En 5 día(s), 23 hora(s) y 56 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Análisis exergético de la pirólisis de gas natural como estrategia de descarbonización para la producción de hidrógeno de bajas emisiones

dc.contributor.advisorMaya López, Juan Carlos
dc.contributor.advisorVelásquez Arredondo, Héctor Iván
dc.contributor.advisorSánchez Posada, Mario Alejandro
dc.contributor.authorHernández Arango, Andrea
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativas
dc.date.accessioned2025-12-09T19:58:56Z
dc.date.available2025-12-09T19:58:56Z
dc.date.issued2025-11-13
dc.description.abstractEn este estudio se llevó a cabo un análisis exergético de un proceso de producción de hidrógeno de bajas emisiones mediante la pirólisis térmica de gas natural. El sistema fue modelado en Aspen Plus con una capacidad de 2.6 y 6.3 toneladas por día de hidrógeno y negro de humo (carbon black), respectivamente. La energía requerida por el proceso se suministra mediante la combustión del 22% del negro de humo producido y de los gases residuales de la pirólisis después de la separación del hidrógeno. Los resultados revelaron que la eficiencia exergética global alcanza un 89.4% cuando se consideran el hidrógeno y el negro de humo como productos valiosos, pero disminuye al 52.5% si solo se considera el hidrógeno. Esto evidencia la importancia de valorizar el negro de humo, el cual tiene aplicaciones en la fabricación de neumáticos, componentes eléctricos, tintas de impresión, recubrimientos de alto rendimiento y plásticos. Las mayores destrucciones de exergía se localizaron en el reactor de pirólisis y en el combustor. El proceso genera 3.15 kg CO₂/kg H₂, significativamente menos que el reformado de metano con vapor (9–12 kg CO₂/kg H₂) [2], lo cual califica al hidrógeno como de bajas emisiones de acuerdo con los estándares de Estados Unidos y Canadá. Estos hallazgos posicionan la pirólisis térmica de gas natural como una alternativa prometedora para la producción sostenible de hidrógeno y como una estrategia para la remoción de carbono si el proceso es alimentado con gas natural de origen renovable. (Texto tomado de la fuente)spa
dc.description.abstractThis study presents an exergy analysis of a low emission hydrogen production process based on the thermal pyrolysis of natural gas. The system was modeled in Aspen Plus with a production capacity of 2.6 and 6.3 tonnes per day of hydrogen and carbon black, respectively. The energy required by the process is supplied through the combustion of 22% of the produced carbon black and the residual gases from pyrolysis. The results revealed that the overall exergetic efficiency reaches 89.4% when both hydrogen and carbon black are considered valuable products, but decreases to 52.5% when only hydrogen is considered. This highlights the importance of valorizing carbon black to improve both the exergetic efficiency and the economic viability of the system. Carbon black has established applications in the production of tires, electrical components, printing inks, high-performance coatings, and plastics. The largest exergy destruction occurred in the pyrolysis reactor and the combustor. The process generates approximately 3.15 kg CO₂/kg H₂, significantly lower than the 9–12 kg CO₂/kg H₂ typically emitted by conventional steam methane reforming (SMR). These low emissions qualify the hydrogen produced as low carbon under U.S. and Canadian standards. These findings position thermal natural gas pyrolysis as a promising alternative for sustainable hydrogen production and as a potential carbon removal strategy when fueled with renewable natural gas.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaEnergías alternativas y desarrollo de nuevos procesos
dc.format.extent1 recurso en línea (53 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89190
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.relation.referencesR. Dagle, V. Dagle, M. Bearden, J. Holladay, T. Krause, S. Ahmed, An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products, 2017. https://doi.org/https://doi.org/10.2172/1411934.
dc.relation.referencesS.R. Patlolla, K. Katsu, A. Sharafian, K. Wei, O.E. Herrera, W. Mérida, A review of methane pyrolysis technologies for hydrogen production, Renewable and Sustainable Energy Reviews 181 (2023) 113323. https://doi.org/10.1016/J.RSER.2023.113323.
dc.relation.referencesFederal Register - The Daily Journal of the United States Government, Federal Register: Credit for Production of Clean Hydrogen and Energy Credit, (2025). https://www.federalregister.gov/documents/2025/01/10/2024-31513/credit-for-production-of-clean-hydrogen-and-energy-credit (accessed July 14, 2025).
dc.relation.referencesU.S. Department of Energy, Clean Hydrogen Production Tax Credit (45V) Resources | Department of Energy, (2025). https://www.energy.gov/articles/clean-hydrogen-production-tax-credit-45v-resources (accessed July 14, 2025).
dc.relation.referencesGovernment of Canada, Clean Hydrogen Investment Tax Credit (ITC), (2025). https://www.canada.ca/en/revenue-agency/services/tax/businesses/topics/corporations/business-tax-credits/clean-economy-itc/clean-hydrogen-itc.html (accessed July 14, 2025).
dc.relation.referencesIEA, Global Hydrogen Review 2024, Paris, 2024. https://www.iea.org/reports/global-hydrogen-review-2024 (accessed January 19, 2025).
dc.relation.referencesS. Schneider, S. Bajohr, F. Graf, T. Kolb, State of the Art of Hydrogen Production via Pyrolysis of Natural Gas, ChemBioEng Reviews 7 (2020) 150–158. https://doi.org/10.1002/CBEN.202000014.
dc.relation.referencesG.A. Von Wald, M.S. Masnadi, D.C. Upham, A.R. Brandt, Optimization-based technoeconomic analysis of molten-media methane pyrolysis for reducing industrial sector CO2emissions, Sustain Energy Fuels 4 (2020) 4598–4613. https://doi.org/10.1039/d0se00427h.
dc.relation.referencesE. Busillo, A. Nobili, F. Serse, M.P. Bracciale, P. De Filippis, M. Pelucchi, B. de Caprariis, Turquoise hydrogen and carbon materials production from thermal methane cracking: An experimental and kinetic modelling study with focus on carbon product morphology, Carbon N Y 225 (2024) 119102. https://doi.org/10.1016/J.CARBON.2024.119102.
dc.relation.referencesN. Sánchez-Bastardo, R. Schlögl, H. Ruland, Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy, Ind Eng Chem Res 60 (2021) 11855–11881. https://doi.org/10.1021/ACS.IECR.1C01679.
dc.relation.referencesM. Shokrollahi, N. Teymouri, O. Ashrafi, P. Navarri, Y. Khojasteh-Salkuyeh, Methane pyrolysis as a potential game changer for hydrogen economy: Techno-economic assessment and GHG emissions, Int J Hydrogen Energy 66 (2024) 337–353. https://doi.org/10.1016/J.IJHYDENE.2024.04.056.
dc.relation.referencesR. Dagle, V. Dagle, M. Bearden, J. Holladay, T. Krause, S. Ahmed, An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products, 2017. https://www.congress.gov/114/crpt/srpt236/CRPT-114srpt236.pdf,.
dc.relation.referencesMonolith, The Monolith Process, Https://Hydrogen.Monolith-Corp.Com/Pyrolysis (2024). https://hydrogen.monolith-corp.com/pyrolysis (accessed July 18, 2025).
dc.relation.referencesHazer Group, The Hazer process, Https://Hazergroup.Com.Au/About/ (2022). https://hazergroup.com.au/about/ (accessed December 10, 2024).
dc.relation.referencesHyResource, Hazer Commercial Demonstration Plant, (2024). https://research.csiro.au/hyresource/hazer-commercial-demonstration-plant/ (accessed July 18, 2025).
dc.relation.referencesEkona, Ekona Power Inc. to Deploy First Clean Hydrogen Production Plant with an Industrial Partner, (2024). https://ekonapower.com/ekona-power-inc-to-deploy-first-clean-hydrogen-production-plant-with-an-industrial-partner (accessed July 18, 2025).
dc.relation.referencesGobernment of Canada, Government of Canada Announces Support for Ekona Power Inc.’s Clean Hydrogen Development, (2024). https://www.canada.ca/en/natural-resources-canada/news/2024/07/government-of-canada-announces-support-for-ekona-power-incs-clean-hydrogen-development.html (accessed July 18, 2025).
dc.relation.referencesM.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, 7th ed., 2011.
dc.relation.referencesA. Bejan, G. Tsatsaronis, M. Moran, Thermal design and optimization, John Wiley & Sons, Inc., 1996.
dc.relation.referencesR. Pal, Chemical exergy of ideal and non-ideal gas mixtures and liquid solutions with applications, International Journal of Mechanical Engineering Education 47 (2017) 44–72. https://doi.org/10.1177/0306419017749581.
dc.relation.referencesA.A. Amell, C.A. Bedoya, B. Suárez, Efectos del cambio de composición química del gas natural sobre el comportamiento de turbinas a gas: Una aproximación al caso colombiano, Energética 35 (2006) 23–31. http://www.redalyc.org/articulo.oa?id=147019422004 (accessed July 5, 2025).
dc.relation.referencesA. Abánades, E. Ruiz, E.M. Ferruelo, F. Hernández, A. Cabanillas, J.M. Martínez-Val, J.A. Rubio, C. López, R. Gavela, G. Barrera, C. Rubbia, D. Salmieri, E. Rodilla, D. Gutiérrez, Experimental analysis of direct thermal methane cracking, Int J Hydrogen Energy 36 (2011) 12877–12886. https://doi.org/10.1016/J.IJHYDENE.2011.07.081.
dc.relation.referencesM.S. Peters, K.D. Timmerhaus, R.E. West, Plant design and economics for chemical engineers, 5th ed., Mc Graw Hill, 2003.
dc.relation.referencesJ. Riley, C. Atallah, R. Siriwardane, R. Stevens, Technoeconomic analysis for hydrogen and carbon Co-Production via catalytic pyrolysis of methane, Int J Hydrogen Energy 46 (2021) 20338–20358. https://doi.org/10.1016/j.ijhydene.2021.03.151.
dc.relation.referencesI.J. Okeke, B.A. Saville, H.L. MacLean, Low carbon hydrogen production in Canada via natural gas pyrolysis, Int J Hydrogen Energy 48 (2023) 12581–12599. https://doi.org/10.1016/J.IJHYDENE.2022.12.169.
dc.relation.referencesT. Keipi, T. Li, T. Løvås, H. Tolvanen, J. Konttinen, Methane thermal decomposition in regenerative heat exchanger reactor: Experimental and modeling study, Energy 135 (2017) 823–832. https://doi.org/10.1016/j.energy.2017.06.176.
dc.relation.referencesS.R. Turns, An introduction to combustion: concepts and applications, 3rd ed., McGraw-Hill Companies, Inc, New Delhi, 2012.
dc.relation.referencesJ. Szargut, D. Morris, F. Sreward, Exergy Analysis of Thermal, Chemical and Metallurgical Processes, 1st ed., New York, 1988.
dc.relation.referencesY. Demirel, V. Gerbaud, Using the Second Law: Thermodynamic Analysis, in: Nonequilibrium Thermodynamics, Elsevier, 2019: pp. 187–265. https://doi.org/10.1016/C2017-0-02734-9.
dc.relation.referencesM.A. Lozano, A. Valero, Theory of the exergetic cost, Energy 18 (1993).
dc.relation.referencesP.J. Linstrom, W.G. (Eds. ) Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology (2024). https://webbook.nist.gov/ (accessed July 25, 2025).
dc.relation.referencesZ. Wang, W. Fan, G. Zhang, S. Dong, Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production, Appl Energy 168 (2016) 1–12. https://doi.org/10.1016/j.apenergy.2016.01.076.
dc.relation.referencesN. Xie, L. Zhu, Q. Hao, J. Hu, H. Zhang, J. Li, Performance and techno-economic analysis of a low carbon emission poly-generation system integrating solar-aided molten methane pyrolysis with chemical looping combustion, Int J Hydrogen Energy 140 (2025) 491–504. https://doi.org/10.1016/j.ijhydene.2025.05.021.
dc.relation.referencesY. He, B. Song, X. Jing, Y. Zhou, H. Chang, W. Yang, Z. Huang, Low-carbon hydrogen production via molten salt methane pyrolysis with chemical looping combustion: Emission reduction potential and techno-economic assessment, Fuel Processing Technology 247 (2023) 107778. https://doi.org/10.1016/J.FUPROC.2023.107778.
dc.relation.referencesA.P. Simpson, A.E. Lutz, Exergy analysis of hydrogen production via steam methane reforming, Int J Hydrogen Energy 32 (2007) 4811–4820. https://doi.org/10.1016/j.ijhydene.2007.08.025.
dc.relation.referencesJ. Fan, L. Zhu, Performance analysis of a feasible technology for power and high-purity hydrogen production driven by methane fuel, Appl Therm Eng 75 (2015) 103–114. https://doi.org/10.1016/j.applthermaleng.2014.10.013.
dc.relation.referencesK.F. Tzanetis, C.S. Martavaltzi, A.A. Lemonidou, Comparative exergy analysis of sorption enhanced and conventional methane steam reforming, in: Int J Hydrogen Energy, 2012: pp. 16308–16320. https://doi.org/10.1016/j.ijhydene.2012.02.191.
dc.relation.referencesM. Mokashi, A. Bhimrao Shirsath, P. Lott, H. Müller, S. Tischer, L. Maier, O. Deutschmann, Understanding of gas-phase methane pyrolysis towards hydrogen and solid carbon with detailed kinetic simulations and experiments, Chemical Engineering Journal 479 (2024) 147556. https://doi.org/10.1016/J.CEJ.2023.147556.
dc.relation.referencesN. Muradov, Z. Chen, F. Smith, Fossil hydrogen with reduced CO2 emission: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles, Int J Hydrogen Energy 30 (2005) 1149–1158. https://doi.org/10.1016/J.IJHYDENE.2005.04.005.
dc.relation.referencesH.S. Kim, Techno-economic, exergetic, and life cycle assessment of clean hydrogen production methods using renewable energy: A comparative study of e-methane pyrolysis, e-steam methane reforming, and alkaline water electrolysis, Int J Hydrogen Energy 100 (2025) 635–645. https://doi.org/10.1016/J.IJHYDENE.2024.12.361.
dc.relation.referencesM.E. Tabat, F.O. Omoarukhe, F. Güleç, D.E. Adeniyi, A. Mukherjee, P.U. Okoye, C.C. Ogbaga, E.I. Epelle, O. Akande, J.A. Okolie, Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production, Energy Convers Manag 278 (2023) 116707. https://doi.org/10.1016/J.ENCONMAN.2023.116707.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
dc.subject.lembHidrogeno
dc.subject.proposalPirólisis de gas naturalspa
dc.subject.proposalPirólisis de metanospa
dc.subject.proposalHidrógeno de bajas emisionesspa
dc.subject.proposalAnálisis exergéticospa
dc.subject.proposalCosto exergéticospa
dc.subject.proposalNatural gas pyrolysiseng
dc.subject.proposalMethane pyrolysiseng
dc.subject.proposalMethane crackingeng
dc.subject.proposalLow-carbon hydrogeneng
dc.subject.proposalExergetic costeng
dc.subject.proposalExergetic efficiencyeng
dc.subject.wikidataGas natural
dc.subject.wikidataPirólisis
dc.titleAnálisis exergético de la pirólisis de gas natural como estrategia de descarbonización para la producción de hidrógeno de bajas emisionesspa
dc.title.translatedExergetic analysis of natural gas pyrolysis as a decarbonization strategy for low-emission hydrogen productioneng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Ingeniería Química.pdf
Tamaño:
1011.36 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: