Mining relationships between multi-modal data to characterize Alzheimer’s disease manifestation

dc.contributor.advisorRomero, Eduardo
dc.contributor.advisorGiraldo Franco, Diana Lorena
dc.contributor.authorPabón Ochoa, German Alejandro
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2024-07-02T20:51:41Z
dc.date.available2024-07-02T20:51:41Z
dc.date.issued2024-06-28
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa heterogeneidad en la manifestación clínica del deterioro cognitivo leve (MCI, por sus siglas en inglés) plantea un desafío significativo. Una caracterización integral de la enfermedad de Alzheimer (AD, por sus siglas en inglés) en esta etapa temprana permite la detección oportuna, la predicción de la progresión de la enfermedad y, en consecuencia, la intervención y el monitoreo antes del diagnóstico clínico de demencia. Presentamos una estrategia cuantitativa para caracterizar alteraciones neuropsicológicas en pacientes con MCI en riesgo de desarrollar demencia por AD, utilizando datos de Alzheimer’s Disease Neuroimaging Initiative (ADNI). Un conjunto de variables de pruebas cognitivas, funcionales y conductuales fue seleccionado de una muestra de pacientes con deterioro cognitivo. El análisis del rendimiento anormal y el uso de métricas relacionales nos permitieron identificar cinco grupos de elementos que podrían representar posibles dimensiones neuropsicológicas de la enfermedad y que podrían utilizarse para describir cuantitativamente a un individuo con deterioro cognitivo. Estas características están representadas por diferentes dominios cognitivos y funcionales: 1) Praxis constructiva, 2) Orientación, Memoria y tareas de la vida diaria, 3) Lenguaje, 4) Atención, y 5) Tareas de velocidad de procesamiento y funciones ejecutivas. La proporción de variables exhibidas dentro de cada característica cuantifica la anormalidad neuropsicológica. La utilidad de la caracterización propuesta fue evaluada mediante dos tareas. En primer lugar, prediciendo la progresión de la enfermedad desde la MCI hasta la demencia de Alzheimer. Entrenamos y probamos un Clasificador de Máquina de Vectores de Soporte, logrando una precisión del 0,76 dentro de los 36 meses. En segundo lugar, identificando subgrupos de MCI que exhibieron perfiles neuropsicológicos diversos y diferentes patrones de atrofia de materia gris. Individuos diagnosticados con MCI fueron divididos en siete subgrupos. Al comparar con individuos cognitivamente normales, el análisis utilizando Morfometría Basada en Vóxeles reveló regiones cerebrales específicas con diferencias significativas. Observamos una estrecha co-ocurrencia entre los deterioros cognitivos y los cambios estructurales. A medida que aumentaban las anormalidades cognitivas y conductuales, estas se asociaban con patrones más extensos de atrofia de materia gris. Este trabajo ofrece un enfoque alternativo para caracterizar cuantitativamente los subtipos de MCI y comprender los patrones neurodegenerativos, proporcionando información valiosa para una mejor caracterización en la etapa prodrómica de la enfermedad de Alzheimer. (Texto tomado de la fuente)spa
dc.description.abstractThe heterogeneity in the clinical manifestation of Mild Cognitive Impairment (MCI) poses a significant challenge. A comprehensive characterization of Alzheimer’s Disease (AD) in this early stage allows for timely detection, prediction of disease progression, and, consequently, intervention and monitoring before clinical diagnosis of dementia. We present a quantitative strategy to characterize neuropsychological alterations in MCI patients at risk of developing AD dementia using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). A set of items from cognitive, functional, and behavioral tests was selected from a sample of cognitively impaired patients. The analysis of abnormal performance and the use of relational metrics allowed us to identify five clusters of items that could represent possible neuropsychological dimensions and could be used to quantitatively describe a cognitively impaired individual. These characteristics are represented by different cognitive and functional domains: 1) constructional praxis; 2) orientation, memory, and daily living tasks; 3) language; 4) attention; and 5) processing speed tasks and executive functions. The proportion of variables exhibited within each characteristic quantifies the neuropsychological abnormality. The utility of the proposed characterization was evaluated by two tasks. Firstly, predicting disease progression from MCI to AD dementia. We trained and tested a Support Vector Machine Classifier, achieving an accuracy of 0.76 within 36 months. Secondly, identifying MCI subgroups that exhibit diverse neuropsychological profiles and different patterns of gray matter atrophy. Individuals diagnosed with MCI were partitioned into seven subgroups. Upon comparison with cognitively normal individuals, the analysis using Voxel-Based Morphometry revealed specific brain regions with significant differences. We observed a close co-occurrence between cognitive impairments and structural changes. As cognitive and behavioral abnormalities increased, they were associated with more extensive patterns of gray matter atrophy. This work offers an alternative approach to quantitatively characterize MCI subtypes and comprehend neurodegenerative patterns, providing valuable insights for enhanced characterization in the prodromal stage of Alzheimer’s Disease.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaDigital Anatomy by Imagesspa
dc.format.extentvii, 34 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86352
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesAlzheimer’s Association et al. 2020 alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 16(3):391+, 2020.spa
dc.relation.referencesAlireza Atri. The alzheimers disease clinical spectrum: diagnosis and management. Medical Clinics, 103(2):263–293, 2019.spa
dc.relation.referencesColin L. Masters, Randall Bateman, Kaj Blennow, Christopher C. Rowe, Reisa A. Sperling, and Jeffrey L. Cummings. Alzheimer’s disease. Nature Reviews Disease Primers, 1:15056, 2015.spa
dc.relation.referencesMaria Ferretti, M Florencia Iulita, Enrica Cavedo, Patrizia Chiesa, Annemarie Schumacher Dimech, Antonella Chadha, Francesca Baracchi, H´el`ene Girouard, Sabina Misoch, Ezio Giacobini, Herman Depypere, and Harald Hampel. Sex differences in alzheimer disease — the gateway to precision medicine. Nature Reviews Neurology, 14, 07 2018.spa
dc.relation.referencesMartin James Prince, Anders Wimo, Maelenn Mari Guerchet, Gemma Claire Ali, Yu- Tzu Wu, and Matthew Prina. World Alzheimer Report 2015-The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International, 2015.spa
dc.relation.referencesZhang Daoqiang, Shen Dinggang, and The Alzheimer’s Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease. NeuroImage, 59(2):895–907, 2012.spa
dc.relation.referencesSerra Angela, Galdi Paola, and Tagliaferri Roberto. Multi-view learning in biomedical applications. In Artificial Intelligence in the Age of Neural Networks and Brain Computing, pages 265–280. Elsevier, 2019.spa
dc.relation.referencesOskar Hansson, John Seibyl, Erik Stomrud, Henrik Zetterberg, John Q. Trojanowski, Tobias Bittner, Valeria Lifke, Veronika Corradini, Udo Eichenlaub, Richard Batrla, Katharina Buck, Katharina Zink, Christina Rabe, Kaj Blennow, and Leslie M. Shaw. Csf biomarkers of alzheimer’s disease concord with amyloid-β pet and predict clinical progression: A study of fully automated immunoassays in biofinder and adni cohorts. Alzheimer’s & Dementia, 14(11):1470–1481, 2018.spa
dc.relation.referencesJoey Annette Contreras, Vahan Aslanyan, Melanie D. Sweeney, Lianne M.J. Sanders, Abhay P. Sagare, Berislav V. Zlokovic, Arthur W. Toga, S. Duke Han, John C. Morris, Anne Fagan, Parinaz Massoumzadeh, Tammie L. Benzinger, and Judy Pa. Functional connectivity among brain regions affected in alzheimer’s disease is associated with csf tnf- α in apoe4 carriers. Neurobiology of Aging, 86:112–122, 2020.spa
dc.relation.referencesChristian Humpel. Identifying and validating biomarkers for alzheimer’s disease. Trends in biotechnology, 29(1):26–32, 2011.spa
dc.relation.referencesDouglas W Scharre. Preclinical, prodromal, and dementia stages of alzheimer’s disease. Pract Neurol, pages 36–47, 2019.spa
dc.relation.referencesBerndt Winblad, Katie Palmer, Miia Kivipelto, Vesna Jelic, Laura Fratiglioni, L-O Wahlund, Agneta Nordberg, Lars B¨ackman, Michael Albert, Ove Almkvist, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. Journal of internal medicine, 256(3):240–246, 2004.spa
dc.relation.referencesReisa A Sperling, Jason Karlawish, and Keith A Johnson. Preclinical alzheimer disease— the challenges ahead. Nature Reviews Neurology, 9(1):54–58, 2013.spa
dc.relation.referencesEmily C. Edmonds, Carrie R. McDonald, Anisa Marshall, Kelsey R. Thomas, Joel Eppig, Alexandra J. Weigand, Lisa Delano-Wood, Douglas R. Galasko, David P. Salmon, and Mark W. Bondi. Early versus late mci: Improved mci staging using a neuropsychological approach. Alzheimer’s & Dementia, 15(5):699–708, 2019.spa
dc.relation.referencesRonald C Petersen, Glenn E Smith, Stephen CWaring, Robert J Ivnik, Eric G Tangalos, and Emre Kokmen. Mild cognitive impairment: clinical characterization and outcome. Archives of neurology, 56(3):303–308, 1999.spa
dc.relation.referencesJoel S. Eppig, Emily C. Edmonds, Laura Campbell, Mark Sanderson-Cimino, Lisa Delano-Wood, and Mark W. Bondi. Statistically derived subtypes and associations with cerebrospinal fluid and genetic biomarkers in mild cognitive impairment: A latent profile analysis. Journal of the International Neuropsychological Society, 23(7):564–576, 2017.spa
dc.relation.referencesNanbo Sun, Elizabeth C. Mormino, Jianzhong Chen, Mert R. Sabuncu, and B.T. Thomas Yeo. Multi-modal latent factor exploration of atrophy, cognitive and tau heterogeneity in alzheimer’s disease. NeuroImage, 201:116043, 2019.spa
dc.relation.referencesCharles DeCarli. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. The Lancet Neurology, 2(1):15–21, 2003.spa
dc.relation.referencesRonald C Petersen. Mild cognitive impairment as a diagnostic entity. Journal of internal medicine, 256(3):183–194, 2004.spa
dc.relation.referencesDevendra Goyal, Donna Tjandra, Raymond Q Migrino, Bruno Giordani, Zeeshan Syed, Jenna Wiens, Alzheimer’s Disease Neuroimaging Initiative, et al. Characterizing heterogeneity in the progression of alzheimer’s disease using longitudinal clinical and neuroimaging biomarkers. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10:629–637, 2018.spa
dc.relation.referencesRonald C Petersen, Rosebud O Roberts, David S Knopman, Bradley F Boeve, Yonas E Geda, Robert J Ivnik, Glenn E Smith, and Clifford R Jack. Mild cognitive impairment: ten years later. Archives of neurology, 66(12):1447–1455, 2009.spa
dc.relation.referencesEmily C Edmonds, Joel Eppig, Mark W Bondi, Kelly M Leyden, Bailey Goodwin, Lisa Delano-Wood, Carrie R McDonald, Alzheimer’s Disease Neuroimaging Initiative, et al. Heterogeneous cortical atrophy patterns in mci not captured by conventional diagnostic criteria. Neurology, 87(20):2108–2116, 2016.spa
dc.relation.referencesEmily C Edmonds, Lisa Delano-Wood, Lindsay R Clark, Amy J Jak, Daniel A Nation, Carrie R McDonald, David J Libon, Rhoda Au, Douglas Galasko, David P Salmon, et al. Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4):415–424, 2015.spa
dc.relation.referencesTiffany F Hughes, Beth E Snitz, and Mary Ganguli. Should mild cognitive impairment be subtyped? Current opinion in psychiatry, 24(3):237–242, 2011.spa
dc.relation.referencesLisa Delano-Wood, Mark W Bondi, Joshua Sacco, Norm Abeles, Amy J Jak, David J Libon, and Andrea Bozoki. Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15(6):906–914, 2009.spa
dc.relation.referencesDavid J Libon, Sharon X Xie, Joel Eppig, Graham Wicas, Melissa Lamar, Carol Lippa, Brianne M Bettcher, Catherine C Price, Tania Giovannetti, Rod Swenson, et al. The heterogeneity of mild cognitive impairment: A neuropsychological analysis. Journal of the International Neuropsychological Society, 16(1):84–93, 2010.spa
dc.relation.referencesMary M Machulda, Emily S Lundt, Sabrina M Albertson,Walter K Kremers, Michelle M Mielke, David S Knopman, Mark W Bondi, and Ronald C Petersen. Neuropsychological subtypes of incident mild cognitive impairment in the mayo clinic study of aging. Alzheimer’s & Dementia, 15(7):878–887, 2019.spa
dc.relation.referencesDiana L Giraldo, Jan Sijbers, Eduardo Romero, and Alzheimer’s Disease Neuroimaging Initiative. Quantification of cognitive impairment to characterize heterogeneity of patients at risk of developing alzheimer’s disease dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1):e12237, 2021.spa
dc.relation.referencesMary M Machulda, Emily S Lundt, Sabrina M Albertson, Anthony J Spychalla, Christopher G Schwarz, Michelle M Mielke, Clifford R Jack Jr,Walter K Kremers, Prashanthi Vemuri, David S Knopman, et al. Cortical atrophy patterns of incident mci subtypes in the mayo clinic study of aging. Alzheimer’s & Dementia, 16(7):1013–1022, 2020.spa
dc.relation.referencesJohn Ashburner and Karl J Friston. Voxel-based morphometry—the methods. Neuroimage, 11(6):805–821, 2000.spa
dc.relation.referencesJohn Ashburner and Karl J Friston. Why voxel-based morphometry should be used. Neuroimage, 14(6):1238–1243, 2001.spa
dc.relation.referencesR. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst, D. J. Harvey, C. R. Jack, W. J. Jagust, L. M. Shaw, A. W. Toga, J. Q. Trojanowski, and M. W. Weiner. Alzheimer’s disease neuroimaging initiative (adni) clinical characterization. Neurology, 74(3):201–209, 2010.spa
dc.relation.referencesMaura Mitrushina, Kyle B Boone, Jill Razani, and Louis F D’Elia. Handbook of normative data for neuropsychological assessment. Oxford University Press, 2005.spa
dc.relation.referencesJoe Ward. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301):236–244, 1963.spa
dc.relation.referencesPeter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.spa
dc.relation.referencesJ. Ashburner and K.J. Friston. Voxel based morphometry. In Larry R. Squire, editor, Encyclopedia of Neuroscience, pages 471–477. Academic Press, Oxford, 2009.spa
dc.relation.referencesEdmund T Rolls, Chu-Chung Huang, Ching-Po Lin, Jianfeng Feng, and Marc Joliot. Automated anatomical labelling atlas 3. Neuroimage, 206:116189, 2020.spa
dc.relation.referencesMartina Zverova. Alzheimer’s disease and blood-based biomarkers–potential contexts of use. Neuropsychiatric disease and treatment, 14:1877–1882, 2018.spa
dc.relation.referencesGerman A Pabón, Diana L Giraldo, and Eduardo Romero. Mining relations between neuropsychological data to characterize alzheimer’s disease. In 17th International Symposium on Medical Information Processing and Analysis, volume 12088, pages 190–197. SPIE, 2021.spa
dc.relation.referencesGerman A. Pabón Ochoa, Diana L. Giraldo, and Eduardo Romero. Exploring anatomical brain heterogeneity in subjects with mild cognitive impairment. In 2023 19th International Symposium on Medical Information Processing and Analysis (SIPAIM), pages 1–5, 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.decsDisfunción Cognitiva
dc.subject.decsCognitive Dysfunction
dc.subject.proposalAlzheimer’s Diseaseeng
dc.subject.proposalMild Cognitive Impairmenteng
dc.subject.proposalNeuropsychological Testeng
dc.subject.proposalPredictioneng
dc.subject.proposalDisease Progressioneng
dc.subject.proposalQuantitative Characterizationeng
dc.subject.proposalVoxel-Based Morphometryeng
dc.subject.proposalComputational Neuroscienceeng
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalDeterioro Cognitivo Levespa
dc.subject.proposalPruebas Neuropsicológicasspa
dc.subject.proposalPredicciónspa
dc.subject.proposalProgresión de la Enfermedadspa
dc.subject.proposalCaracterización Cuantitativaspa
dc.subject.proposalMorfometría Basada en Vóxelesspa
dc.subject.proposalNeurociencia Computacionalspa
dc.titleMining relationships between multi-modal data to characterize Alzheimer’s disease manifestationeng
dc.title.translatedExtracción de relaciones entre datos multimodales para caracterizar la manifestación de la enfermedad de Alzheimerspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032474828.2024.pdf
Tamaño:
3.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: