Evaluación del aporte de fuentes de emisión a la contaminación del aire por material particulado en la zona urbana de Manizales a partir de información de caracterización química y modelos de receptor

dc.contributor.advisorGonzález Duque, Carlos Mario
dc.contributor.advisorAristizábal Zuluaga, Beatriz Helena
dc.contributor.authorEcheverri Gutierrez, Laura Ximena
dc.contributor.researchgroupGrupo de Trabajo Académico en Ingeniería Hidráulica y Ambientalspa
dc.date.accessioned2023-08-23T18:59:11Z
dc.date.available2023-08-23T18:59:11Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractEste trabajo tuvo como objetivo identificar las principales fuentes de material particulado (PM10 y PM2.5) en la zona urbana de Manizales, a partir del análisis de información de su composición química y la aplicación del modelo receptor PMF. En el periodo comprendido entre diciembre del 2018 y junio del 2019 se recolectaron 83 muestras de concentración en aire ambiente de PM10 y PM2.5, en las estaciones de monitoreo Gobernación, Liceo y Milán del Sistema de Vigilancia de Calidad del Aire de Manizales. Los filtros obtenidos fueron analizados en convenio con la Universidad de Costa Rica para obtener una caracterización química que constó de la determinación de la concentración de metales (Be, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Pb) por espectrometría masas por plasma acoplado inductivamente; iones (fluoruro, cloruro, nitrato, sulfato) mediante cromatografía iónica; carbono orgánico (OC) y elemental (EC) a través de método NIOSH. En este trabajo se procesaron y evaluaron los datos de composición química de PM10 y PM2.5 para desarrollar una reconstrucción másica y un balance de masa, y así determinar los aportes que tuvieron los diferentes compuestos analizados a la composición de las partículas. Posteriormente, se empleó dicha información como base para la aplicación un análisis de componentes principales (PCA) y el modelo receptor matriz de factorización positiva (PMF), que permitió inferir la contribución porcentual de las diferentes fuentes a la contaminación por material particulado (PM10 y PM2.5) en la ciudad de Manizales. Las estaciones de calidad de aire de interés presentaron concentraciones de PM10 y PM2.5 por debajo de los límites máximos permitidos por la resolución 2254 del 2017. Tras aplicar el modelo de recomposición másica, las 80 muestras iniciales fueron depuradas a un total de 57 muestras procesadas y validadas, con un rango de recuperación entre el 60 y el 120%. La estación Liceo presentó las concentraciones más altas de PM10, seguida de la estación Gobernación y Milán, hallazgo consistente con el de Velasco (2015) según el cual en Liceo se registró la peor calidad de aire en Manizales debido, entre otras, al alto tráfico vehicular presente en la zona. Respecto a la caracterización química, el grupo con la mayor participación en todas las estaciones estudiadas fue la materia carbonácea, con aportes superiores al 40% a la concentración total del PM10 y PM2.5. Por su parte, la modelación de receptores permitió evidenciar la influencia sobresaliente de las fuentes antropogénicas en la contaminación del aire. Los resultados sugieren que las condiciones meteorológicas y la topografía accidentada de la capital caldense desencadenan en una afectación significativa de las fuentes cercanas al receptor, de esta manera Manizales, a pesar de tratarse de una ciudad pequeña con un área urbana reducida (~54 km2), presenta una contaminación heterogénea sectorizada, en donde las emisiones de tráfico vehicular, industriales y los aerosoles secundarios, fueron las principales fuentes de contaminación, comunes a todos los sitios de interés. (Texto tomado de la fuente)spa
dc.description.abstractIn this study the main sources of ambient particulate matter (PM10 and PM2.5) in the urban area of Manizales were proposed from the analysis of its chemical composition and the application of PMF receptor modeling. Between December 2018 and June 2019, 83 samples of ambient air concentration of PM10 and PM2.5 were collected at the Gobernación, Liceo and Milán monitoring stations of Manizales Air Quality Network. The filters were analyzed in collaboration with the Universidad de Costa Rica to obtain a chemical characterization, which included the determination of metal concentrations (Be, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Pb) by inductively coupled plasma mass spectrometry; ions (fluoride, chloride, nitrate, sulfate) by ion chromatography; organic carbon (OC) and elemental carbon (EC) by NIOSH method. The chemical composition data of PM10 and PM2.5 were processed and analyzed to develop a mass reconstruction and mass balance, and to determine the contributions of the different analyzed compounds to particle composition. Subsequently, this information was used as a basis for applying a principal component analysis and a PMF receptor model for inferring the percentage contribution of different sources to the particulate matter pollution (PM10 and PM2.5) in the city of Manizales. The air quality stations of interest showed concentrations of PM10 and PM2.5 below the maximum limits reported by Resolution 2254 of 2017. After applying the mass reconstruction model, the initial 80 samples were refined to a total of 57 processed and validated samples, with a recovery range between 60% and 120%. Liceo station presented the highest concentrations of PM10, followed by Gobernación and Milán station, result consistent with that reported of Velasco (2015), which showed that Liceo sector had the worst air quality in Manizales, due in part to high vehicular traffic in the area. Regarding the chemical characterization, the group with the highest contribution in all studied stations, was carbonaceous matter, with contributions exceeding 50% to the total concentration of PM10 and PM2.5. On the other hand, receptor modeling allowed for the outstanding influence of anthropogenic sources on air pollution to be evidenced. The results suggest that meteorological conditions and the steep topography of Manizales trigger significant impacts from sources close to the receptor. Therefore, despite being a small city with a reduced urban area (~54 km2), Manizales exhibits sectorized and heterogeneous pollution, where traffic, industrial emissions, and secondary aerosols were common sources in all the stations of interest.eng
dc.description.curricularareaIndustrial, Organizaciones Y Logística.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaIngeniería Ambientalspa
dc.format.extent142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84593
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAristizábal, B., González, C. M., Trejos, E. M., Cifuentes, F., Hernández, W., Valencia, M. C., (2022). Herramientas de simulación para la gestión de calidad del aire en ciudades intermedias.spa
dc.relation.referencesAristizábal, B.., González, C. M., Trejos, E. M., Cifuentes, F., Hernández, W., Valencia, M. C., Gómez, C. D., & Díaz, V. C. (2019). Informe final Convenio Interadministrativo No 107-2018 (Issue 107).spa
dc.relation.referencesBauce, V. (2012). Identificação das fontes de Material Particulado Fino (MP2,5) de Porto Alegre Dissertação. Universidade de São Paulo Instituto.spa
dc.relation.referencesBorrás, E. (2013). Caracterización de material particulado atmosférico generado en reactores fotoquímicos y procedente de muestras ambientales. Universitat Politécnica de Valencia.spa
dc.relation.referencesCamilleri, R., Vella, A., Harrison, R., & Aquilina, N. (2022). Source apportionment of indoor PM2.5 at a residential urban background site in Malta. Atmospheric Environment, 278(April), 119093. https://doi.org/10.1016/j.atmosenv.2022.119093spa
dc.relation.referencesCarnielli, C. (2009). Avaliação do uso de diferentes Modelos Receptores com dados de PM2.5: Balanço Químico de Massa (BQM) e Fatoração de Matriz Positiva (FMP). Universidade Federal do Espírito Santo.spa
dc.relation.referencesChofre, C. (2017). Caracterización química y distribución de iones inorgánicos e hidrocarburos en el material particulado atmosférico del sureste español. Universitas Miguel Hernández.spa
dc.relation.referencesChow, J. (1995). Measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air and Waste Management Association, 45(5), 320–382. https://doi.org/10.1080/10473289.1995.10467369spa
dc.relation.referencesChow, J., Lowenthal, D., Chen, L. A., Wang, X., & Watson, J. (2015). Mass reconstruction methods for PM2.5: a review. Air Quality, Atmosphere and Health, 8(3), 243–263. https://doi.org/10.1007/s11869-015-0338-3spa
dc.relation.referencesCiani, R. (2016). Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis. Universidade de São Paulo.spa
dc.relation.referencesCórdoba, M. F. (2019). Caracterización del aerosol atmosférico en la peninsula de Yucatán y su potencial influencia en los patrones de precipitación regionales.spa
dc.relation.referencesCORPOCALDAS, & IDEA. (2018). Aplicación de herramientas de simulación atmosférica en el estudio de la calidad del aire en Manizales - Convenio interadministrativo No 107-2018.spa
dc.relation.referencesCropper, P. M., Bhardwaj, N., Overson, D. K., Hansen, J. C., Eatough, D. J., Cary, R. A., Kuprov, R., & Baasandorj, M. (2019). Source apportionment analysis of winter (2016) Neil Armstrong academy data (West Valley city, Utah). Atmospheric Environment, 2016, 116971. https://doi.org/10.1016/j.atmosenv.2019.116971spa
dc.relation.referencesCuesta, A. P. (2017). Estudio del impacto de las emisiones antropogénicas y geogénicas de dióxido de azufre, en la calidad del aire de Manizales. Universidad Nacional de Colombia.spa
dc.relation.referencesDANE. (2020). Proyecciones de población municipal para el periodo 2018 – 2035 con base en el CNPV 2018.spa
dc.relation.referencesDe la Cruz Eiriz, M. T. (2008). Estudio de los componentes orgánicos e inorgánicos de la PM10 en la ciudad de Zaragoza. Aplicación de modelos de receptor. 1–9.spa
dc.relation.referencesDe Miranda, R. M., Andrade, M. D. F., Dutra, F. N., Mendonça, K. J., & Perez, P. J. (2018). Source apportionment of fine particulate matter by positive matrix factorization in the Metropolitan Area of São Paulo, Brazil. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.08.100spa
dc.relation.referencesDepartamento Nacional de Planeación. (2017). Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones. https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradación-ambiental-en-Colombia-ascienden-a-$20,7-billones-.aspxspa
dc.relation.referencesDíaz, V. C. (2019). Evaluación de los compuestos orgánicos volátiles (COV) biogénicos y antropogénicos del municipio de Manizales.spa
dc.relation.referencesDong, D., Qiu, T., Du, S., Gu, Y., Li, A., Hua, X., Ning, Y., & Liang, D. (2023). The chemical characterization and source apportionment of PM2.5 and PM10 in a typical city of Northeast China. Urban Climate, 47. https://doi.org/10.1016/j.uclim.2022.101373spa
dc.relation.referencesDoria, C., & Fagundo, J. (2016). Caracterización química de material particulado PM10 en la atmósfera de La Guajira. Revista Colombiana de Química, 45(2), 19–29.spa
dc.relation.referencesEsmaeilirad, S., Lai, A., Abbaszade, G., Schnelle-kreis, J., Zimmermann, R., Uzu, G., Daellenbach, K., Canonaco, F., Hassankhany, H., Arhami, M., Baltensperger, U., Prévôt, A. S. H., Schauer, J. J., Jaffrezo, J.-L., Hosseini, V., & Haddad, I. El. (2019). Source Apportionment of Fine Particulate Matter in a Middle Eastern Metropolis, Tehran-Iran, Using PMF with Organic and Inorganic Markers. Science of the Total Environment, 135330. https://doi.org/10.1016/j.scitotenv.2019.135330spa
dc.relation.referencesFranco, D. A. (2020). Análisis y caracterización del material particulado PM10 y PM2.5 en la ciudad de Manizales. 140. https://repositorio.unal.edu.co/handle/unal/79214spa
dc.relation.referencesGil, J. (2020). Modelo de calidad del agua de un río mediante el uso combinado de análisis de componentes principales (ACP) y regresiones lineales múltiples (RLM). Caso de estudio: Cuenca del río Guarapiche, Maturín, Monagas, Venezuela. Anales Científicos, 81(1), 152. https://doi.org/10.21704/ac.v81i1.1586spa
dc.relation.referencesGómez, C. D. (2017). Desagregación espacial y temporal del inventario de emisiones por emisiones por fuentes antropogénicas para la ciudad de Manizales, Caldas.spa
dc.relation.referencesGonzález, C. M. (2012). Calidad del aire en la zona centro y oriente de la ciudad de Manizales: Influencia del Material particulado (PM10) y Lluvia ácida. Universidad Nacional de Colombia.spa
dc.relation.referencesGonzález, C. M. (2017). Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte químico online. Caso de estudio: Manizales, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesGupta, L., Bansal, M., Nandi, P., Habib, G., & Sunder Raman, R. (2023). Source apportionment and potential source regions of size-resolved particulate matter at a heavily polluted industrial city in the Indo-Gangetic Plain. Atmospheric Environment, 298. https://doi.org/10.1016/j.atmosenv.2023.119614spa
dc.relation.referencesHenry, R. (2003). Multivariate receptor modeling by N -dimensional edge detection. Chemometrics and Intelligent Laboratory Systems, 65, 179–189.spa
dc.relation.referencesHerrera, J., Rojas, J., Beita, V., Rodríguez, A., Solórzano, D., & Argüello, H. (2014). Concentración y composición química de partículas PM10 en el área metropolitana de Costa Rica en 2012. Revista de Ciencias Ambientales, 1(48), 39–53. https://doi.org/10.15359/rca.48-2.4spa
dc.relation.referencesHerrera, J., Rodriguez Roman, S., Rojas Marin, J. F., Campos Ramos, A., Blanco Jimenez, S., Cardenas Gonzalez, B., & Gibson Baumgardner, D. (2013). Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4(2), 181–190. https://doi.org/10.5094/APR.2013.018spa
dc.relation.referencesHoinaski, L. (2010). Avaliação de métodos de identificação de fontes emissoras de material particulado inalável (MP10). Universidade Federal de Santa Catarina Centro Tecnológico.spa
dc.relation.referencesHopke, P. (2016). A Review of Receptor Modeling Methods for Source Apportionment. Journal of the Air & Waste Management Association, January. https://doi.org/10.1080/10962247.2016.1140693spa
dc.relation.referencesIDEAM. (2016). Informe del estado de la calidad del aire en Colombia 2016.spa
dc.relation.referencesIDEAM. (2018). Informe del estado de la Calidad del Aire en Colombia 2018. 305.spa
dc.relation.referencesInstituto de Estudios Ambientales - IDEA - Universidad Nacional de Colombia Sede Manizales, & CORPOCALDAS. (2021). Boletín calidad del aire Manizales año 2021. 0–38.spa
dc.relation.referencesInstituto de Estudios Ambientales - IDEA - Universidad Nacional de Colombia Sede Manizales, & CORPOCALDAS. (2022). Boletín ambiental 188 Diez años de monitoreo de calidad del aire en Manizales.spa
dc.relation.referencesIQAir. (2022). World air quality report 2021. Paper Knowledge. Toward a Media History of Documents, 43.spa
dc.relation.referencesJain, S., Sharma, S. K., Mandal, T. K., & Saxena, M. (2018). Particuology Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology, 37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009spa
dc.relation.referencesJain, S., Sharma, S. K., Srivastava, M. K., Chatterjee, A., Vijayan, N., Tripathy, S. S., Kumari, K. M., Mandal, T. K., & Sharma, C. (2021). Chemical characterization, source apportionment and transport pathways of PM2.5 and PM10 over Indo Gangetic Plain of India. Urban Climate, 36. https://doi.org/10.1016/j.uclim.2021.100805spa
dc.relation.referencesJain, S., Sharma, S. K., Vijayan, N., & Mandal, T. K. (2020). Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four-year study over Delhi, India. Environmental Pollution, 262. https://doi.org/10.1016/j.envpol.2020.114337spa
dc.relation.referencesJaved, W., & Guo, B. (2021). Chemical characterization and source apportionment of fine and coarse atmospheric particulate matter in Doha, Qatar. Atmospheric Pollution Research, 12(2), 122–136. https://doi.org/10.1016/j.apr.2020.10.015spa
dc.relation.referencesJiang, N., Yin, S., Guo, Y., Li, J., Kang, P., Zhang, R., & Tang, X. (2018). Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China. Atmospheric Pollution Research, 9(2), 309–321. https://doi.org/10.1016/j.apr.2017.07.005spa
dc.relation.referencesJiang, P., Yang, J., Huang, C., & Liu, H. (2018). The contribution of socioeconomic factors to PM2.5 pollution in urban China. Environmental Pollution, 233(x), 977–985. https://doi.org/10.1016/j.envpol.2017.09.090spa
dc.relation.referencesKong, L., Tan, Q., Feng, M., Qu, Y., An, J., Liu, X., Cheng, N., Deng, Y., Zhai, R., & Wang, Z. (2020). Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere, 243. https://doi.org/10.1016/j.chemosphere.2019.125267spa
dc.relation.referencesKuang, B., Zhang, F., Shen, J., Shen, Y., Qu, F., Jin, L., Tang, Q., Tian, X., & Wang, Z. (2022). Chemical characterization, formation mechanisms and source apportionment of PM2.5 in north Zhejiang Province: The importance of secondary formation and vehicle emission. Science of the Total Environment, 851. https://doi.org/10.1016/j.scitotenv.2022.158206spa
dc.relation.referencesLi, H., Wang, Q., Yang, M., Li, F., Wang, J., Sun, Y., Wang, C., Wu, H., & Qian, X. (2016). Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmospheric Research, 181, 288–299. https://doi.org/10.1016/j.atmosres.2016.07.005spa
dc.relation.referencesLi, J. A. (2017). Estimación de un inventario de emisiones de Compuestos Orgánicos Volátiles generados por fuentes biogénicas para el Departamento de Caldas.spa
dc.relation.referencesLiang, C.-S., Yue, D., Wu, H., Shi, J.-S., & He, K.-B. (2021). Source apportionment of atmospheric particle number concentrations with wide size range by nonnegative matrix factorization (NMF). Environmental Pollution, 289, 117846.spa
dc.relation.referencesMADS. (2017). Resolución 2254 de 2017. Ministerio de Ambiente y Desarrollo Sostenible.spa
dc.relation.referencesManizales cómo vamos. (2019). Informe de calidad de vida Manizales.spa
dc.relation.referencesManizales cómo vamos. (2021). Informe de calidad de vida Manizales.spa
dc.relation.referencesManizales, I. de E. A. de la U. N. de C. S., & CORPOCALDAS. (2019). Boletín calidad del aire en Manizales periodo enero - marzo de 2019. 1–16.spa
dc.relation.referencesMéndez, C., & Rondón, M. A. (2012). Metodología de Investigación: Introducción al Análisis factorial exploratorio. Revista Colombiana de Psquiatría, 41(1), 197–207.spa
dc.relation.referencesMiller, A. J., Raduma, D. M., George, L. A., & Fry, J. L. (2019). Source apportionment of trace elements and black carbon in an urban industrial area (Portland, Oregon). Atmospheric Pollution Research, 10(3), 784–794. https://doi.org/10.1016/j.apr.2018.12.006spa
dc.relation.referencesMorales, M. (2018). Contribución de fuentes particulares a Material Particulado en el corregimiento la Loma, Zona Minera del Cesar.spa
dc.relation.referencesNuñez, Y. (2019). Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.spa
dc.relation.referencesOgulei, D., Hopke, P., Zhou, L., Pancras, J. P., Nair, N., & Ondov, J. (2006). Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. 40, 396–410. https://doi.org/10.1016/j.atmosenv.2005.11.075spa
dc.relation.referencesOjeda, E. (2006). Avaliação das fontes de emissão de material particulado na atmosfera da cidade de Cuiabá.spa
dc.relation.referencesOpenAI (2021) ChatGTP, Modelo de lenguaje de IAspa
dc.relation.referencesPaatero, P., & Tappert, U. (1994). Positive matrix factorization: A Non-Negative Factor Model with optimal utilization of error estimates of data values. ENVIRONMETRICS, 5(April 1993), 111–126.spa
dc.relation.referencesPandolfi, M., Mooibroek, D., Hopke, P., Pinxteren, D. Van, Querol, X., Herrmann, H., Alastuey, A., Favez, O., Hüglin, C., Perdrix, E., Riffault, V., Sauvage, S., Van der Swaluw, E., Tarasova, O., & Colette, A. (2020). Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites? 409–429.spa
dc.relation.referencesPark, J., Kim, H., Kim, Y., Heo, J., Kim, S. W., Jeon, K., Yi, S. M., & Hopke, P. K. (2022). Source apportionment of PM2.5 in Seoul, South Korea and Beijing, China using dispersion normalized PMF. Science of the Total Environment, 833. https://doi.org/10.1016/j.scitotenv.2022.155056spa
dc.relation.referencesPindado, O., Pérez, R., & García, S. (2013). Desarrollo del Modelo de Factorización de la Matriz Positiva (PMF) al Estudio Anual de la Composición Orgánica del PM2.5 en Chapinería. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 64.spa
dc.relation.referencesPolice, S., Sahu, S. K., & Pandit, G. G. (2016). Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmospheric Pollution Research, 7(4), 725–733. https://doi.org/10.1016/j.apr.2016.03.007spa
dc.relation.referencesPréndez, M., Corvalán, R. M., & Cisternas, M. (2007). Estudio preliminar del material particulado de fuentes estacionarias: Aplicación al sistema de compensación de emisiones en la región metropolitana, Chile. Informacion Tecnologica, 18(2), 93–103. https://doi.org/10.4067/s0718-07642007000200015spa
dc.relation.referencesQuijano, A., Quijano, M. J., & Henao, J. A. (2010). Caracterización fisicoquímica del material particuladofracción respirable PM2.5 en Pamplona-Norte de Santander-Colombia. Bistua: Revista de La Facultad de Ciencias Básicas, 8.spa
dc.relation.referencesRamírez, M. C. (2019). Influencia del polvo mineral y la quema de biomasa en la formación en la formación de nubes mixtas en la Península de Yucatán (p. 178).spa
dc.relation.referencesRamírez, O., Sánchez, A. M., Campa, D., Sánchez-rodas, D., & De, J. D. (2020). Science of the Total Environment Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Science of the Total Environment, 710, 136344. https://doi.org/10.1016/j.scitotenv.2019.136344spa
dc.relation.referencesRamírez, O., Sánchez de la Campa, A. M., Amato, F., Catacolí, R. A., Rojas, N. Y., & De la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045spa
dc.relation.referencesReff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using Positive Matrix Factorization: Review of existing methods. Journal of the Air and Waste Management Association. https://doi.org/10.1080/10473289.2007.10465319spa
dc.relation.referencesRodríguez, D. (n.d.). Composición iónica del material particulado atmosférico.spa
dc.relation.referencesRodriguez, V. (2003). Material particulado atmosférico en el Norte y Este de la Península Ibérica y Canarias. 1–26.spa
dc.relation.referencesRojano, R. E. (2017). Determinación del aporte de fuentes a la contaminación del aire por material particulado en el área Minera del Cerrejón (La Guajira, Colombia) a través del modelo de receptor CMB.spa
dc.relation.referencesRomán, G. (2017). Los valores perdidos en el muestreo de poblaciones finitas. Técnicas de imputación. Universidade de Santiago de Compostela.spa
dc.relation.referencesSánchez, A. (2012). Análisis de componentes principales: versiones dispersas y robustas al ruido impulsivo.spa
dc.relation.referencesSchwarz, J., Pokorná, P., Rychlík, Š., Škáchová, H., Vlček, O., Smolík, J., Ždímal, V., & Hůnová, I. (2019). Science of the Total Environment Assessment of air pollution origin based on year-long parallel measurement of PM2.5 and PM10 at two suburban sites in Prague, Czech Republic. Science of the Total Environment Journal, 664, 1107–1116. https://doi.org/10.1016/j.scitotenv.2019.01.426spa
dc.relation.referencesSecretaría de Medio Ambiente y Recursos Naturales, & Instituto Nacional de Ecología. (2011). Qué son, cómo son y cómo se originan las partículas. 13–32.spa
dc.relation.referencesServicio Geológico Colombiano. (2020a). Informe técnico – operativo de la actividad volcánica. In Segmento Volcánico Norte de Colombia - agosto 2020.spa
dc.relation.referenceservicio Geológico Colombiano. (2020b). Generalidades. https://www2.sgc.gov.co/sgc/volcanes/VolcanNevadoRuiz/Paginas/generalidades-volcan-nevado-ruiz.aspxspa
dc.relation.referencesServicio Geológico Colombiano. (2023). Boletín informativo. www.sgc.gov.cospa
dc.relation.referencesSilva, E., Costa, N., Lima, A. T., Stuetz, R. M., D’Azeredo, M. T., & Santos, J. M. (2019). Science of the Total Environment Use of inorganic and organic markers associated with their directionality for the apportionment of highly correlated sources of particulate matter. Science of the Total Environment, 651, 1332–1343. https://doi.org/10.1016/j.scitotenv.2018.09.263spa
dc.relation.referencesTrejos, E. (2021). Estimación de emisiones atmosféricas por fuentes móviles en ruta aplicando la metodología COPERT y determinación de las emisiones de material particulado resuspendido con información local (Manizales – año base 2017). Angewandte Chemie International Edition, 6(11), 951–952., 1–158.spa
dc.relation.referencesTurpin, B. J., & Lim, H.-J. (2001). Aerosol Science and Technology Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Science and Technology, 35:1(September 2014), 37–41.spa
dc.relation.referencesUniversidad Nacional de Colombia Sede Manizales, & CORPOCALDAS. (2014). Componente Inventario de Emisiones por Fuentes Fijas Puntuales. Año base 2014. 104.spa
dc.relation.referencesUS Environmental Protection Agency. (2014). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Research and Development.spa
dc.relation.referencesUS Environmental Protection Agency. (2022). Conceptos básicos sobre el material particulado (PM, por sus siglas en inglés). https://espanol.epa.gov/espanol/conceptos-basicos-sobre-el-material-particulado-pm-por-sus-siglas-en-inglesspa
dc.relation.referencesVargas, F., & Rojas, N. (2010). Chemical composition and mass closure for airborne particulate matter in bogotá. Ingenieria e Investigacion, 30(2), 105–115.spa
dc.relation.referencesVargas, F., Rojas, N., Pachon, J., & Russell, A. (2012). PM10 characterization and source apportionment at two residential areas in Bogotá. Atmospheric Pollution Research, 3(1), 72–80. https://doi.org/10.5094/APR.2012.006spa
dc.relation.referencesVelasco, M. (2005). La calidad del aire asociado con metales pesados en la ciudad de Manizales.spa
dc.relation.referencesVelasco, M. (2015). Evaluación de la concentración y caracterización preliminar del PM10 en la ciudad de Manizales.spa
dc.relation.referencesVillalobos, A., Barraza, F., Jorquera, H., & Schauer, J. (2017). Wood burning pollution in southern Chile: PM2.5 source apportionment using CMB and molecular markers. Environmental Pollution, 2009. https://doi.org/10.1016/j.envpol.2017.02.069spa
dc.relation.referencesVillamil, F. A. (2018). Atribución de fuentes de contaminación al material particulado PM2.5 de Cundinamarca.spa
dc.relation.referencesVillegas, N., & Parra, D. M. (2017). Análisis preliminar de la caracterización y contribución de fuentes de material particulado -PM10 en el aire ambiente de Bogotá. 113.spa
dc.relation.referencesWang, Q., Huang, X. H. H., Tam, F. C. V., Zhang, X., Liu, K. M., Yeung, C., Feng, Y., Cheng, Y. Y., Wong, Y. K., Ng, W. M., Wu, C., Zhang, Q., Zhang, T., Lau, N. T., Yuan, Z., Lau, A. K. H., & Yu, J. Z. (2019). Source apportionment of fine particulate matter in Macao, China with and without organic tracers: A comparative study using positive matrix factorization. Atmospheric Environment, 198, 183–193. https://doi.org/10.1016/j.atmosenv.2018.10.057spa
dc.relation.referencesWatson, J., & Chow, J. (2015). Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources.spa
dc.relation.referencesWiseman, C., Levesque, C., & Rasmussen, P. (2021). Science of the Total Environment Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Science of the Total Environment, 786, 147467. https://doi.org/10.1016/j.scitotenv.2021.147467spa
dc.relation.referencesWorld Health Organization. (2021). WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.spa
dc.relation.referencesXing, Z., Xiong, Y., & Du, K. (2020). Source apportionment of airborne particulate matters over the Athabasca oil sands region: Inter-comparison between PMF modeling and ground-based remote sensing. Atmospheric Environment, 221. https://doi.org/10.1016/j.atmosenv.2019.117103spa
dc.relation.referencesXu, B., Xu, H., Zhao, H., Gao, J., Liang, D., Li, Y., Wang, W., Feng, Y., & Shi, G. (2023). Source apportionment of fine particulate matter at a megacity in China, using an improved regularization supervised PMF model. Science of the Total Environment, 879. https://doi.org/10.1016/j.scitotenv.2023.163198spa
dc.relation.referencesYatkin, S., & Bayram, A. (2008). Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of the Total Environment, 390(1), 109–123. https://doi.org/10.1016/j.scitotenv.2007.08.059spa
dc.relation.referencesZapata, C. (2020). Hidrocarburos Aromáticos Policíclicos en el Aire Ambiente de Manizales. 102.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalMaterial particulado (PM10 y PM2.5)spa
dc.subject.proposalCaracterización químicaspa
dc.subject.proposalModelo receptorspa
dc.subject.proposalPMFspa
dc.subject.proposalCalidad del airespa
dc.subject.proposalParticulate matter (PM10 and PM2.5)eng
dc.subject.proposalChemical characterizationspa
dc.subject.proposalReceptor modeleng
dc.subject.proposalAir qualityeng
dc.subject.unescoTecnología químicaspa
dc.subject.unescoChemical technologyeng
dc.titleEvaluación del aporte de fuentes de emisión a la contaminación del aire por material particulado en la zona urbana de Manizales a partir de información de caracterización química y modelos de receptorspa
dc.title.translatedEvaluation of the contribution of emission sources to particulate matter air pollution in the urban area of Manizales based on chemical characterization information and receptor modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameDirección de Investigaciones de Manizales, DIMAspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121215082.2023.pdf
Tamaño:
2.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: