Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio
dc.contributor.advisor | Ramírez Franco, José Herney | |
dc.contributor.advisor | Valderrama Rincón, Juan Daniel | |
dc.contributor.author | Ramos Pachón, Lina Rocío | |
dc.contributor.cvlac | RAMOS PACHÓN , LINA ROCÍO | spa |
dc.contributor.researchgroup | Grupo de Investigación en Materiales, Catálisis y Medio Ambiente | spa |
dc.date.accessioned | 2023-07-05T19:30:44Z | |
dc.date.available | 2023-07-05T19:30:44Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, fotografías a color | spa |
dc.description.abstract | Esta investigación evaluó la remoción de dos contaminantes del agua residual petrolera en un biorreactor UASB y para lograrlo, el estudio se dividió en tres etapas. En la primera etapa se determinaron los principales contribuyentes de la toxicidad del agua de producción de hidrocarburos mediante un estudio nacional e internacional de su composición. Los resultados arrojaron que los compuestos aromáticos como el tolueno y el fenol, la salinidad y los fluidos de perforación como el etanol contribuyen en gran medida en la toxicidad del agua producida. En la segunda etapa se evaluó la estabilidad y la eficiencia de un biorreactor UASB durante la adaptación progresiva del lodo granular anaerobio a 17 g/L de cloruro de sodio (NaCl). Los resultados mostraron que el proceso no se vio afectado por concentraciones de NaCl inferiores a 9,0 g/L pero posteriormente la resistencia y la estabilidad del lodo granular se redujo, provocando el deterioro del rendimiento. El biorreactor se estabilizó con una remoción de DQO total y DQO soluble de 58,71% y 75,17%, respectivamente. En la tercera etapa se determinó la eficiencia de remoción de tolueno y fenol en un biorreactor UASB en condiciones salinas y en presencia de etanol. Los resultados revelaron el 100% de remoción de tolueno y el 98% de remoción de fenol, a pesar de que se aproximaba la falla del biorreactor debido a la disminución de las eficiencias de remoción de DQO total y DQO soluble a 25,17% y 34,32%, respectivamente. (Texto tomado de la fuente) | spa |
dc.description.abstract | This research evaluated the removal of two contaminants from oil wastewater using a UASB bioreactor and to achieve this, the study was divided into three stages. In the first stage, the main contributors to the toxicity of produced water were determined through a national and international study of its composition. The results showed that aromatic compounds such as toluene and phenol, salinity and drilling fluids such as ethanol are major contributors to produced water toxicity. In the second stage, the stability and efficiency of a UASB bioreactor was evaluated during the progressive adaptation of anaerobic granular sludge to 17 g/L sodium chloride (NaCl). The results showed that the process was not affected by NaCl concentrations below 9,0 g/L but subsequently the strength and stability of the granular sludge was reduced, causing the efficiency to decrease. The bioreactor stabilized with a total COD and soluble COD removal of 58,71% and 75,17%, respectively. In the third stage, the removal efficiency of toluene and phenol was determined in a UASB bioreactor under saline conditions and in the presence of ethanol. The results showed 100% toluene removal and 98% phenol removal, despite the approaching bioreactor failure due to the decrease in total COD and soluble COD removal efficiencies to 25,17% and 34,32%, respectively. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Tratamiento de aguas residuales industriales | spa |
dc.description.sponsorship | El proyecto de investigación MEGIA "Modelo Multiescala de Gestión Integral del Agua con Análisis de Incertidumbre de la Información para la realización de la Evaluación Ambiental Estratégica (EAE) del Subsector Hidrocarburos en el Valle Medio del Magdalena". Contrato RC No. FP44842-157-2018 suscrito en el convenio entre la Universidad Nacional de Colombia, el Ministerio de Ciencia, Tecnología e Innovación y la Agencia Nacional de Hidrocarburos. | spa |
dc.format.extent | xv, 141páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84148 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69(299), 31–49. https://doi.org/10.1016/j.futures.2015.03.003 | spa |
dc.relation.references | Abbasi, T., & Abbasi, S. A. (2012). Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renewable and Sustainable Energy Reviews, 16(3), 1696–1708. https://doi.org/10.1016/j.rser.2011.11.017 | spa |
dc.relation.references | Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014). A systematic literature review of software requirements prioritization research. Information and Software Technology, 56(6), 568–585. | spa |
dc.relation.references | Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (2008). Resumen de Salud Pública. División de Toxicología y Medicina Ambiental, 11. https://www.atsdr.cdc.gov/es/phs/es_phs115.pdf | spa |
dc.relation.references | Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28(January), 222–239. https://doi.org/10.1016/j.jwpe.2019.02.001 | spa |
dc.relation.references | Al-Khalid, T., & El-Naas, M. H. (2018). Organic Contaminants in Refinery Wastewater: Characterization and Novel Approaches for Biotreatment. Recent Insights in Petroleum Science and Engineering. https://doi.org/10.5772/intechopen.72206 | spa |
dc.relation.references | Aljuboury, D. A. D. A., Palaniandy, P., Abdul Aziz, H. B., & Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies - A review. Global Nest Journal, 19(3), 439–452. https://doi.org/10.30955/gnj.002239 | spa |
dc.relation.references | Alley, B., Beebe, A., Rodgers, J., & Castle, J. W. (2011). Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere, 85(1), 74–82. https://doi.org/10.1016/j.chemosphere.2011.05.043 | spa |
dc.relation.references | Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., & Stams, A. J. M. (2011). Biomethanation and its potential. In Methods in Enzymology (1st ed., Vol. 494). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385112-3.00016-0 | spa |
dc.relation.references | APHA. (2017). Standard methods for the examination of water and wastewater (R. Baird & L. Bridgewater (eds.); 23rd edition). | spa |
dc.relation.references | Arthur, J. D., Langhus, B. G., & Patel, C. (2005). Technical summary of oil and gas produced water treatment technologies. ALL Consulting, LLC. http://www.all-llc.com/publicdownloads/ALLConsulting-WaterTreatmentOptionsReport.pdf | spa |
dc.relation.references | Asociación Colombiana del Petróleo y Gas. (2021). Aporte fiscal de la cadena de hidrocarburos en Colombia 2020 - 2021(p). https://acp.com.co/web2017/en/publicaciones-e-informes/economicos/841-informe-economico-aporte-fiscal-de-la-cadena-de-hidrocarburos-2020-2021/file | spa |
dc.relation.references | Bakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine Environmental Research, 92, 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012 | spa |
dc.relation.references | Bhandari, P. (2020). How to Find Interquartile Range (IQR). Calculator & Examples. https://www.scribbr.com/statistics/interquartile-range/ | spa |
dc.relation.references | Camacho Triana, J. L. (2020). Evaluación del manejo del agua en la extracción y producción de hidrocarburos con miras a la definición de alternativas de tratamiento y reúso [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78636%0A | spa |
dc.relation.references | Castañeda Jiménez, A. C., & Romero Rojas, J. (2014). Procesos de Oxidación Avanzada Aplicados en el Tratamiento de Aguas de la Industria del Petróleo. 1–47. | spa |
dc.relation.references | Castillo-Carvajal, L. C., Sanz-Martín, J. L., & Barragán-Huerta, B. E. (2014). Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: A review. Environmental Science and Pollution Research, 21(16), 9578–9588. https://doi.org/10.1007/s11356-014-3036-z | spa |
dc.relation.references | Cruz, S. L., Rivera-García, M. T., & Woodward, J. J. (2014). Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets. Journal of Drug and Alcohol Research, 3(October), 1–8. https://doi.org/10.4303/jdar/235840 | spa |
dc.relation.references | D. Atoufi, H., & Lampert, D. J. (2020). Impacts of Oil and Gas Production on Contaminant Levels in Sediments. Current Pollution Reports, 6(2), 43–53. https://doi.org/10.1007/s40726-020-00137-5 | spa |
dc.relation.references | Daud, M. K., Rizvi, H., Akram, M. F., Ali, S., Rizwan, M., Nafees, M., & Jin, Z. S. (2018). Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1596319 | spa |
dc.relation.references | De La Rubia, M. A., Villamil, J. A., & Mohedano, A. F. (2019). Anaerobic digestion for methane and hydrogen production. In Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00004-7 | spa |
dc.relation.references | Díaz-Báez, M. C., Espitia Vargas, S. E., & Molina Pérez, F. (2002). Anaerobic digestion an approach to technology / Digestión anaerobia una aproximación a la tecnología. Universidad Nacional de Colombia. https://books.google.com.co/books?id=A0RvuAAACAAJ | spa |
dc.relation.references | Díaz-Báez, María Consuelo, & Valderrama-Rincon, J. D. (2017). Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP). Journal of Hazardous Materials, 324, 599–604. https://doi.org/10.1016/j.jhazmat.2016.11.031 | spa |
dc.relation.references | Dutta, A., Davies, C., & Ikumi, D. S. (2018). Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configurations for wastewater treatment: A comparative review and critical updates. Journal of Water Supply: Research and Technology - AQUA, 67(8), 858–884. https://doi.org/10.2166/aqua.2018.090 | spa |
dc.relation.references | Ecopetrol S.A. (2020). Reporte integrado de gestión sostenible. | spa |
dc.relation.references | Ersahin, M. E., Ozgun, H., Kaya, R., Kose Mutlu, B., Kinaci, C., & Koyuncu, I. (2018). Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis. Environmental Science and Pollution Research, 25(7), 6398–6406. https://doi.org/10.1007/s11356-017-0961-7 | spa |
dc.relation.references | European Chemicals Agency. (2022). Ethanol. https://echa.europa.eu/registration-dossier/-/registered-dossier/16105/7/8 | spa |
dc.relation.references | Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044 | spa |
dc.relation.references | Fathepure, B. Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/fmicb.2014.00173 | spa |
dc.relation.references | Fernández - Polanco, F., & Seghezzo, L. (2015). Diseño de reactores Upflow Anaerobic Sludge Blanket (UASB). Mejora de Las Economías Regionales y Desarrollo Local, 1–124. http://www.ue-inti.gob.ar/pdf/publicaciones/cuadernillo15.pdf | spa |
dc.relation.references | Folkerts, E. J., Blewett, T. A., Delompré, P., Mehler, W. T., Flynn, S. L., Sun, C., Zhang, Y., Martin, J. W., Alessi, D. S., & Goss, G. G. (2019). Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. Ecotoxicology and Environmental Safety, 180(May), 600–609. https://doi.org/10.1016/j.ecoenv.2019.05.054 | spa |
dc.relation.references | Hedar, Y., & Budiyono. (2018). Pollution Impact and Alternative Treatment for Produced Water. E3S Web of Conferences, 31, 1–12. https://doi.org/10.1051/e3sconf/20183103004 | spa |
dc.relation.references | Horner, J. E., Castle, J. W., & Rodgers, J. H. (2011). A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use. Ecotoxicology and Environmental Safety, 74(4), 989–999. https://doi.org/10.1016/j.ecoenv.2011.01.012 | spa |
dc.relation.references | Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049 | spa |
dc.relation.references | Ishak, S., Malakahmad, A., & Isa, M. H. (2012). Refinery wastewater biological treatment: A short review. Journal of Scientific and Industrial Research, 71(4), 251–256. | spa |
dc.relation.references | Jafarinejad, S. (2017). Pollutions and Wastes From the Petroleum Industry. In Petroleum Waste Treatment and Pollution Control. https://doi.org/10.1016/b978-0-12-809243-9.00002-x | spa |
dc.relation.references | Jain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272(July), 111057. https://doi.org/10.1016/j.jenvman.2020.111057 | spa |
dc.relation.references | Jain, P., Sharma, M., Dureja, P., Sarma, P. M., & Lal, B. (2017). Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere, 166, 96–108. https://doi.org/10.1016/j.chemosphere.2016.09.081 | spa |
dc.relation.references | Jiménez, S., Micó, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186–208. https://doi.org/10.1016/j.chemosphere.2017.10.139 | spa |
dc.relation.references | Khanal, S. K. (2009). Overview of anaerobic biotechnology. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, 1–27. https://doi.org/10.1002/9780813804545.ch1 | spa |
dc.relation.references | Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. | spa |
dc.relation.references | Kong, Z., Li, L., Xue, Y., Yang, M., & Li, Y. Y. (2019). Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. Journal of Cleaner Production, 231, 913–927. https://doi.org/10.1016/j.jclepro.2019.05.233 | spa |
dc.relation.references | Latif, M. A., Ghufran, R., Wahid, Z. A., & Ahmad, A. (2011). Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Research, 45(16), 4683–4699. https://doi.org/10.1016/j.watres.2011.05.049 | spa |
dc.relation.references | Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40(20), 3671–3682. https://doi.org/10.1016/j.watres.2006.08.027 | spa |
dc.relation.references | Li, H., Meng, F., Duan, W., Lin, Y., & Zheng, Y. (2019). Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, 184(March), 109658. https://doi.org/10.1016/j.ecoenv.2019.109658 | spa |
dc.relation.references | Liden, T., Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2018). Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 643, 107–118. https://doi.org/10.1016/j.scitotenv.2018.05.386 | spa |
dc.relation.references | Lim, S. J., & Kim, T. H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 60, 189–202. https://doi.org/10.1016/j.biombioe.2013.11.011 | spa |
dc.relation.references | Lusinier, N., Seyssiecq, I., Sambusiti, C., Jacob, M., Lesage, N., & Roche, N. (2019). Biological treatments of oilfield produced water: A comprehensive review. SPE Journal, 24(5), 2135–2147. https://doi.org/10.2118/195677-PA | spa |
dc.relation.references | Ma, X., & Gao, Y. (2010). Determination of chemical oxygen demand for saline wastewater. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2010, 1. https://doi.org/10.1109/ICBBE.2010.5517026 | spa |
dc.relation.references | Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (Uasb) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020043 | spa |
dc.relation.references | Mikhak, Y., Torabi, M. M. A., & Fouladitajar, A. (2019). Refinery and petrochemical wastewater treatment. In Sustainable Water and Wastewater Processing. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816170-8.00003-X | spa |
dc.relation.references | Morales, A. (2010). Inyección de surfactantes en yacimientos. http://www.petroleoamerica.com/2011/02/inyeccion-de-surfactantes-en.html | spa |
dc.relation.references | Moreno, M. T. V. (2011). Manual de Biogás. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). https://books.google.com.co/books?id=ACvotwEACAAJ | spa |
dc.relation.references | Mosca Angelucci, D., Clagnan, E., Brusetti, L., & Tomei, M. C. (2020). Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading. Applied Microbiology and Biotechnology, 104(15), 6825–6838. https://doi.org/10.1007/s00253-020-10696-8 | spa |
dc.relation.references | Nasiri, M., Jafari, I., & Parniankhoy, B. (2017). Oil and Gas Produced Water Management: A Review of Treatment Technologies, Challenges, and Opportunities. Chemical Engineering Communications, 204(8), 990–1005. https://doi.org/10.1080/00986445.2017.1330747 | spa |
dc.relation.references | Nesic, S., & Streletskaya, V. V. (2018). An integrated approach for produced water treatment and injection. Georesursy, 20(1), 25–31. https://doi.org/10.18599/grs.2018.1.25-31 | spa |
dc.relation.references | Nishio, N., & Nakashimada, Y. (2004). High rate production of hydrogen/methane from various substrates and wastes. Advances in Biochemical Engineering/Biotechnology, 90, 63–87. https://doi.org/10.1007/b94192 | spa |
dc.relation.references | Nnaji, C. C. (2013). A review of the upflow anaerobic sludge blanket reactor. Desalination and Water Treatment, 52(22–24), 4122–4143. https://doi.org/10.1080/19443994.2013.800809 | spa |
dc.relation.references | Pereira, J. (2012). Estado del arte sobre efecto de los alcoholes en las propiedades interfaciales de los surfactantes. Revista INGENIERÍA UC, 19(2), 76–85. | spa |
dc.relation.references | Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, 2016, 1–74. https://doi.org/10.1155/2016/2707989 | spa |
dc.relation.references | Subramanyam, R. (2013). Physicochemical and morphological characteristics of granular sludge in upflow anaerobic sludge blanket reactors. Environmental Engineering Science, 30(5), 201–212. https://doi.org/10.1089/ees.2012.0347 | spa |
dc.relation.references | Tan, X., Acquah, I., Liu, H., Li, W., & Tan, S. (2019). A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere, 220, 1150–1162. https://doi.org/10.1016/j.chemosphere.2019.01.027 | spa |
dc.relation.references | U.S Environmental Protection Agency. (2012). Toluene. 1, 1–5. https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/toluene.pdf | spa |
dc.relation.references | US Enviromental Protection Agency. (2000). Phenol. Phenol, 1(1), 95–108. | spa |
dc.relation.references | Valderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., & Martínez Rojas, A. J. (2018). Bomba peristáltica con cabezal tipo rodamiento y portamanguera para desgaste reducido (Patent No. 20180008436). | spa |
dc.relation.references | Valderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., Martínez Rojas, A. J., & Arango Oviedo, J. A. (2019). Medidor de flujo de gas por desplazamiento de líquido (Patent No. 20190003208). | spa |
dc.relation.references | Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028 | spa |
dc.relation.references | Vidal, G., & Diez, M. C. (2005). Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents. Journal of Environmental Management, 74(4), 317–325. https://doi.org/10.1016/j.jenvman.2004.09.008 | spa |
dc.relation.references | Xu, X., Zhang, X., Carrillo, G., Zhong, Y., Kan, H., & Zhang, B. (2019). A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water. Environmental Pollution, 251, 128–136. https://doi.org/10.1016/j.envpol.2019.04.016 | spa |
dc.relation.references | Yang, J., Spanjers, H., Jeison, D., & Van Lier, J. B. (2013). Impact of Na+ on biological wastewater treatment and the potential of anaerobic membrane bioreactors: A review. Critical Reviews in Environmental Science and Technology, 43(24), 2722–2746. https://doi.org/10.1080/10643389.2012.694335 | spa |
dc.relation.references | Zhao, Y., Zhuang, X., Ahmad, S., Sung, S., & Ni, S. Q. (2020). Biotreatment of high-salinity wastewater: current methods and future directions. World Journal of Microbiology and Biotechnology, 36(3), 1–11. https://doi.org/10.1007/s11274-020-02815-4 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.lemb | Aguas residuales | spa |
dc.subject.lemb | Sewage | eng |
dc.subject.lemb | Calidad del agua | spa |
dc.subject.lemb | Water quality | eng |
dc.subject.lemb | Tratamiento del agua | spa |
dc.subject.lemb | Water treatment | eng |
dc.subject.proposal | Agua producida | spa |
dc.subject.proposal | Biorreactor UASB | spa |
dc.subject.proposal | Biodegradación anaerobia | spa |
dc.subject.proposal | Salinidad | spa |
dc.subject.proposal | Tolueno | spa |
dc.subject.proposal | Fenol | spa |
dc.subject.proposal | Produced water | eng |
dc.subject.proposal | UASB bioreactor | eng |
dc.subject.proposal | Anaerobic biodegradation | eng |
dc.subject.proposal | Salinity | eng |
dc.subject.proposal | Toluene | eng |
dc.subject.proposal | Phenol | eng |
dc.title | Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio | spa |
dc.title.translated | Degradation of contaminants in oil industry wastewater using an Upflow Anaerobic Sludge Blanket Reactor (UASB) at laboratory scale | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Proyecto de investigación MEGIA "Modelo Multiescala de Gestión Integral del Agua con Análisis de Incertidumbre de la Información para la realización de la Evaluación Ambiental Estratégica (EAE) del Subsector Hidrocarburos en el Valle Medio del Magdalena". | spa |
oaire.fundername | Contrato RC No. FP44842-157-2018 suscrito en el convenio entre la Universidad Nacional de Colombia, Minciencias y la Agencia Nacional de Hidrocarburos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053344287.2023.pdf
- Tamaño:
- 3.02 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: