Implementación del subsistema de virtualización inalámbrica de recursos de procesamiento para una red ad-hoc

dc.contributor.advisorOrtiz Triviño, Jorge Eduardo
dc.contributor.authorTriana Correa, Juan Sebastián
dc.contributor.researchgroupTLÖN - Grupo de Investigación en Redes de Telecomunicaciones Dinámicas y Lenguajes de Programación Distribuidosspa
dc.date.accessioned2021-07-29T16:36:34Z
dc.date.available2021-07-29T16:36:34Z
dc.date.issued2021-06-28
dc.descriptionilustraciones, tablasspa
dc.description.abstractTLÖN es un sistema de cómputo propuesto por el grupo de investigación en redes de Telecomunicaciones Dinámicas y lenguajes de programación distribuidos de la Universidad Nacional de Colombia. El modelo que propone TLÖN es un sistema de cómputo distribuido que intenta resolver la necesidad de adaptarse a condiciones adversas en recursos, conectividad y existencia de nodos, abstraídos al plano de virtualización de una red inalámbrica tipo Ad-Hoc colaborativa de elementos móviles que comparten recursos sobre una capa física. El presente trabajo se encuentra en el marco de desarrollo de la capa de virtualización de recursos de procesamiento del sistema TLÖN. A continuación, se presenta el diseño, implementación y resultados del subsistema de virtualización de recursos de procesamiento, estableciendo los modelos y criterios de evaluación que se utilizaran para las fases de Resource Broadcasting, Matching y Scheduling teniendo en cuenta las condiciones inherentes de una red inalámbrica Ad Hoc. (Texto tomado de la fuente)spa
dc.description.abstractTLÖN is a computing system proposed by the research group in Dynamic Telecommunication networks and distributed programming languages of the Universidad Nacional de Colombia. The model proposed by TLÖN is a distributed computing system that has the aim to solve the need to adapt to adverse conditions in resources, connectivity and existence of nodes, abstracted from the virtualization plane of a collaborative Ad-Hoc wireless network of mobile elements that share resources on a physical layer. This work is framed under the development of the virtualization layer of the processing resources of the TLÖN system. In the following chapters you will find the design, implementation, and results of the processing resources virtualization subsystem, setting the models and evaluation criteria to be used for the Resource Broadcasting, Matching, and Scheduling phases taking into account the inherent conditions of an Ad Hoc wireless network. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaSistemas distribuidosspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79866
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesMiorandi, D., Sicari, S., & Pellegrini, F. D. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks.spa
dc.relation.referencesKiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks .spa
dc.relation.referencesPatel, K. N., & Jhaveri, R. h. (2015). A Survey on Emulation Testbeds for Mobile Ad-hoc Networks . Procedia Computer Science.spa
dc.relation.referencesBoukerche, A., & Turgut, B. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks.spa
dc.relation.referencesMarinescu, D., Marinescu, G., Ji, Y., Boloni, L., & Siegel, H. (2013). Ad hoc grids: communication and computing in a power. Workshop on Energy-Efficient Wireless.spa
dc.relation.referencesGaynor, M., Welsh, M., Moulton, S., Rowan, A., LaCombe, E., & Wynne, J. (2004). Integrating wireless sensor networks with the grid. IEEE Internet Computing.spa
dc.relation.referencesFitzek, F. H., & Katz, M. D. (2014). Mobile Clouds: Exploiting Distributed Resources in Wireless, Mobile and Social Networks. Inglaterra: John Wiley & Sons, Ltd.spa
dc.relation.referencesBasney, J., & Livny, M. (2012). Deploying a High Throughput Computing Cluster. High Performance Cluster Computing: Architectures and Systems.spa
dc.relation.referencesYue-Jiao Gong, W.-N. C. (2015). Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. China: Applied Soft Computing.spa
dc.relation.referencesAnderson, T., Culler, D., & Patterson, D. (2005). A Case for NOW (Networks of Workstations). IEEE Micro.spa
dc.relation.referencesAbbas, A. (2013). Grid Computing: Practical Guide To Technology & Applications (Programming Series). Charles River Media.spa
dc.relation.referencesMcKnight, L., Howison, J., & Bradne, S. (2004). Wireless grids: Distributed resource sharing by mobile, nomadic, and fixed devices. IEEE Internet Computing.spa
dc.relation.referencesCzajkowski, K., Fitzgerald, S., Foster, I., & Kesselman, C. (2001). Grid information services for distributed resource sharing. Proc. of the 10th IEEE International Symposium on High-Performance Distributed Computing.spa
dc.relation.referencesFrank, C., & Karl, H. (2014). Consistency challenges of service discovery in mobile ad-hoc networks. Proc. of the 7th ACM Int. symposium on modelling, analysis and simulation of wireless and mobile systems.spa
dc.relation.referencesHelal, S., Desai, N., V. Verma, C. L., & Konark. (2003). A Service Discovery and Delivery Protocol for Ad-hoc Networks. Proc.of the Third IEEE Conference on Wireless Communication Networks (WCNC).spa
dc.relation.referencesBluetooth Interest Group. (2001). Service discovery protocol Version 1.1 Parte E.spa
dc.relation.referencesVillela, D. (2010). Minimizing the average completion time for concurrent grid applications. Grid Comput 8.spa
dc.relation.referencesChang, R. (2009). An ant algorithm for balanced job scheduling in grids. Journal of future generation computer system.spa
dc.relation.referencesHummel, K., & Jelleschitz, G. (2007). Robust de-centralized job scheduling approach for mobile peers in ad hoc networks. 7th IEEE Int. Symp. on Cluster Computing and the grid.spa
dc.relation.referencesLi, C., & Li, L. (2009). Utility-based scheduling for grid computing under constraints of energy budget and deadline. Comput. Stand. Inter.spa
dc.relation.referencesLiu, H., Roeder, T., Walsh, K., Barr, R., & Sirer, E. (2015). Design and implementation of a single system image operating system for ad hoc networksroc. Proc 3rd Int. Conf. on Mobile Systems.spa
dc.relation.referencesGomes, A. (2007). DICHOTOMY: a resource discovery and scheduling protocol for multihop ad hoc mobile grids. 7th IEEE Int. Symp. on Cluster Computing and the Grid.spa
dc.relation.referencesSelvi, V., Sharfraz, S., & Parthasarathi, R. (2007). Mobile ad hoc grid using trace based mobility model. GPC.spa
dc.relation.referencesChtepen, M., Flip, H., & Turck, F. D. (2008). Scheduling of dependant grid jobs in absence of exact job length information. International Workshop NGNM.spa
dc.relation.referencesShah, S. C., & Nizamani, Q.-U.-A. (2012). An effective and robust two-phase resource allocation scheme for interdependent tasks in mobile ad hoccomputational Grids. Journal of Parallel and Distributed Computing.spa
dc.relation.referencesAmin, K., Laszewski, G., & Mikler, A. (2014). Toward an architecture for ad hoc. Proc. of the IEEE 12th Int. Conf. on Advanced Computing and Communications.spa
dc.relation.referencesKoodli, R., & Perkins, C. (2012). Service discovery in on-demand ad hoc networks. IETF Internet Draft.spa
dc.relation.referencesMoreno-Vozmediano, R. (2009). A hybrid mechanism for resource/service discovery in ad-hoc grids. Future generation computer system.spa
dc.relation.referencesQian Kang, X. L., & Yao, Y. (2016). Efficient authentication and access control of message dissemination over vehicular ad hoc network. Neurocomputing.spa
dc.relation.referencesSubba, B., Biswas, S., & Karmakar, S. (2015). Intrusion detection in Mobile Ad-hoc Networks: Bayesian game formulation. Engineering Science and Technology, an International Journal.spa
dc.relation.referencesLorch, M., & Kafura, D. (2002). Supporting secure ad-hoc user collaboration in grid enviroments. Proc. 3rd Int. Workshop on Grid Computing.spa
dc.relation.referencesLiao, L., & Manulis, M. (2007). Tree-based group key agreement framework for mobile ad-hoc networks. Future Generation Computer Systems.spa
dc.relation.referencesMarinescu, D., & Marinescu, G. (2013). Ad hoc grids: Communication and computing in a power constrained enviroment. Proc. 22nd Int. Performance, Computing.spa
dc.relation.referencesP. Jamshidi, C. P. (2018). Microservices: the journey so far and challenges ahead. IEEE Softw.spa
dc.relation.referencesKallergis D, G. Z. (2020). CAPODAZ: a containerised authorisation and policy‐driven architecture using microservices. Ad Hoc Networks.spa
dc.relation.referencesZimmermann, O. (2017). Microservices tenets. Comput. Sci.-Res. Dev.spa
dc.relation.referencesMuhammad W., P. L. (2020). A Systematic Mapping Study on Microservices Architecture in DevOps. Journal of Systems and Software Volume 170.spa
dc.relation.referencesS.A. Alabady, M. S.-T. (2018). LCPC error correction code for IoT applications. Sustainable Cities and Society.spa
dc.relation.referencesA. Al-Fuqaha, M. G. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials.spa
dc.relation.referencesC. Mouradian, D. N. (2017). A comprehensive survey on fog computing: State-ofthe- art and research challenges. IEEE Communications Surveys & Tutorials.spa
dc.relation.referencesI. Stojmenovic, S. W. (2014). The fog computing paradigm: Scenarios and security issues. Federated Conference on Computer Science and Information Systems.spa
dc.relation.referencesM. Aazam, S. Z. (2018). Fog computing architecture, evaluation, and future research directions. IEEE Communications Magazine.spa
dc.relation.referencesINTEL. (2020). Intel 64 and ia-32 architectures developer’s manual: Vol. 3a.spa
dc.relation.referencesDebadatta Mishra, P. K. (2018). A survey of memory management techniques in virtualized systems. Computer Science Review Volume 29.spa
dc.relation.referencesBarham P., D. B. (2003). Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37.spa
dc.relation.referencesRobin J.S., I. C. (2000). Analysis of the intel pentium’s ability to support a secure virtual machine monitor. Proceedings of the 9th conference on USENIX Security Symposium.spa
dc.relation.referencesGerald J. Popek, R. P. (1974). Formal Requirements for Virtualizable Third Generation Architectures. Communications of the ACM.spa
dc.relation.referencesRosenblum M., G. T. (2005). Virtual machine monitors: Current technology and future trends. Computer.spa
dc.relation.referencesDaley R.C., D. J. (1966). Virtual memory, processes, and sharing in multics. Commun. ACM.spa
dc.relation.referencesDiane Barrett, G. K. (2010). How Virtualization Happens. Virtualization and Forensics.spa
dc.relation.referencesNathan F.Saraiva de Sousa, D. A. (2019). Network Service Orchestration: A survey. Computer Communications.spa
dc.relation.referencesBiswas A., M. K. (2013). Los métodos de optimización desempeñan un papel vital en la solución de problemas de ingeniería. Debido a que los métodos de optimización deterministas han mostrado no ser eficientes computacionalmente en la resolución de problemas complejos no lineales y. J. Optim.spa
dc.relation.referencesFerreira, N. a. (2013). An agent model for the appraisal of normative events based in in-group and out-group relations.spa
dc.relation.referencesVanhèe, L. (2013). Artificial culture in artificial societies. International Foundation for Autonomous Agents and Multiagent Systems.spa
dc.relation.referencesDegens, N. a. (2014). Creating a world for socio-cultural agents. Emotion Modeling, 27--43.spa
dc.relation.referencesHofstede, G. J. (2015). Gender differences: the role of nature, nurture, social identity and self-organization. Multi-Agent-Based Simulation XV, 72--87.spa
dc.relation.referencesLiang, C., & Yu, F. R. (2015). Wireless Network Virtualization: A Survey, Some Research Issues and Challenges. IEEE Communications Surveys & Tutorials.spa
dc.relation.referencesFernandez-Baca, D. (1989). Allocating modules to processors in a distributed system. IEEE Trans. Software Eng, 427.spa
dc.relation.referencesCoffman, E. (1976). Computer and Job-Shop Scheduling Theory. New York: Wiley.spa
dc.relation.referencesShivle, S., Siegel, H., Maciejewski, A. A., & Sugavanam, P. (2010). Static allocation of resources to communicating subtasks in a heterogeneous ad hoc grid environment. Journal of parallel and distributed computing.spa
dc.relation.referencesPengyao, W., & Jianqin, W. (2018). Rapid processing of remote sensing images based on cloud computing. Future Generation Computer Systems.spa
dc.relation.referencesQiwan, W., & Ruyin, C. (2020). E-commerce brand marketing based on FPGA and machine learning. Microprocessors and Microsystems.spa
dc.relation.referencesZhenjie, Z., & Yuanming, Z. (2020). A novel complex manufacturing business process decomposition approach in cloud manufacturing. Computers & Industrial Engineering.spa
dc.relation.referencesSimmhan, Y., Cao, B., & Giakkoupis, M. (2011). Adaptive rate stream processing for smart grid applications on clouds. International Workshop on Scientific Cloud Computing.spa
dc.relation.referencesElazhary, H. (2018). Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: Disambiguation and research directions. Journal of Network and Computer Applications.spa
dc.relation.referencesNanne, A. J., & Antheunis, M. L. (2020). The Use of Computer Vision to Analyze Brand-Related User Generated Image Content. Journal of Interactive Marketing.spa
dc.relation.referencesBilal, K., & Khalid, O. (2017). Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Computer Networks.spa
dc.relation.referencesGener, F., & Syst., C. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst.spa
dc.relation.referencesAssunção, M. d., & Veith, A. S. (2018). Distributed data stream processing and edge computing: A survey on resource elasticity and future directions. Journal of Network and Computer Applications.spa
dc.relation.referencesGoethals, T., & Sebrechts, M. (2018). Unikernels vs Containers: An In-Depth Benchmarking Study in the Context of Microservice Applications. 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2).spa
dc.relation.referencesCeballos, H. Z. (2018). Diseño de un Sub-Sistema de Cómputo Distribuido que permita implementar virtualización inalámbrica para gestionar recursos (Procesamiento, memoria, almacenamiento y dispositivos E/S) distribuidos en una Red Ad Hoc, mediante el modelo de pseudo Estado. Universidad Nacional de Colombia.spa
dc.relation.referencesYu, D., & Ying, Y. (2020). Balanced scheduling of distributed workflow tasks based on clustering. Knowledge-Based Systems.spa
dc.relation.referencesCarroll, T. E., & Grosu, D. (2012). An incentive-based distributed mechanism for scheduling divisible loads in tree networks. Journal of Parallel and Distributed Computing.spa
dc.relation.referencesC.S.Xavier, T., & L.Santos, I. (2020). Collaborative resource allocation for Cloud of Things systems. Journal of Network and Computer Applications.spa
dc.relation.referencesXu, L., & Li, Y.-p. (2015). Proportional fair resource allocation based on hybrid ant colony optimization for slow adaptive OFDMA system. Information Sciences.spa
dc.relation.referencesKhalila, K., & Elgazzar, K. (2020). Resource discovery techniques in the internet of things: A review. Internet of Things.spa
dc.relation.referencesVenanzi, R., & Kantarci, B. (2018). MQTT-driven sustainable node discovery for internet of things-fog environments. Proceedings of the IEEE International Conference on Communications.spa
dc.relation.referencesS., M., & M., M. (2019). Using machine learning for handover optimization in vehicular fog computing. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.spa
dc.relation.referencesMorabito, R., Cozzolino, V., & Ding, A. Y. (2018). Consolidate IoT edge computing with lightweight virtualization. IEEE Netw.spa
dc.relation.referencesMansouri, Y., & Babar, M. A. (2021). A review of edge computing: Features and resource virtualization. Journal of Parallel and Distributed Computing.spa
dc.relation.referencesHerlihy, M., & Shavit, N. (2020). Foundations of shared memory. The Art of Multiprocessor Programming.spa
dc.relation.referencesHong, B., & Prasanna, V. (2014). Distributed adaptive task allocation in heterogeneous computing environments to maximize throughput. Proc. 18th Int. Parallel and Distributed Processing Symposium.spa
dc.relation.referencesMcClatchey, R. (2017). Dara intensive and network aware (DIANA) grid scheduling. Grid Comput 5.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembArquitectura de redes de computadores
dc.subject.lembComputer network architectures
dc.subject.lembSistemas virtuales de computadores
dc.subject.lembVirtual computer systems
dc.subject.proposalComputación heterogéneaspa
dc.subject.proposalAh Hoc inalámbricaspa
dc.subject.proposalVirtualización recursosspa
dc.subject.proposalComputación ubicuaspa
dc.subject.proposalHeterogeneous computingeng
dc.subject.proposalWireless Ah Hoceng
dc.subject.proposalResource Virtualizationeng
dc.subject.proposalUbiquitous computingeng
dc.titleImplementación del subsistema de virtualización inalámbrica de recursos de procesamiento para una red ad-hocspa
dc.title.translatedImplementation of the processing resource wireless virtualization subsystem for an ad-hoc networkeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032438210.2021.pdf
Tamaño:
2.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: