Modeling epigenetic evolutionary algorithms: An approach based on the epigenetic regulation process

dc.contributor.advisorGómez Perdomo, Jonatanspa
dc.contributor.authorAlvarez Camacho, Lifethspa
dc.contributor.researchgroupALIFE: Grupo de Investigación en Vida Artificialspa
dc.date.accessioned2021-01-14T23:05:43Zspa
dc.date.available2021-01-14T23:05:43Zspa
dc.date.issued2020-12-14spa
dc.description.abstractMany biological processes have been the source of inspiration for heuristic methods that generate high-quality solutions to solve optimization and search problems. This thesis presents an epigenetic technique for Evolutionary Algorithms, inspired by the epigenetic regulation process, a mechanism to better understand the ability of individuals to adapt and learn from the environment. Epigenetic regulation comprises biological mechanisms by which small molecules, also known as epigenetic tags, are attached to or removed from a particular gene, affecting the phenotype. Five fundamental elements form the basis of the designed technique: first, a metaphorical representation of Epigenetic Tags as binary strings; second, a layer on chromosome top structure used to bind the tags (the Epigenotype layer); third, a Marking Function to add, remove, and modify tags; fourth, an Epigenetic Growing Function that acts like an interpreter, or decoder of the tags located over the alleles, in such a way that the phenotypic variations can be reflected when evaluating the individuals; and fifth, a tags inheritance mechanism. A set of experiments are performed for determining the applicability of the proposed approach.spa
dc.description.abstractMuchos procesos biológicos han sido fuente de inspiración para métodos heurísticos que generan soluciones de alta calidad para resolver problemas de optimización y búsqueda. Esta tesis presenta una técnica epigenética para algoritmos evolutivos, inspirada en el proceso de regulación epigenética, un mecanismo para comprender mejor la capacidad de los individuos de adaptarse y aprender del entorno. La regulación epigenética comprende mecanismos biológicos mediante los cuales pequeñas moléculas, también conocidas como etiquetas epigenéticas, se adicionan o se eliminan de un gen en particular, afectando el fenotipo. Cinco elementos fundamentales forman la base de la técnica diseñada: primero, una representación metafórica de las etiquetas epigenéticas como cadenas binarias; segundo, una capa en la estructura superior del cromosoma utilizada para adicionar las etiquetas (Epigenotipo); tercero, una función de marcación para agregar, eliminar y modificar etiquetas; cuarto, una función de Crecimiento Epigenético que actúa como intérprete o decodificador de las etiquetas ubicadas sobre los alelos, de tal manera que las variaciones fenotípicas se pueden reflejar al evaluar a los individuos; y quinto, un mecanismo de herencia de etiquetas. Se realiza una serie de experimentos para determinar la aplicabilidad del enfoque propuesto.spa
dc.description.additionalLínea de investigación: Vida artificial, optimizaciónspa
dc.description.degreelevelMaestríaspa
dc.format.extent132spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLifeth Álvarez, Modeling epigenetic evolutionary algorithms: An approach based on the epigenetic regulation process, Universidad Nacional de Colombia, 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78751
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesMazhar Ansari Ardeh, Benchmarkfcns, The page is publicly available at http://benchmarkfcns.xyz/fcns, 2020.spa
dc.relation.referencesChristian Arnold, Peter Stadler, and Sonja Prohaska, Chromatin computation: Epi- genetic inheritance as a pattern reconstruction problem, Journal of theoretical biology 336 (2013), 61–74.spa
dc.relation.referencesThomas Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford university press, 1996.spa
dc.relation.referencesMark Bedau, Artificial life, Handbook of the Philosophy of Science. Volume 3: Phi- losophy of Biology (Mohan Matthen and Christopher Stephens, eds.), Elsevier BV, 2007.spa
dc.relation.referencesAdrian Bird, Dna methylation patterns and epigenetic memory, Genes & development 16 (2002), no. 1, 6–21.spa
dc.relation.referencesSerdar Birogul, Epigenetic algorithm for optimization: Application to mobile network frequency planning, Arabian Journal for Science and Engineering 41 (2016), no. 3, 883–896.spa
dc.relation.referencesSubhankar Biswas and Chamallamudi Rao, Epigenetic tools (the writers, the read- ers and the erasers) and their implications in cancer therapy, European Journal of Pharmacology 837 (2018), 0.spa
dc.relation.referencesUlrich Bodenhofer, Genetic algorithms: theory and applications, 2003, Lecture Notes Third Edition—Winter 2003/2004.spa
dc.relation.referencesPaige Bommarito and Rebecca Fry, The role of dna methylation in gene regulation, pp. 127–151, Elsevier, 01 2019.spa
dc.relation.referencesWarren Burggren, Epigenetic inheritance and its role in evolutionary biology: Re- evaluation and new perspectives, Biology 5 (2016), 24.spa
dc.relation.referencesEdmund K Burke and Graham Kendall, Search methodologies: Introductory tutorials in optimization and decision support techniques, Springer Science & Business Media, 2013.spa
dc.relation.referencesMarco Cavazzuti, Optimization methods: from theory to design scientific and techno- logical aspects in mechanics, Springer Science & Business Media, 2012.spa
dc.relation.referencesElena Cesaro, Gaetano Sodaro, G. Montano, Michela Grosso, A. Lupo, and Paola Costanzo, The complex role of the znf224 transcription factor in cancer, vol. 107, pp. 191–222, Elsevier, 12 2017.spa
dc.relation.referencesOliver Chikumbo, Erik Goodman, and Kalyanmoy Deb, Approximating a multi- dimensional pareto front for a land use management problem: A modified moea with an epigenetic silencing metaphor, 2012 IEEE congress on evolutionary computation, IEEE, 2012, pp. 1–9.spa
dc.relation.referencesOliver Chikumbo, Erik Goodman, and Kalyanmoy Deb, Triple bottomline many-objective-based decision making for a land use man- agement problem, Journal of Multi-Criteria Decision Analysis 22 (2015), no. 3-4, 133–159.spa
dc.relation.referencesB.J. Clark and Carolyn Klinge, Control of gene expression, pp. 51–69, Elsevier, 12 2010.spa
dc.relation.referencesDipankar Dasgupta and Douglas R McGregor, sga: A structured genetic algorithm, Citeseer, 1993.spa
dc.relation.referencesRichard Dawkins, The selfish gene oxford university press, New York, New York, USA (1976), 1976.spa
dc.relation.referencesCarrie Deans and Keith Maggert, What do you mean, ”epigenetic”?, Genetics 199 (2015), 887–96.spa
dc.relation.referencesJason Digalakis and Konstantinos G. Margaritis, An experimental study of bench- marking functions for genetic algorithms, Int. J. Comput. Math. 79 (2002), 403–416.spa
dc.relation.referencesAE Eiben and JE Smith, Evolutionary computing: The origins, Introduction to Evo- lutionary Computing, Springer, 2015, pp. 13–24.spa
dc.relation.referencesMarie-Anne F ́elix and Andreas Wagner, Robustness and evolution: concepts, insights and challenges from a developmental model system, Heredity 100 (2008), no. 2, 132– 140.spa
dc.relation.referencesRichard Festenstein, Epigenetics and epigenomics in human health and disease, pp. 51–74, Elsevier, 12 2016.spa
dc.relation.referencesAlessandro Fontana, Epigenetic tracking: biological implications, European Confer- ence on Artificial Life, Springer, 2009, pp. 10–17.spa
dc.relation.referencesStephanie Forrest and Melanie Mitchell, Relative building-block fitness and the building-block hypothesis, Foundations of genetic algorithms, vol. 2, Elsevier, 1993, pp. 109–126.spa
dc.relation.referencesGenetic Home Reference GHR, Help me understand genetics, How Genes Work, The chapter is publicly available at https://ghr.nlm.nih.gov/primer, 2018.spa
dc.relation.referencesJeffrey Gilbert, Epigenetics in the developmental origin of cardiovascular disorders, pp. 127–141, Elsevier, 12 2016.spa
dc.relation.referencesAaron Goldberg, C. Allis, and Emily Bernstein, Epigenetics: A landscape takes shape, Cell 128 (2007), 635–8.spa
dc.relation.referencesDavid E Goldberg, Messy genetic algorithms: Motivation analysis, and first results, Complex systems 4 (1989), 415–444.spa
dc.relation.referencesJonatan Gomez, Self Adaptation of Operator Rates for Multimodal Optimization, CEC2004 Congress on Evolutionary Computation, vol. 2, 2004, pp. 1720–1726.spa
dc.relation.referencesJonatan Gomez, Self Adaptation of Operator Rates in Evolutionary Algorithms, Genetic and Evolutionary Computation - GECCO 2004, Part I, Lecture Notes in Computer Sci- ence, vol. 3102, Springer, 2004, pp. 1162–1173.spa
dc.relation.referencesCrina Grosan and Ajith Abraham, Hybrid evolutionary algorithms: Methodologies, architectures, and reviews, pp. 1–17, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.spa
dc.relation.referencesJohn H Holland, Adaptation in natural and artificial systems. an introductory anal- ysis with application to biology, control, and artificial intelligence, Ann Arbor, MI: University of Michigan Press (1975), 439–444.spa
dc.relation.referencesRobin Holliday, Epigenetics: an overview, Developmental genetics 15 (1994), no. 6, 453–457.spa
dc.relation.referencesROBIN Holliday, Is there an epigenetic component in long-term memory?, Journal of Theoretical Biology 200 (1999), no. 3, 339–341.spa
dc.relation.referencesEva Jablonka and Marion Lamb, The changing concept of epigenetics, Annals of the New York Academy of Sciences 981 (2003), 82–96.spa
dc.relation.referencesWilliam R. Jeffery, Chapter 12 - astyanax mexicanus: A vertebrate model for evolution, adaptation, and development in caves, Encyclopedia of Caves (Third Edition) (William B. White, David C. Culver, and Tanja Pipan, eds.), Academic Press, third edition ed., 2019, pp. 85 – 93.spa
dc.relation.referencesGunnar Kaati, Lars O Bygren, and Soren Edvinsson, Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period, European journal of human genetics 10 (2002), no. 11, 682–688.spa
dc.relation.referencesGunnar Kaati, Lars Olov Bygren, Marcus Pembrey, and Michael Sj ̈ostr ̈om, Transgenerational response to nutrition, early life circumstances and longevity, European Journal of Human Genetics 15 (2007), no. 7, 784–790.spa
dc.relation.referencesSlawomir Koziel and Xin-She Yang, Computational optimization, methods and algorithms, vol. 356, Springer, 2011.spa
dc.relation.referencesUrsula Kyle and Claude Pichard, The dutch famine of 1944-1945: A pathophysiological model of long-term consequences of wasting disease, Current opinion in clinical nutrition and metabolic care 9 (2006), no. 4, 388–94.spa
dc.relation.referencesWilliam La Cava, Thomas Helmuth, Lee Spector, and Kourosh Danai, Genetic programming with epigenetic local search, Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 1055–1062.spa
dc.relation.referencesWilliam La Cava and Lee Spector, Inheritable epigenetics in genetic programming, Genetic Programming Theory and Practice XII, Springer, 2015, pp. 37–51.spa
dc.relation.referencesWilliam La Cava, Lee Spector, Kourosh Danai, and Matthew Lackner, Evolving differential equations with developmental linear genetic programming and epigenetic hill climbing, Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014, pp. 141–142.spa
dc.relation.referencesIngrid Lobo, Environmental influences on gene expression, The article is publicly available at https://www.nature.com/scitable/topicpage/environmental-influences- on-gene-expression-536/, 2008.spa
dc.relation.referencesMelanie Mitchell, Genetic algorithms: An overview, Complexity 1 (1995), no. 1, 31– 39.spa
dc.relation.referencesMelanie Mitchel, An introduction to genetic algorithms, MIT press, 1998.spa
dc.relation.referencesMelanie Mitchell and Stephanie Forrest, Genetic algorithms and artificial life, Artificial Life 1 (1993), 267–289.spa
dc.relation.referencesPablo Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms, Caltech concurrent computation program, C3P Report 826 (1989), 1989.spa
dc.relation.referencesNational Human Genome Research Institute NHGRI, Epigenomics fact sheet, The information is publicly available at https://www.genome.gov/about-genomics/fact- sheets/Epigenomics-Fact-Sheet, 2020.spa
dc.relation.referencesNational Institute of Environmental Health Sciences NIEHS, Roadmap epigenomics program, The information is publicly available at https://www.niehs.nih.gov/research/supported/health/envepi/roadmap/index.cfm, 2017.spa
dc.relation.referencesThe National Institute of General Medical Sciences NIGMS, The new genetics, NIH Publication No.10-662, The publication is publicly available at https://publications.nigms.nih.gov/thenewgenetics, 2010.spa
dc.relation.referencesJorge Nocedal and Stephen Wright, Numerical Optimization, Springer Science & Business Media, 2006.spa
dc.relation.referencesArnold L. Patton, Terrence Dexter, Erik D. Goodman, and William F. Punch, On the application of cohort-driven operators to continuous optimization problems using evolutionary computation, Evolutionary Programming VII (Berlin, Heidelberg) (V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, eds.), Springer Berlin Heidelberg, 1998, pp. 669–681.spa
dc.relation.referencesMarcus E Pembrey, Lars Olov Bygren, Gunnar Kaati, S ̈oren Edvinsson, Kate North- stone, Michael Sj ̈ostr ̈om, and Jean Golding, Sex-specific, male-line transgenerational responses in humans, European journal of human genetics 14 (2006), no. 2, 159–166.spa
dc.relation.referencesDavid Penny, Epigenetics, Darwin, and Lamarck, Genome biology and evolution 7 (2015), no. 6, 1758–1760.spa
dc.relation.referencesSathish Periyasamy, Alex Gray, and Peter Kille, The epigenetic algorithm, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), IEEE, 2008, pp. 3228–3236.spa
dc.relation.referencesTheresa Phillips, The role of methylation in gene expression, The article is publicly available at https://www.nature.com/scitable/topicpage/the-role-of-methylation-in- gene-expression-1070/, 2008.spa
dc.relation.referencesThe MIT Press, Artificial life, THE MIT Press Journals. The page is publicly available at https://www.mitpressjournals.org/loi/artl, 2020.spa
dc.relation.referencesJens Przybilla, Thimo Rohlf, Markus Loeffler, and Joerg Galle, Understanding epi- genetic changes in aging stem cells–a computational model approach, Aging cell 13 (2014), no. 2, 320–328.spa
dc.relation.referencesEsteban Ricalde, A genetic programming system with an epigenetic mechanism for traffic signal control, arXiv preprint arXiv:1903.03854 (2019), 183.spa
dc.relation.referencesRobert Santer, Cellular mechanisms of aging, Brocklehurst’s Textbook of Geriatric Medicine and Gerontology (2010), 42–50.spa
dc.relation.referencesMehdi Shafa and Derrick Rancourt, Stem cell epigenetics and human disease, Epigenetics in Human Disease (2012), 481–501.spa
dc.relation.referencesJorge Sousa and Ernesto Costa, Epial-an epigenetic approach for an artificial life model, Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, INSTICC, SciTePress, 2010, pp. 90–97.spa
dc.relation.referencesJorge AB Sousa and Ernesto Costa, Designing an epigenetic approach in artificial life: The epial model, International Conference on Agents and Artificial Intelligence, Springer, 2010, pp. 78–90.spa
dc.relation.referencesDaniel H. Stolfi and Enrique Alba, Epigenetic algorithms: A new way of building gas based on epigenetics, Information Sciences 424 (2018), 250–272.spa
dc.relation.referencesDaniel Hector Stolfi Rosso et al., Bio-inspired computing and smart mobility, Universidad de Malaga (2018), 152–175.spa
dc.relation.referencesSonja Surjanovic and Derek Bingham, Virtual library of simulation experiments: Test functions and datasets, Simon Fraser University. The page is publicly available at https://www.sfu.ca/ ssurjano/index.html, 2013.spa
dc.relation.referencesBeata Sznajder, M. Sabelis, and Martijn Egas, How adaptive learning affects evolution: Reviewing theory on the Baldwin effect, Evolutionary biology 39 (2012), 301–310.spa
dc.relation.referencesLukas Tamayo, Ontogenia y fisionomia del paisaje epigenético: Un modelo general para explicar sistemas en desarrollo, Acta Biologica Colombiana 18 (2013), 3–18.spa
dc.relation.referencesIvan Tanev and Kikuo Yuta, Epigenetic programming: Genetic programming incorporating epigenetic learning through modification of histones, Information Sciences 178 (2008), no. 23, 4469–4481.spa
dc.relation.referencesAlexander P Turner, Michael A Lones, Luis A Fuente, Susan Stepney, Leo SD Caves, and Andy M Tyrrell, The incorporation of epigenetics in artificial gene regulatory networks, BioSystems 112 (2013), no. 2, 56–62.spa
dc.relation.referencesUniversity of Utah UTAH, Epigenetics, Genetic Science Learning Center, The in- formation is publicly available at http://learn.genetics.utah.edu/content/epigenetics, 2013.spa
dc.relation.referencesConrad H Waddington, The epigenotype, Endeavour 1 (1942), 18–20.spa
dc.relation.referencesBob Weinhold, Epigenetics: The science of change, Environmental health perspectives 114 (2006), A160–7.spa
dc.relation.referencesIva B Zovkic, Mikael C Guzman-Karlsson, and J David Sweatt, Epigenetic regulation of memory formation and maintenance, Learning & Memory 20 (2013), no. 2, 61–74.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalEvolutionary algorithmseng
dc.subject.proposalalgoritmos evolutivos, evolución, epigenética, regulación genéticaspa
dc.subject.proposalEvolutioneng
dc.subject.proposalEvoluciónspa
dc.subject.proposalEpigenéticaspa
dc.subject.proposalEpigeneticseng
dc.subject.proposalRegulación genéticaspa
dc.subject.proposalGene regulationeng
dc.titleModeling epigenetic evolutionary algorithms: An approach based on the epigenetic regulation processspa
dc.title.alternativeModelado de algoritmos evolutivos epigenéticos: Un enfoque basado en el proceso de regulación epigenéticaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1047410852.2020.pdf
Tamaño:
18.36 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: