Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico

dc.contributor.advisorCortés Rodríguez, Carlos Juliospa
dc.contributor.advisorRodríguez Montaño, Óscar Libardospa
dc.contributor.authorAlarcón Castiblanco, Juan Davidspa
dc.contributor.orcidAlarcón-Castiblanco, Juan David [0000-0001-8506-0130]spa
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2023-01-17T19:41:24Z
dc.date.available2023-01-17T19:41:24Z
dc.date.issued2022-12-12
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl ojo, como órgano de la visión, tiene en su interior tejidos nerviosos muy frágiles que, al ser dañados, pueden derivar en trastornos graves en la visión. Dada la imposibilidad de realizar ensayos invasivos sobre estos tejidos, se ha acudido en los últimos años a la modelación en computador y la simulación usando métodos numéricos. Distintos autores han estudiado la influencia de una elevada presión intraocular como principal determinador mecánico que podría dañar estos tejidos. Sin embargo, existen otros factores que podrían afectar estos tejidos, como los movimientos oculares, en los que se profundiza en este trabajo. Se compara la influencia que tienen estos movimientos con respecto a la que ejerce la presión intraocular (PIO), usando un modelo tridimensional ajustado a la anatomía, y los elementos finitos. Se obtuvo como resultado que, en el movimiento de abducción para el tejido nervioso prelaminar y la retina peripapilar, el valor de la deformación principal máxima y mínima se duplica, si se compara con los valores normales (PIO 15 mmHg). Asimismo, para el tejido nervioso preliminar el valor de esfuerzo y deformación tangencial en el plano del movimiento es noventa veces mayor con respecto al estado normal, y en la lámina cribosa este valor es 18 veces mayor. (Texto tomado de la fuente).spa
dc.description.abstractThe eye, as the vision organ, contains fragile nervous tissues, and if they get injured, it could generate serious troubles in the vision. Considering the impossibility to carry on test on these tissues, the modelling and studies on computer using numercial methods have emerged in the last years as an alternative. In this work we explore the influence of the eye movements on the optic nerve head biomechanics. We compare the impact these movements of the eye have regarding the one that have the intraocular pression (IOP), using an anatomical-fitting tridimensional model of the eye and a finite element software. We get that the maximum and minimum principal deformation increase two times when we have an 12° abduction movement, compared with the normal state (IOP 15 mmHg) in the prelaminar neural tissue and the peripapillary retina; and we have ninety times the value of shear stress and strain on the movement plane, making the same comparission, regarding the prelaminar neural tissue; and in the lamina cribosa this value is eighteen times greater.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaBiomecánica computacionalspa
dc.format.extent57 páginas, vispa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82989
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.indexedBiremespa
dc.relation.referencesAyyalasomayajula, A., Park, R. I., Simon, B. R., and Vande Geest, J. P. (2015). A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics. Computer Methods in Biomechanics and Biomedical Engineering, 5842(November):1–12.spa
dc.relation.referencesBand, L. R., Hall, C. L., Richardson, G., Jensen, O. E., Siggers, J. H., and Foss, A. J. E. (2009). Intracellular Flow in Optic Nerve Axons: A Mechanism for Cell Death in Glaucoma. Investigative Opthalmology & Visual Science, 50(8):3750.spa
dc.relation.referencesBellezza, A. J., Hart, R. T., and Burgoyne, C. F. (2000). The optic nerve head as a biomechanical structure: Initial finite element modeling. Investigative Ophthalmology and Visual Science, 41(10):2991–3000.spa
dc.relation.referencesBerdahl, J. P., Allingham, R. R., and Johnson, D. H. (2008). Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology, 115(5):763–8.spa
dc.relation.referencesBurgoyne, C. F., Crawford Downs, J., Bellezza, A. J., Francis Suh, J. K., and Hart, R. T. (2005). The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage.spa
dc.relation.referencesCampbell, I. C., Coudrillier, B., and Ross Ethier, C. (2014). Biomechanics of the Posterior Eye: A Critical Role in Health and Disease. Journal of Biomechanical Engineering, 136(2):021005.spa
dc.relation.referencesChen, K., Rowley, A. P., Weiland, J. D., and Humayun, M. S. (2014). Elastic properties of human posterior eye. Journal of biomedical materials research. Part A, 102(6):2001– 7.spa
dc.relation.referencesChen, K. and Weiland, J. D. (2011). Mechanical properties of orbital fat and its encapsulating connective tissue. Journal of biomechanical engineering, 133(6):064505.spa
dc.relation.referencesDechow, P. C., Nail, G. A., Schwartz-Dabney, C. L., and Ashman, R. B. (1993). Elastic properties of human supraorbital and mandibular bone. American Journal of Physical Anthropology, 90(3):291–306.spa
dc.relation.referencesDemer, J. L., Clark, R. A., Suh, S. Y., Giaconi, J. A., Nouri-Mahdavi, K., Law, S. K., Bonelli, L., Coleman, A. L., and Caprioli, J. (2020). Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Current Eye Research, 45(2):199–210.spa
dc.relation.referencesDongqi, H. and Zeqin, R. (1999). A biomathematical model for pressuredependent lamina cribrosa behavior. Journal of Biomechanics, 32(6):579–584.spa
dc.relation.referencesDowns, J. C., Roberts, M. D., and Burgoyne, C. F. (2008). The Mechanical Environment of the Optic Nerve Head in Glaucoma. Optom Vis Sci, 85(6):425–435.spa
dc.relation.referencesDowns, J. C., Roberts, M. D., Hart, R. T., and Burgoyne, C. F. (2009). Multiscale Finite Element Modeling of the Lamina Cribrosa Microarchitecture in the Eye. In Conf Proc IEEE Eng Med Biol Soc., number I, pages 4277–4280.spa
dc.relation.referencesFeola, A. J., Myers, J. G., Raykin, J., Mulugeta, L., Nelson, E. S., Samuels, B. C., and Ethier, C. R. (2016). Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Investigative ophthalmology & visual science, 57(4):1901–11.spa
dc.relation.referencesGirard, M. J. A., Downs, J. C., Bottlang, M., Burgoyne, C. F., and Suh, J.-k. F. (2009a). Peripapillary and Posterior Scleral Mechanics, Part II – Experimental and Inverse Finite Element Characterization. Journal of Biomechanical Engineering, 131(5):1–25.spa
dc.relation.referencesGirard, M. J. A., Downs, J. C., Burgoyne, C. F., and Suh, J.-K. F. (2009b). Peripapillary and posterior scleral mechanics–part I: development of an anisotropic hyperelastic constitutive model. Journal of biomechanical engineering, 131(5):051011.spa
dc.relation.referencesGrytz, R., Krishnan, K., Whitley, R., Libertiaux, V., Sigal, I. A., Girkin, C. A., and Downs, J. C. (2020). A mesh-free approach to incorporate complex anisotropic and heterogeneous material properties into eye-specific finite element models. Computer Methods in Applied Mechanics and Engineering, 358:112654.spa
dc.relation.referencesGupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., and Kurtcuoglu, V. (2009). Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Journal of biomechanical engineering, 131(2):021010.spa
dc.relation.referencesJafari, S., Lu, Y., Park, J., and Demer, J. L. (2021). Finite element model of ocular adduction by active extraocular muscle contraction. Investigative Ophthalmology and Visual Science, 62(1):3–5.spa
dc.relation.referencesJonas, J. B., Berenshtein, E., and Holbach, L. (2003). Anatomic Relationship between Lamina Cribrosa, Intraocular Space, and Cerebrospinal Fluid Space. Investigative Opthalmology & Visual Science, 44(12):5189.spa
dc.relation.referencesKass, M. A. (1994). The ocular hypertension treatment study. Journal of Glaucoma, 3(2):97–100.spa
dc.relation.referencesKels, B. D., Grzybowski, A., and Grant-Kels, J. M. (2015). Human ocular anatomy. Clinics in Dermatology, 33(2):140–146.spa
dc.relation.referencesKiller, H. E., Laeng, H. R., Flammer, J., and Groscurth, P. (2003). Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. The British journal of ophthalmology, 87(6):777–81.spa
dc.relation.referencesKnepper, P. A. and Samples, J. R. (2016). Glaucoma Research and Clinical Advances 2016 to 2018, volume 1. Kugler Publications.spa
dc.relation.referencesLandau, L. D. and Lifshitx, E. M. (1994). Theory of elasticity. Institute of physical problems, U.S.S.R. academy of sciences.spa
dc.relation.referencesLe, A. (2020). Optic Nerve Deformation by Eye Movements. PhD thesis, UCLA.spa
dc.relation.referencesMaas, S. A., Ellis, B. J., Ateshian, G. A., and Weiss, J. A. (2012). FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering, 134(1):1–10.spa
dc.relation.referencesMackenzie,W. (1830). A Practical Treatise of the Diseases of the Eye. Longman & Company.spa
dc.relation.referencesMuñoz-Sarmiento, D. M. D., Rodríguez-Montaño, Ó. L. Ó., Alarcón-Castiblanco, J. D. J., Gamboa-Márquez, M. A. M., Corredor-Gómez, J. J. P., and Cortés- Rodríguez, C. C. J. (2019). A finite element study of posterior eye biomechanics: The influence of intraocular and cerebrospinal pressure on the optic nerve head, peripapillary region, subarachnoid space and meninges. Informatics in Medicine Unlocked, 15:100185.spa
dc.relation.referencesNorman, R. E., Flanagan, J. G., Rausch, S. M., Sigal, I. A., Tertinegg, I., Eilaghi, A., Portnoy, S., Sled, J. G., and Ethier, C. R. (2010). Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Experimental Eye Research, 90(2):277–284.spa
dc.relation.referencesNorman, R. E., Flanagan, J. G., Sigal, I. a., Rausch, S. M. K., Tertinegg, I., and Ethier, C. R. (2011). Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma. Experimental Eye Research, 93(1):4–12.spa
dc.relation.referencesQian, X., Zhang, K., and Liu, Z. (2015). A method to determine the mechanical properties of the retina based on an experiment in vivo. Bio-Medical Materials and Engineering, 26(s1):S287–S297.spa
dc.relation.referencesRogers, K., editor (2011). The Eye thephysiology of human perception. Britannica Educational Publishing, New York, NY, 1st ed edition.spa
dc.relation.referencesRosario Hernandez, M. and Pena, J. D. (1997). The optic nerve head in glaucomatous optic neuropathy. Archives of Ophthalmology, 115(3):389–395.spa
dc.relation.referencesRoss, M. and Pawlina, W. (2007). Histologia: Texto Y Atlas. Médica Panamericana.spa
dc.relation.referencesSaboori, P. and Sadegh, a. (2011). Material modeling of the head’s subarachnoid space. Scientia Iranica, 18(6):1492–1499.spa
dc.relation.referencesSalvetat, M. L., Zeppieri, M., Tosoni, C., and Brusini, P. (2016). Baseline factors predicting the risk of conversion from ocular hypertension to primary open-angle glaucoma during a 10-year follow-up. Eye (Basingstoke), 30(6):784–795.spa
dc.relation.referencesSchwaner, S. A., Feola, A. J., and Ethier, C. R. (2020). Factors affecting optic nerve head biomechanics in a rat model of glaucoma. Journal of The Royal Society Interface, 17(165):20190695.spa
dc.relation.referencesShahzad, M., Kamran, A., Siddiqui, M. Z., and Farhan, M. (2015). Mechanical characterization and FE modelling of a hyperelastic material. Materials Research, 18(5):918–924.spa
dc.relation.referencesSigal, I. A., Flanagan, J. G., and Ethier, C. R. (2005a). Factors Influencing Optic Nerve Head Biomechanics. Investigative Opthalmology & Visual Science, 46(11):4189.spa
dc.relation.referencesSigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R. (2004). Finite Element Modeling of Optic Nerve Head Biomechanics. Investigative Opthalmology & Visual Science, 45(12):4378.spa
dc.relation.referencesSigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R. (2005b). Reconstruction of human optic nerve heads for finite element modeling. Technology and health care : official journal of the European Society for Engineering and Medicine, 13(4):313–29.spa
dc.relation.referencesSmith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia Corp, United States.spa
dc.relation.referencesStamper, R. L. (1984). The effect of glaucoma on central visual function. Transactions of the American Ophthalmological Society, VOL. 82:792–826.spa
dc.relation.referencesTham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology, 121(11):2081–2090.spa
dc.relation.referencesVurgese, S., Panda-Jonas, S., and Jonas, J. B. (2012). Scleral thickness in human eyes. PloS one, 7(1):e29692.spa
dc.relation.referencesWang, X., Fisher, L. K., Milea, D., Jonas, J. B., and Girard, M. J. (2017). Predictions of optic nerve traction forces and peripapillary tissue stresses following horizontal eye movements. Investigative Ophthalmology and Visual Science, 58(4):2044–2053.spa
dc.relation.referencesWang, X., Rumpel, H., Lim, W. E. H., Baskaran, M., Perera, S. A., Nongpiur, M. E., Aung, T., Milea, D., and Girard, M. J. A. (2016). Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements. Investigative Opthalmology & Visual Science, 57(6):2452–2462.spa
dc.relation.referencesWeinreb, R. N., Aung, T., and Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma: A review. JAMA - Journal of the American Medical Association, 311(18):1901–1911.spa
dc.relation.referencesWollensak, G., Spoerl, E., and Seiler, T. (2003). Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. Journal of Cataract and Refractive Surgery, 29(9):1780–1785.spa
dc.relation.referencesWoo, S. L., Kobayashi, A. S., Lawrence, C., and Schlegel, W. A. (1972). Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Annals of Biomedical Engineering, 1(1):87–98.spa
dc.relation.referencesYeoh, O. (1997). Hyperelastic material models for finite element analysis of rubber. Journal of Natural Rubber Research, 12:142–153.spa
dc.relation.referencesZhang, L., Albon, J., Jones, H., Gouget, C. L. M., Ethier, C. R., Goh, J. C. H., and Girard, M. J. A. (2015). Collagen microstructural factors influencing optic nerve head biomechanics. Investigative ophthalmology & visual science, 56(3):2031–42.spa
dc.relation.referencesZienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method: The basis. Butterworth-Heinemann, Oxford.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.decsPresión Intraocularspa
dc.subject.decsIntraocular Pressureeng
dc.subject.decsMedidas del Movimiento Ocularspa
dc.subject.decsEye Movement Measurementseng
dc.subject.decsOptic Nerve /physiologyeng
dc.subject.decsNervio Óptico/fisiologíaspa
dc.subject.proposalBiomecánicaspa
dc.subject.proposalMovimientos ocularesspa
dc.subject.proposalNervio ópticospa
dc.subject.proposalElementos finitosspa
dc.subject.proposalOjospa
dc.subject.proposalEyeeng
dc.subject.proposalOptic nerveeng
dc.subject.proposalBiomechanicseng
dc.subject.proposalEye movementseng
dc.subject.proposalFinite element methodeng
dc.titleInfluencia de los movimientos oculares en la biomecánica de la cabeza del nervio ópticospa
dc.title.translatedInfluence of the ocular movements on the biomechanics of the optic nerve headeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032430705.2022.pdf
Tamaño:
9.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: