales Franco, Fily Mateos | spa |
dc.date.accessioned | 2019-07-02T13:48:47Z | spa |
dc.date.available | 2019-07-02T13:48:47Z | spa |
dc.date.issued | 2016 | spa |
dc.description.abstract | Magneto/Electroencephalography (M/EEG)-based neuroimaging is a widely used noninvasive technique for functional analysis of neuronal activity. One of the most prominent advantages of using M/EEG measures is the very low implementation cost and its height temporal resolution. However, the number of locations measuring magnetic/electrical is relatively small (a couple of hundreds at best) while the discretized brain activity generators (sources) are several thousand. This fact corresponds an ill-posed mathematical problem commonly known as the M/EEG inverse problem. To solve such problems, additional information must be apriori assumed to obtain a unique and optimal solution. In the present work, a methodology to improve the accuracy and interpretability of the inverse problem solution is proposed, using physiologically motivated assumptions. Firstly, a method constraining the solution to a sparse representation in the space-time domain is introduce given a set of methodologies to syntonize the present parameters. Secondly, we propose a new source connectivity approach explicitly including spatiotemporal information of the neural activity extracted from M/EEG recordings. The proposed methods are compared with the state-of-art techniques in a simulated environment, and afterward, are validated using real-world data. In general, the contributed approaches are efficient and competitive compared to state-of-art brain mapping methods | spa |
dc.description.abstract | Resumen : El mapeo cerebral basado en señales de magneto/electroencefalografía (M/EEG), es una técnica muy usada para el análisis de la actividad neuronal en forma no invasiva. Una de las ventajas que provee la utilización de señales M/EEG es su bajo costo de implementación además de su sobresaliente resolución temporal. Sin embargo el número de posiciones magnéticas/eléctricas medidas son extremadamente bajas comparadas con la cantidad de puntos discretizados dentro del cerebro sobre los cuales se debe realizar la estimación de la actividad. Esto conlleva a un problema mal condicionado comúnmente conocido como el problema inverso de M/EEG. Para resolver este tipo de problemas, información apriori debe ser supuesta para así obtener una solución única y óptima. En el presente trabajo investigativo, se propone una metodología para mejorar la exactitud e interpretación a la solución del problema inverso teniendo en cuenta el contexto fisiológico del problema. En primer lugar se propone un algoritmo en el cual se representa la actividad cerebral a través de un conjunto de funciones espacio-temporales dando metodologías para sintonizar los parámetros presentes. En segundo lugar, proponemos un nuevo enfoque mediante conectividad en fuentes que explícitamente incluye información espacial y temporal de la actividad neuronal extraída del M/EEG. Los métodos propuestos son comparados con métodos del estado del arte usando señales simuladas, y finalmente son validados usando datos reales de M/EEG. En general, los métodos propuestos son eficientes y competitivos en comparación a los métodos de referencia | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.eprints | http://bdigital.unal.edu.co/54853/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/58198 | |
dc.language.iso | spa | spa |
dc.relation.ispartof | Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación | spa |
dc.relation.ispartof | Departamento de Ingeniería Eléctrica, Electrónica y Computación | spa |
dc.relation.references | Grisales Franco, Fily Mateos (2016) Brain activity reconstruction from non-stationary M/EEG data using spatiotemporal constraints. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 62 Ingeniería y operaciones afines / Engineering | spa |
dc.subject.proposal | M/EEG | spa |
dc.subject.proposal | Inverse problem | spa |
dc.subject.proposal | Brain mapping | spa |
dc.subject.proposal | Source connectivity | spa |
dc.subject.proposal | Problema inverso | spa |
dc.subject.proposal | Mapeo cerebral | spa |
dc.subject.proposal | Conectividad en fuentes | spa |
dc.title | Brain activity reconstruction from non-stationary M/EEG data using spatiotemporal constraints | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1