Oportunidades de negocio para las hidroeléctricas en el contexto de alta penetración de renovables no convencionales

dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.authorDelgado Rendón, David
dc.contributor.orcidDelgado Rendón, David [0000-0002-8152-5364]spa
dc.contributor.orcidFranco Cardona, Carlos Jaime [0000-0002-7750-857X]spa
dc.contributor.researchgroupSistemas Energéticosspa
dc.coverage.countryColombia
dc.date.accessioned2023-11-09T18:05:00Z
dc.date.available2023-11-09T18:05:00Z
dc.date.issued2023-09-28
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa expansión de capacidad de generación en Colombia en los próximos años será a través de Fuentes no Convencionales de Energía Renovable (FNCER). En este contexto, las hidroeléctricas existentes enfrentarán varios retos que podrían afectar sus ingresos, como la disminución de los precios y el aumento de la volatilidad del precio de bolsa, por lo que es necesario encontrar nuevas alternativas de negocio que permitan mantener y aumentar la rentabilidad de las hidroeléctricas, y aprovechar sus fortalezas. Estas alternativas incluyen aprovechar la complementariedad del recurso hídrico con el solar y eólico, y ofrecer servicios relacionados con su capacidad de almacenamiento y flexibilidad de generación. Esta tesis tiene el objetivo de evaluar las oportunidades de negocio para centrales hidroeléctricas existentes en Colombia, en el contexto de alta penetración de FNCER. Para esto, se identificaron las oportunidades de negocio a partir de la revisión amplia de la literatura; luego se desarrolló un modelo dinámico sensible a los cambios en el sistema eléctrico derivados de la alta penetración de FNCER, y con este se evaluaron las alternativas de negocio. Los resultados muestran que los negocios con mayor potencial son: la prestación de servicios complementarios, la optimización de portafolio hidroeléctrico-eólico, y el aumento de potencia y de eficiencia de las hidroeléctricas; mientras que los siguientes negocios mostraron bajo potencial: hidroeléctricas reversibles, solar flotante y producción de hidrógeno. (Texto tomado de la fuente)spa
dc.description.abstractIn the coming years, Colombia's expansion of generation capacity will predominantly depend on Non-Conventional Renewable Energy Sources (NCRE). This scenario presents multiple challenges for existing hydroelectric power plants, potentially impacting their revenue streams due to fluctuating market prices and increased price volatility. To ensure the sustained profitability of hydroelectric facilities and capitalize on their inherent advantages, such as complementarity with solar and wind resources, storage capacity, and flexibility, it is imperative to explore new business opportunities. This thesis aims to comprehensively evaluate business opportunities for existing hydroelectric power plants in Colombia, considering the context of high NCRE penetration. To achieve this, a comprehensive literature review was conducted to identify potential opportunities. Subsequently, a dynamic model, designed to capture market changes resulting from the increased NCRE penetration, was developed to assess these opportunities. The results indicate that certain business ventures hold significant potential: offering auxiliary services, optimizing the hydroelectric-wind portfolio, and enhancing the power and efficiency of hydroelectric facilities. On the other hand, other initiatives have shown less potential: reversible hydroelectric plants, floating solar, and hydrogen production in conjunction with hydroelectricity.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería – Sistemas Energéticosspa
dc.description.researchareaMercados Energéticosspa
dc.format.extent149 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84926
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAguirre, N., Palacio, J., & Ramírez, J. (2007). Características limnológicas del embalse El Peñol-Guatapé. Revista Ingenierías Universidad de Medellín, 6(10).spa
dc.relation.referencesAlizadeh, M. I., Parsa Moghaddam, M., Amjady, N., Siano, P., & Sheikh-El-Eslami, M. K. (2016). Flexibility in future power systems with high renewable penetration: A review. Renewable and Sustainable Energy Reviews, 57, 1186–1193. https://doi.org/10.1016/J.RSER.2015.12.200spa
dc.relation.referencesAn, Y., Fang, W., Ming, B., & Huang, Q. (2015). Theories and methodology of complementary hydro/photovoltaic operation: Applications to short-term scheduling. Journal of Renewable and Sustainable Energy, 7(6). https://doi.org/10.1063/1.4939056spa
dc.relation.referencesAyza, J. R. W. (2013). The role of hydropower in the context of renewable energies in Spain. Revista de Obras Publicas, 160(3548), 35–42.spa
dc.relation.referencesBareiß, K., de la Rua, C., Möckl, M., & Hamacher, T. (2019). Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Applied Energy, 237, 862–872. https://doi.org/10.1016/J.APENERGY.2019.01.001spa
dc.relation.referencesBarlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3). https://doi.org/10.1002/(SICI)1099-1727(199623)12:3spa
dc.relation.referencesCastro Abril, M. (2020). Intermittent renewable energy, hydropower dynamics and the profitability of storage arbitrage. https://doi.org/10.18235/0002360spa
dc.relation.referencesCheng, C. (2021). Function Remolding of Hydropower Systems for Carbon Neutral and Its Key Problems. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 45(16), 29–36. https://doi.org/10.7500/AEPS20201220003spa
dc.relation.referencesChoe, C., Lee, B., Kim, A., Cheon, S., & Lim, H. (2021). Comprehensive assessment of CO2 methanation: Which H2 production pathway is practicable for green methane production in terms of technical, economic, and environmental aspects? Green Chemistry, 23(23), 9502–9514. https://doi.org/10.1039/d1gc02755gspa
dc.relation.referencesLey 1715 de 2014, (2014). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353spa
dc.relation.referencesCONPES. (2022). CONPES 4075 Política de transición energética.spa
dc.relation.referencesCREG. (1994). Resolución 55 de 1994.spa
dc.relation.referencesCREG. (1995a). Resolución 24 de 1995.spa
dc.relation.referencesCREG. (1995b). Resolución 25 de 1995spa
dc.relation.referencesCREG. (1998). Resolución 70 de 1998. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0070_1998.htmspa
dc.relation.referencesCREG. (1999). Resolución 75 de 1999. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0075_1999.htm?resaltar=agcspa
dc.relation.referencesCREG. (2006a). Resolución 71 de 2006.spa
dc.relation.referencesCREG. (2006b). Resolución 71 de 2006 Por la cual se adopta la metodología para la remuneración del Cargo por Confiabilidad en el Mercado Mayorista de Energía. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0071_2006.htm#3spa
dc.relation.referencesCREG. (2009). Resolución 51 de 2009. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0051_2009.htm#INICIOspa
dc.relation.referencesCREG. (2015). Resolución 24 de 2015 .spa
dc.relation.referencesCREG. (2019a). Resolución 60 de 2019.spa
dc.relation.referencesCREG. (2019b). Resolución 60 de 2019. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0060_2019.htmspa
dc.relation.referencesCREG. (2021). CREG 143 de 2021. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/fb439e8b5fd28f92052588980081b115/$FILE/Creg143-2021.pdfspa
dc.relation.referencesda Rocha Santos, F., D’Angela Mariano, J., Sestrem Junior, J. A., & Junior, J. U. (2019). Analysis of solar photovoltaic energy potential in Brazilian hydroelectric reservoirs through floating panels. Brazilian Archives of Biology and Technology, 62(specialissue). https://doi.org/10.1590/1678-4324-SMART-2019190012spa
dc.relation.referencesDe La Nieta, A. A. S., Contreras, J., & Catalão, J. P. S. (2016). Optimal Single Wind Hydro-Pump Storage Bidding in Day-Ahead Markets Including Bilateral Contracts. IEEE Transactions on Sustainable Energy, 7(3), 1284–1294. https://doi.org/10.1109/TSTE.2016.2544704spa
dc.relation.referencesDenault, M., Dupuis, D., & Couture-Cardinal, S. (2009). Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12), 5376–5384. https://doi.org/10.1016/J.ENPOL.2009.07.064spa
dc.relation.referencesDI-AVANTE, & PSR. (2018). Análisis de los servicios complementarios para el sistema interconectado nacionalspa
dc.relation.referencesDiaz, F. (2011). Optimización de la operación y evaluación de la eficiencia técnica de una empresa de generación hidroeléctrica en mercados de corto plazo.spa
dc.relation.referencesDOE. (2022). Animation: How a wind turbine works. https://www.energy.gov/eere/wind/animation-how-wind-turbine-worksspa
dc.relation.referencesDörenkämper, M., Wahed, A., Kumar, A., de Jong, M., Kroon, J., & Reindl, T. (2021). The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Solar Energy, 214, 239–247. https://doi.org/10.1016/J.SOLENER.2020.11.029spa
dc.relation.referencesDo Sacramento, E. M., Carvalho, P. C. M., De Araújo, J. C., Riffel, D. B., Da Cruz Corrêa, R. M., & Neto, J. S. P. (2015). Scenarios for use of floating photovoltaic plants in Brazilian reservoirs. IET Renewable Power Generation, 9(8). https://doi.org/10.1049/iet-rpg.2015.0120spa
dc.relation.referencesDujardin, J., Kahl, A., Kruyt, B., Bartlett, S., & Lehning, M. (2017). Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland. Energy, 135, 513–525. https://doi.org/10.1016/j.energy.2017.06.092spa
dc.relation.referencesEcheverri, J. (2021). Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica.spa
dc.relation.referencesEIA. (2022). Issues in focus: drivers for standalone battery storage deployment in AEO2022. www.eia.govspa
dc.relation.referencesLey 2099 de 2021, (2021). https://dapre.presidencia.gov.co/normativa/normativa/LEY 2099 DEL 10 DE JULIO DE 2021.pdfspa
dc.relation.referencesEnel. (2019). El Paso photovoltaic plant in Colombia is brought onlinespa
dc.relation.referencesEnel. (2022). El proyecto solar La Loma, el más grande que se construye del país, presenta un avance del 70%.spa
dc.relation.referencesENTSO-E. (2019). Fast frequency reserve — solution to the nordic inertia challenge.spa
dc.relation.referencesGarcía Mazo, C. M., Olaya, Y., & Botero Botero, S. (2020). Investment in renewable energy considering game theory and wind-hydro diversification. Energy Strategy Reviews, 28, 100447. https://doi.org/10.1016/J.ESR.2020.100447spa
dc.relation.referencesGobierno de Colombia. (2020). Actualización de la contribución determinada a nivel nacional de Colombia (NDC).spa
dc.relation.referencesGobierno de Colombia. (2021a). Estrategia climática de largo plazo de Colombia E2050 para cumplir con el Acuerdo de Parísspa
dc.relation.referencesGobierno de Colombia. (2021b). Transición energética: un legado para el presente y el futuro de Colombiaspa
dc.relation.referencesGobierno de Colombia. (2021c). Hoja de ruta del hidrógeno en Colombia. https://www.minenergia.gov.co/documents/10192/24309272/Hoja+Ruta+Hidrogeno+Colombia_2810.pdf;jsessionid=X5NDbFlIoN6ZhVYorZqnjy0l.portal2spa
dc.relation.referencesGonzalez Sanchez, R., Kougias, I., Moner-Girona, M., Fahl, F., & Jäger-Waldau, A. (2021). Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renewable Energy, 169, 687–699. https://doi.org/10.1016/j.renene.2021.01.041spa
dc.relation.referencesGullì, F., & Balbo, A. Lo. (2015). The impact of intermittently renewable energy on Italian wholesale electricity prices: Additional benefits or additional costs? Energy Policy, 83, 123–137. https://doi.org/10.1016/J.ENPOL.2015.04.00spa
dc.relation.referencesGurung, A. B., Borsdorf, A., Füreder, L., Kienast, F., Matt, P., Scheidegger, C., Schmocker, L., Zappa, M., & Volkart, K. (2016). Rethinking Pumped Storage Hydropower in the European Alps. Mountain Research and Development, 36(2), 222–232. https://doi.org/10.1659/MRD-JOURNAL-D-15-00069.1spa
dc.relation.referencesHaas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, S. U., Nowak, W., & Chen, P.-J. (2020). Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206. https://doi.org/10.1016/j.enconman.2019.112414spa
dc.relation.referencesHartmann, B., Vokony, I., & Táczi, I. (2019). Effects of decreasing synchronous inertia on power system dynamics—Overview of recent experiences and marketisation of services. International Transactions on Electrical Energy Systems, 29(12). https://doi.org/10.1002/2050-7038.12128spa
dc.relation.referencesHenao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158, 612–627. https://doi.org/10.1016/J.RENENE.2020.05.055spa
dc.relation.referencesHenao, F., Rodriguez, Y., Viteri, J. P., & Dyner, I. (2019). Optimising the insertion of renewables in the Colombian power sector. Renewable Energy, 132, 81–92. https://doi.org/10.1016/j.renene.2018.07.099spa
dc.relation.referencesHenao, F., Viteri, J., Rodríguez, Y., Gómez, J., & Dyner, I. (2020). Annual and interannual complementarities of renewable energy sources in Colombia. Renewable and Sustainable Energy Reviews, 134. https://doi.org/10.1016/j.rser.2020.110318spa
dc.relation.referencesHuang, J., Wu, X., Zheng, Z., Huang, Y., & Li, W. (2021). Multi-Objective Optimal Operation of Combined Cascade Reservoir and Hydrogen System. IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2021.3138949spa
dc.relation.referencesHuang, J., Wu, X., Zheng, Z., Huang, Y., & Li, W. (2022). Multi-objective Optimal Operation of Combined Cascade Reservoir and Hydrogen System. IEEE Transactions on Industry Applications, 58(2), 2836–2847. https://doi.org/10.1109/TIA.2021.3138949spa
dc.relation.referencesIEA. (2021a). Global hydrogen review 2021. https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdfspa
dc.relation.referencesIEA. (2021b). Hydropower special market report. OECD. https://doi.org/10.1787/07a7bac8-enspa
dc.relation.referencesIEA. (2021c). Hydropower - tracking report.spa
dc.relation.referencesIFC. (2015). Utility-scale solar photovoltaic power plants.spa
dc.relation.referencesIgder, M. A., Niknam, T., & Khooban, M.-H. (2017). Bidding strategies of the joint wind, hydro, and pumped-storage in generation company using novel improved clonal selection optimisation algorithm. IET Science, Measurement and Technology, 11(8), 991–1001. https://doi.org/10.1049/iet-smt.2017.0014spa
dc.relation.referencesIHA. (2022a). Hydropower 2050: Identifying the next 850+ GW towards Net Zero. https://www.hydropower.org/publications/hydropower-2050-identifying-the-next-850-gw-towards-2050spa
dc.relation.referencesIHA. (2022b). Types of Hydropower. https://www.hydropower.org/iha/discover-types-of-hydropowerspa
dc.relation.referencesINESC TEC. (2020). XFLEX Hydro: Flexibility, technologies and scenarios for hydro power.spa
dc.relation.referencesIRENA. (2018). Power system flexibility for the energy transition, Part 1: Overview for policy makers.spa
dc.relation.referencesIRENA. (2022a). Global hydrogen trade to meet the 1.5 °C climate goal: Part I – TRADE OUTLOOK FOR 2050 AND WAY FORWARD. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_Global_Trade_Hydrogen_2022.pdfspa
dc.relation.referencesIRENA. (2022b). Renewable power generation costs in 2021. In Renewable Power Generation Costs in 2021. https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021spa
dc.relation.referencesIRENA. (2023). The changing role of hydropower: Challenges and opportunities. www.irena.org/publicationsspa
dc.relation.referencesISAGEN. (2021). Informe de gestión 2021.spa
dc.relation.referencesJamii, J., Abbes, D., & Mimouni, M. F. (2019). Energy management of wind power generation with pumped hydro energy storage and participation in frequency control: Study in electricity market. International Journal of Renewable Energy Research, 9(4), 2082–2091. https://doi.org/10.1002/9781118100509.ch@spa
dc.relation.referencesJamii, J., Abbes, D., & Mimouni, M. F. (2021). Joint operation between wind power generation and pumped hydro energy storage in the electricity market. Wind Engineering, 45(1), 50–62. https://doi.org/10.1177/0309524X19868473spa
dc.relation.referencesJiménez, J. (2019). Integración de fuentes fotovoltaicas en una mini-red aislada con presencia de pequeñas centrales hidroeléctricas.spa
dc.relation.referencesJovan, D. J., & Dolanc, G. (2020). Can green hydrogen production be economically viable under current market conditions. Energies, 13(24). https://doi.org/10.3390/en13246599spa
dc.relation.referencesJurasz, J., Kies, A., & Zajac, P. (2020). Synergetic operation of photovoltaic and hydro power stations on a day-ahead energy market. Energy, 212, 118686. https://doi.org/10.1016/J.ENERGY.2020.118686spa
dc.relation.referencesJurasz, J., Mikulik, J., Krzywda, M., Ciapała, B., & Janowski, M. (2018). Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation. Energy, 144, 549–563. https://doi.org/10.1016/j.energy.2017.12.011spa
dc.relation.referencesKarhinen, S., & Huuki, H. (2019). Private and social benefits of a pumped hydro energy storage with increasing amount of wind power. Energy Economics, 81, 942–959. https://doi.org/10.1016/j.eneco.2019.05.024spa
dc.relation.referencesKiene, S., & Linkevics, O. (2021). Simplified Model for Evaluation of Hydropower Plant Conversion into Pumped Storage Hydropower Plant. Latvian Journal of Physics and Technical Sciences, 58(3), 108–120. https://doi.org/10.2478/lpts-2021-0020spa
dc.relation.referencesKnežević, G., Topić, D., Jurić, M., & Nikolovski, S. (2019). Joint market bid of a hydroelectric system and wind parks. Computers and Electrical Engineering, 74, 138–148. https://doi.org/10.1016/j.compeleceng.2019.01.014spa
dc.relation.referencesKolb, S., Dillig, M., Plankenbühler, T., & Karl, J. (2020). The impact of renewables on electricity prices in Germany - An update for the years 2014–2018. Renewable and Sustainable Energy Reviews, 134, 110307. https://doi.org/10.1016/J.RSER.2020.110307spa
dc.relation.referencesLaoharojanaphand, V., & Ongsakul, W. (2021). Virtual battery storage service using hydropower plant with co-located floating solar and wind generation. Sustainable Energy Technologies and Assessments, 47. https://doi.org/10.1016/j.seta.2021.101531spa
dc.relation.referencesLAZARD. (2021). Levelized cost of storage analysis - version 7.0. https://www.lazard.com/media/451882/lazards-levelized-cost-of-storage-version-70-vf.pdfspa
dc.relation.referencesLAZARD. (2023). Levelized cost of energy. https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/spa
dc.relation.referencesLee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., & Cox, S. (2020a). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. https://doi.org/10.1016/J.RENENE.2020.08.080spa
dc.relation.referencesLee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., & Cox, S. (2020b). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. https://doi.org/10.1016/J.RENENE.2020.08.080spa
dc.relation.referencesLiu, Y., Jiang, C., Shen, J., Hu, J., & Luo, Y. (2015). Coordination of hydro units with wind power generation based on RAROC. Renewable Energy, 80, 783–792. https://doi.org/10.1016/j.renene.2015.02.062spa
dc.relation.referencesLu, D., Wang, B., Wang, Y., Zhou, H., Liang, Q., Peng, Y., & Roskilly, T. (2015). Optimal operation of cascade hydropower stations using hydrogen as storage medium. Applied Energy, 137, 56–63. https://doi.org/10.1016/j.apenergy.2014.09.092spa
dc.relation.referencesMacedo, D. P., Marques, A. C., & Damette, O. (2020). The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal? Utilities Policy, 66, 101080. https://doi.org/10.1016/J.JUP.2020.10108spa
dc.relation.referencesMa, F., Li, L., Zeng, Q., & Zheng, J. (2020). Development Concept of Integrated Energy Network and Hydrogen Energy Industry Based on Hydrogen Production Using Surplus Hydropower. IOP Conference Series: Earth and Environmental Science, 555(1), 012022. https://doi.org/10.1088/1755-1315/555/1/012022spa
dc.relation.referencesMammadov, Z. A., Kerimov, R. E., Kerimov, O. Z., & Rahmanov, N. R. (2021). Estimation of energy resources potential for solar photovoltaic systems located on the water surface of small lakes and reservoirs. International Journal on Technical and Physical Problems of Engineering, 13(2), 107–111.spa
dc.relation.referencesMarco Antonio Esteves Galdino, & Marta Maria de Almeida Olivieri. (2017). Some Remarks about the Deployment of Floating PV Systems in Brazil. J. of Electrical Engineering, 5(1). https://doi.org/10.17265/2328-2223/2017.01.002spa
dc.relation.referencesMaués, J. A. (2019). Floating solar PV-hydroelectric power plants in Brazil: Energy storage solution with great application potential. International Journal of Energy Production and Management, 4(1), 40–52. https://doi.org/10.2495/EQ-V4-N1-40-52spa
dc.relation.referencesMehadi, A. A., Nahin-Al-Khurram, Shagor, M. R. K., & Sarder, M. A. I. (2021). Optimized seasonal performance analysis and integrated operation of 50MW floating solar photovoltaic system with Kaptai hydroelectric power plant: a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1962434spa
dc.relation.referencesMilstein, I., & Tishler, A. (2015). Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets. Resource and Energy Economics, 41, 70–90. https://doi.org/10.1016/J.RESENEECO.2015.04.001spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2017). Política nacional de cambio climático.spa
dc.relation.referencesMohammadi, A., & Mehrpooya, M. (2018). A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy, 158, 632–655. https://doi.org/10.1016/j.energy.2018.06.073spa
dc.relation.referencesMohandes, B., Moursi, M. S. El, Hatziargyriou, N., & Khatib, S. El. (2019). A review of power system flexibility with high penetration of renewables. IEEE Transactions on Power Systems, 34(4), 3140–3155. https://doi.org/10.1109/TPWRS.2019.2897727spa
dc.relation.referencesMonette, C., Marmont, H., Chamberland-Lauzon, J., Skagerstrand, A., Coutu, A., & Carlevi, J. (2016). Cost of enlarged operating zone for an existing Francis runner. IOP Conference Series: Earth and Environmental Science, 49(7), 072018. https://doi.org/10.1088/1755-1315/49/7/072018spa
dc.relation.referencesMorales Soler, D. (2023, April 9). Enel le apuesta a iniciar operación de tres parques solares este 2023 | Infraestructura | Economía | Portafolio. El Tiempo. https://www.portafolio.co/economia/infraestructura/enel-le-apuesta-a-iniciar-operacion-de-tres-parques-solares-este-2023-581161spa
dc.relation.referencesMurphy, C. A., Schleifer, A., & Eurek, K. (2021). A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies. Renewable and Sustainable Energy Reviews, 139. https://doi.org/10.1016/J.RSER.2021.110711spa
dc.relation.referencesNaciones Unidas. (2015). The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreementspa
dc.relation.referencesNadaleti, W. C., Lourenço, V. A., & Americo, G. (2021). Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions – Part A. International Journal of Hydrogen Energy, 46(43), 22247–22255. https://doi.org/10.1016/j.ijhydene.2021.03.239spa
dc.relation.referencesNASA. (2022). NASA Power - Prediction of worldwide energy resources. https://power.larc.nasa.gov/spa
dc.relation.referencesNGO. (2022). Wind energy. https://www.nationalgeographic.org/encyclopedia/wind-energy/spa
dc.relation.referencesNREL. (2021). Floating Photovoltaic System Cost Benchmark: Q1 2021 Installations on Artificial Water Bodies. www.nrel.gov/publications.spa
dc.relation.referencesOlaya, Y., Arango-Aramburo, S., & Larsen, E. R. (2015). How capacity mechanisms drive technology choice in power generation: The case of Colombia. https://doi.org/10.1016/j.rser.2015.11.065spa
dc.relation.referencesParra, L., Gómez, S., Montoya, C., & Henao, F. (2020). Assessing the Complementarities of Colombia’s Renewable Power Plants. Frontiers in Energy Research, 8, 280. https://doi.org/10.3389/FENRG.2020.575240/BIBTEXspa
dc.relation.referencesPelaez-Samaniego, M. R., Riveros-Godoy, G., Torres-Contreras, S., Garcia-Perez, T., & Albornoz-Vintimilla, E. (2014). Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy. Energy, 64, 626–631. https://doi.org/10.1016/J.ENERGY.2013.11.012spa
dc.relation.referencesPeñaranda, A. F., Romero-Quete, D., & Cortés, C. A. (2021). Grid-scale battery energy storage for arbitrage purposes: a colombian case. Batteries 2021, Vol. 7, Page 59, 7(3), 59. https://doi.org/10.3390/BATTERIES7030059spa
dc.relation.referencesPenaranda Bayona, A. F., Romero Quete, D. F., Cortes Guerrero, C. A., & Moreno Restrepo, E. (2022). Impact of grid-scale energy storage systems on energy and frequency regulation Colombian markets. IEEE Latin America Transactions, 20(8), 2054–2062. https://doi.org/10.1109/TLA.2022.9853225spa
dc.relation.referencesPereira da Silva, P., & Horta, P. (2019). The effect of variable renewable energy sources on electricity price volatility: the case of the Iberian market. Https://Doi-Org.Ezproxy.Unal.Edu.Co/10.1080/14786451.2019.1602126, 38(8), 794–813. https://doi.org/10.1080/14786451.2019.1602126spa
dc.relation.referencesPerez, M., Perez, R., Ferguson, C. R., & Schlemmer, J. (2018). Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable technologies. Solar Energy, 174, 837–847. https://doi.org/10.1016/j.solener.2018.08.088spa
dc.relation.referencesPinheiro Neto, D., Domingues, E. G., Coimbra, A. P., de Almeida, A. T., Alves, A. J., & Calixto, W. P. (2017). Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil. Energy Economics, 64, 238–250. https://doi.org/10.1016/J.ENECO.2017.03.020spa
dc.relation.referencesPosso Rivera, F., Zalamea, J., Espinoza, J. L., & Gonzalez, L. G. (2022). Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renewable and Sustainable Energy Reviews, 156. https://doi.org/10.1016/j.rser.2021.112005spa
dc.relation.referencesDecreto 570 de 2018, (2018).spa
dc.relation.referencesProost, J. (2019). State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. International Journal of Hydrogen Energy, 44(9), 4406–4413. https://doi.org/10.1016/J.IJHYDENE.2018.07.164spa
dc.relation.referencesPupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large scale integration of renewable energy sources (RES) in the future Colombian energy system. https://doi.org/10.1016/j.energy.2019.07.135spa
dc.relation.referencesQuaranta, E., Aggidis, G., Boes, R. M., Comoglio, C., De Michele, C., Ritesh Patro, E., Georgievskaia, E., Harby, A., Kougias, I., Muntean, S., Pérez-Díaz, J., Romero-Gomez, P., Rosa-Clot, M., Schleiss, A. J., Vagnoni, E., Wirth, M., & Pistocchi, A. (2021). Assessing the energy potential of modernizing the European hydropower fleet. Energy Conversion and Management, 246. https://doi.org/10.1016/j.enconman.2021.114655spa
dc.relation.referencesRamirez, J. (2022). Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia.spa
dc.relation.referencesRauf, H., Gull, M. S., & Arshad, N. (2020). Complementing hydroelectric power with floating solar PV for daytime peak electricity demand. Renewable Energy, 162, 1227–1242. https://doi.org/10.1016/j.renene.2020.08.017spa
dc.relation.referencesRiddervold, H. O., Aasgård, E. K., Haukaas, L., & Korpås, M. (2021). Internal hydro- and wind portfolio optimisation in real-time market operations. Renewable Energy, 173, 675–687. https://doi.org/10.1016/j.renene.2021.04.001spa
dc.relation.referencesRosa-Clot, M., & Tina, G. M. (2017). Submerged and Floating Photovoltaic Systems : Modelling, Design and Case Studies. In Submerged and Floating Photovoltaic Systems: Modelling, Design and Case Studies. Elsevier Sciencespa
dc.relation.referencesRosa-Clot, M., & Tina, G. M. (2018). Submerged and Floating Photovoltaic Systems (M. Rosa-Clot & G. M. Tina, Eds.). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812149-8.00001-6spa
dc.relation.referencesRubino, A., Sapio, A., & Scala, M. La. (2021). Handbook of Energy Economics and Policy: Fundamentals and Applications for Engineers and Energy Planners. Elsevier.spa
dc.relation.referencesSánchez de la Nieta, A. A., & Contreras, J. (2020). Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case. Energy Economics, 90, 104841. https://doi.org/10.1016/J.ENECO.2020.104841spa
dc.relation.referencesSauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41(29), 12443–12453. https://doi.org/10.1016/j.ijhydene.2016.03.078spa
dc.relation.referencesSeel, J., Mills, A., Wiser, R., Deb, S., Asokkumar, A., Hassanzadeh, M., & Aarabali, A. (2018). Impacts of high variable renewable energy futures on wholesale electricity prices, and on electric-sector decision making. https://emp.lbl.gov/publications/impacts-high-variable-renewablespa
dc.relation.referencesSeidel, U., Mende, C., Hübner, B., Weber, W., & Otto, A. (2014). Dynamic loads in Francis runners and their impact on fatigue life. IOP Conference Series: Earth and Environmental Science, 22(3), 032054. https://doi.org/10.1088/1755-1315/22/3/032054spa
dc.relation.referencesSensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–3094. https://doi.org/10.1016/J.ENPOL.2008.03.035spa
dc.relation.referencesSerna, C. (2019). Eficiencia energética: alternativa de transformación para una empresa de generación de energía con un enfoque de sostenibilidad, competitividad, productividad y de responsabilidad por el medio ambiente, caso de estudio central hidroeléctrica San Carlosspa
dc.relation.referencesSerrano-Canalejo, C., Sarrias-Mena, R., Garcia-Trivino, P., & Fernandez-Ramirez, L. M. (2019). Energy management system design and economic feasibility evaluation for a hybrid wind power/pumped hydroelectric power plant. IEEE Latin America Transactions, 17(10), 1686–1693. https://doi.org/10.1109/TLA.2019.8986447spa
dc.relation.referencesSiemens energy. (2015). Kick-off for world’s largest electrolysis system in Mainz.spa
dc.relation.referencesSilvério, N. M., Barros, R. M., Tiago Filho, G. L., Redón-Santafé, M., Santos, I. F. S. D., & Valério, V. E. D. M. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, 339–349. https://doi.org/10.1016/j.enconman.2018.05.095spa
dc.relation.referencesStiubiener, U., Carneiro da Silva, T., Trigoso, F. B. M., Benedito, R. D. S., & Teixeira, J. C. (2020). PV power generation on hydro dam’s reservoirs in Brazil: A way to improve operational flexibility. Renewable Energy, 150, 765–776. https://doi.org/10.1016/j.renene.2020.01.003spa
dc.relation.referencesSu, C., Cheng, C., Wang, P., Shen, J., & Wu, X. (2019). Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants. Applied Energy, 242, 285–293. https://doi.org/10.1016/j.apenergy.2019.03.080spa
dc.relation.referencesSupergrid Institute, & INESC TEC. (2020). The Hydropower Extending Power System Flexibility (XFLEX HYDRO) project D11.1-Common Methodology to Assess Cost of Hydroelectric Flexible Technologiesspa
dc.relation.referencesTimmons, D., Elahee, K., & Lin, M. (2020). Microeconomics of electrical energy storage in a fully renewable electricity system. Solar Energy, 206, 171–180. https://doi.org/10.1016/j.solener.2020.05.057spa
dc.relation.referencesUPME. (2016). Invierta y gane con energía: guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014.spa
dc.relation.referencesUPME. (2019a). Informe sobre la realización del subasta CLPE No. 02-2019.spa
dc.relation.referencesUPME. (2019b). Plan de expansión de referencia generación-transmisión 2020 – 2034.spa
dc.relation.referencesUPME. (2019c). Plan de expansión de referencia generación - transmisión 2020 - 2034 - Volumen 2. Generación. http://www.siel.gov.co/Inicio/Generación/PlanesdeExpansiónGeneraciónTransmisión/tabid/111/Default.aspxspa
dc.relation.referencesUPME. (2019d). Pliego de términos y condiciones específicas - subasta CLPE No. 02-2019.spa
dc.relation.referencesUPME. (2020). Plan energético nacional 2020-2050.spa
dc.relation.referencesUPME. (2022a). SIEL.spa
dc.relation.referencesUPME. (2022b). Capacidad acumulada de proyectos vigentes. https://app.powerbi.com/view?r=eyJrIjoiODRjNWM2NmEtZDI5MC00OGJhLWFmMTItYmU3NTNiMDE4MTM2IiwidCI6IjUxYzFhOGQwLTMyYmQtNDZlYi05YmRlLTkxZTZlNGU3MDRmZCJ9spa
dc.relation.referencesValente, A., Iribarren, D., Dufour, J., & Spazzafumo, G. (2015). Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy. International Journal of Hydrogen Energy, 40(46), 16660–16672. https://doi.org/10.1016/j.ijhydene.2015.09.104spa
dc.relation.referencesVargas, J., Franco, C. J., & Jimenez, M. (2021). Electricity Pricing for Renewable Markets-A Simulation Approach for the Colombian Case. IEEE Latin America Transactions, 19(12), 1995–2002. https://doi.org/10.1109/TLA.2021.9480140spa
dc.relation.referencesVeileder. (2012). Cost base for hydropower plants. https://www.yumpu.com/en/document/view/50987873/veileder-cost-base-for-hydropower-plantsspa
dc.relation.referencesViswanathan, V., Mongird, K., Franks, R., Li, X., Sprenkle, V., & Baxter, R. (2022). Grid energy storage technology cost and performance assessment.spa
dc.relation.referencesWoo, C. K., Moore, J., Schneiderman, B., Ho, T., Olson, A., Alagappan, L., Chawla, K., Toyama, N., & Zarnikau, J. (2016). Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets. Energy Policy, 92, 299–312. https://doi.org/10.1016/J.ENPOL.2016.02.023spa
dc.relation.referencesWorld Bank Group. (2019). Where Sun Meets Water: Floating Solar Handbook for practitioners. World Bank, Washington, DC. https://doi.org/10.1596/32804spa
dc.relation.referencesWürzburg, K., Labandeira, X., & Linares, P. (2013). Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria. Energy Economics, 40, S159–S171. https://doi.org/10.1016/J.ENECO.2013.09.011spa
dc.relation.referencesWu, Y. K., Chang, L. T., Hsieh, T. Y., & Jan, B. S. (2017). A review of flexibility requirement of electric generators in high wind power penetration systems. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 1890–1893. https://doi.org/10.1109/ICASI.2017.7988317spa
dc.relation.referencesWu, Y., Zhang, T., Gao, R., & Wu, C. (2021). Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid. Applied Energy, 287. https://doi.org/10.1016/j.apenergy.2021.116562spa
dc.relation.referencesXM. (2017). Informe Integral de Gestión Sostenible 2017.spa
dc.relation.referencesXM. (2019a). Reporte integral de sostenibilidad, operación y mercado 2019.spa
dc.relation.referencesXM. (2019b). Resultados generales subasta OEF 2022-2023.spa
dc.relation.referencesXM. (2021a). Informe regulatorio nueva subasta CLPE - 2021.spa
dc.relation.referencesXM. (2021b). Pliego y bases de condiciones específicas de la subasta CLPE No. 03-2021.spa
dc.relation.referencesXM. (2021c). Reporte integral de sostenibilidad, operación y mercado 2021. https://informeanual.xm.com.co/informe/pages/home.htmlspa
dc.relation.referencesXM. (2022a). Análisis energético de largo plazo MPODE - Resultado de estudios. https://www.xm.com.co/operaci%C3%B3n/planeaci%C3%B3n/planeaci%C3%B3n-largo-plazo/an%C3%A1lisis-energ%C3%A9tico-de-largo-plazo-mpode-resultado-de-estudiosspa
dc.relation.referencesXM. (2022b). Capacidad efectiva por tipo de generación.spa
dc.relation.referencesXM. (2022c). Flexibilidad: elemento clave para la transformación del sistema. https://www.foroxm.com.co/files/memories/03-JUAN-ZAPATA-FOROXM.pdfspa
dc.relation.referencesXM. (2022d). Reporte integral de sostenibilidad, operación y mercado 2022. https://informeanual.xm.com.co/12-capacidad-efectiva-neta-cen/index.htmlspa
dc.relation.referencesXM. (2022e). Resultados estudio de flexibilidad 2024-2027. https://stdrupal01.blob.core.windows.net/temporalportalxm/Flexibilidad_2022_12964.pdf?sig=t2DmiJu3gMQdKEUK7hpUw9vGT5cFAtPr4hYU8Rbxy3U%3D&st=2022-12-30T20%3A12%3A25Z&se=2022-12-30T20%3A14%3A25Z&sv=2019-02-02&sp=r&sr=cspa
dc.relation.referencesXM. (2022f). Volumen embalsesspa
dc.relation.referencesXM. (2022g). Sinergox. https://sinergox.xm.com.co/Paginas/Home.aspxspa
dc.relation.referencesXu, X., Hu, W., Cao, D., Huang, Q., Chen, C., & Chen, Z. (2020). Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system. Renewable Energy, 147, 1418–1431. https://doi.org/10.1016/j.renene.2019.09.099spa
dc.relation.referencesYodwong, B., Guilbert, D., Phattanasak, M., Kaewmanee, W., Hinaje, M., & Vitale, G. (2020). AC-DC Converters for electrolyzer applications: state of the art and future challenges. Electronics, 9(6), 912. https://doi.org/10.3390/ELECTRONICS9060912spa
dc.relation.referencesZapata, S., Castaneda, M., Aristizabal, A. J., & Dyner, I. (2022). Renewables for supporting supply adequacy in Colombia. Energy, 239. https://doi.org/10.1016/j.energy.2021.122157spa
dc.relation.referencesZhou, Y., Chang, F.-J., Chang, L.-C., Lee, W.-D., Huang, A., Xu, C.-Y., & Guo, S. (2020). An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies. Applied Energy, 275. https://doi.org/10.1016/j.apenergy.2020.115389spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembRecursos energéticos renovablesspa
dc.subject.lembRenewable energy sourceseng
dc.subject.lembCentrales hidroeléctricas - Colombiaspa
dc.subject.proposalHidroelectricidad,spa
dc.subject.proposalGeneración renovablespa
dc.subject.proposalNuevos de negociosspa
dc.subject.proposalMercado eléctricospa
dc.subject.proposalHydroelectricity,eng
dc.subject.proposalRenewable generationeng
dc.subject.proposalNew businesseng
dc.subject.proposalElectricity marketeng
dc.titleOportunidades de negocio para las hidroeléctricas en el contexto de alta penetración de renovables no convencionalesspa
dc.title.translatedBusiness opportunities for hydroelectric plants in the context of high penetration of non-conventional renewableseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
98772583.2023.pdf
Tamaño:
6.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: