Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio

dc.contributor.advisorRamírez Franco, José Herney
dc.contributor.advisorValderrama Rincón, Juan Daniel
dc.contributor.authorRamos Pachón, Lina Rocío
dc.contributor.cvlacRAMOS PACHÓN , LINA ROCÍOspa
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambientespa
dc.date.accessioned2023-07-05T19:30:44Z
dc.date.available2023-07-05T19:30:44Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEsta investigación evaluó la remoción de dos contaminantes del agua residual petrolera en un biorreactor UASB y para lograrlo, el estudio se dividió en tres etapas. En la primera etapa se determinaron los principales contribuyentes de la toxicidad del agua de producción de hidrocarburos mediante un estudio nacional e internacional de su composición. Los resultados arrojaron que los compuestos aromáticos como el tolueno y el fenol, la salinidad y los fluidos de perforación como el etanol contribuyen en gran medida en la toxicidad del agua producida. En la segunda etapa se evaluó la estabilidad y la eficiencia de un biorreactor UASB durante la adaptación progresiva del lodo granular anaerobio a 17 g/L de cloruro de sodio (NaCl). Los resultados mostraron que el proceso no se vio afectado por concentraciones de NaCl inferiores a 9,0 g/L pero posteriormente la resistencia y la estabilidad del lodo granular se redujo, provocando el deterioro del rendimiento. El biorreactor se estabilizó con una remoción de DQO total y DQO soluble de 58,71% y 75,17%, respectivamente. En la tercera etapa se determinó la eficiencia de remoción de tolueno y fenol en un biorreactor UASB en condiciones salinas y en presencia de etanol. Los resultados revelaron el 100% de remoción de tolueno y el 98% de remoción de fenol, a pesar de que se aproximaba la falla del biorreactor debido a la disminución de las eficiencias de remoción de DQO total y DQO soluble a 25,17% y 34,32%, respectivamente. (Texto tomado de la fuente)spa
dc.description.abstractThis research evaluated the removal of two contaminants from oil wastewater using a UASB bioreactor and to achieve this, the study was divided into three stages. In the first stage, the main contributors to the toxicity of produced water were determined through a national and international study of its composition. The results showed that aromatic compounds such as toluene and phenol, salinity and drilling fluids such as ethanol are major contributors to produced water toxicity. In the second stage, the stability and efficiency of a UASB bioreactor was evaluated during the progressive adaptation of anaerobic granular sludge to 17 g/L sodium chloride (NaCl). The results showed that the process was not affected by NaCl concentrations below 9,0 g/L but subsequently the strength and stability of the granular sludge was reduced, causing the efficiency to decrease. The bioreactor stabilized with a total COD and soluble COD removal of 58,71% and 75,17%, respectively. In the third stage, the removal efficiency of toluene and phenol was determined in a UASB bioreactor under saline conditions and in the presence of ethanol. The results showed 100% toluene removal and 98% phenol removal, despite the approaching bioreactor failure due to the decrease in total COD and soluble COD removal efficiencies to 25,17% and 34,32%, respectively.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaTratamiento de aguas residuales industrialesspa
dc.description.sponsorshipEl proyecto de investigación MEGIA "Modelo Multiescala de Gestión Integral del Agua con Análisis de Incertidumbre de la Información para la realización de la Evaluación Ambiental Estratégica (EAE) del Subsector Hidrocarburos en el Valle Medio del Magdalena". Contrato RC No. FP44842-157-2018 suscrito en el convenio entre la Universidad Nacional de Colombia, el Ministerio de Ciencia, Tecnología e Innovación y la Agencia Nacional de Hidrocarburos.spa
dc.format.extentxv, 141páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84148
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69(299), 31–49. https://doi.org/10.1016/j.futures.2015.03.003spa
dc.relation.referencesAbbasi, T., & Abbasi, S. A. (2012). Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renewable and Sustainable Energy Reviews, 16(3), 1696–1708. https://doi.org/10.1016/j.rser.2011.11.017spa
dc.relation.referencesAchimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014). A systematic literature review of software requirements prioritization research. Information and Software Technology, 56(6), 568–585.spa
dc.relation.referencesAgencia para Sustancias Tóxicas y el Registro de Enfermedades. (2008). Resumen de Salud Pública. División de Toxicología y Medicina Ambiental, 11. https://www.atsdr.cdc.gov/es/phs/es_phs115.pdfspa
dc.relation.referencesAl-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28(January), 222–239. https://doi.org/10.1016/j.jwpe.2019.02.001spa
dc.relation.referencesAl-Khalid, T., & El-Naas, M. H. (2018). Organic Contaminants in Refinery Wastewater: Characterization and Novel Approaches for Biotreatment. Recent Insights in Petroleum Science and Engineering. https://doi.org/10.5772/intechopen.72206spa
dc.relation.referencesAljuboury, D. A. D. A., Palaniandy, P., Abdul Aziz, H. B., & Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies - A review. Global Nest Journal, 19(3), 439–452. https://doi.org/10.30955/gnj.002239spa
dc.relation.referencesAlley, B., Beebe, A., Rodgers, J., & Castle, J. W. (2011). Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere, 85(1), 74–82. https://doi.org/10.1016/j.chemosphere.2011.05.043spa
dc.relation.referencesAngelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., & Stams, A. J. M. (2011). Biomethanation and its potential. In Methods in Enzymology (1st ed., Vol. 494). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385112-3.00016-0spa
dc.relation.referencesAPHA. (2017). Standard methods for the examination of water and wastewater (R. Baird & L. Bridgewater (eds.); 23rd edition).spa
dc.relation.referencesArthur, J. D., Langhus, B. G., & Patel, C. (2005). Technical summary of oil and gas produced water treatment technologies. ALL Consulting, LLC. http://www.all-llc.com/publicdownloads/ALLConsulting-WaterTreatmentOptionsReport.pdfspa
dc.relation.referencesAsociación Colombiana del Petróleo y Gas. (2021). Aporte fiscal de la cadena de hidrocarburos en Colombia 2020 - 2021(p). https://acp.com.co/web2017/en/publicaciones-e-informes/economicos/841-informe-economico-aporte-fiscal-de-la-cadena-de-hidrocarburos-2020-2021/filespa
dc.relation.referencesBakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine Environmental Research, 92, 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012spa
dc.relation.referencesBhandari, P. (2020). How to Find Interquartile Range (IQR). Calculator & Examples. https://www.scribbr.com/statistics/interquartile-range/spa
dc.relation.referencesCamacho Triana, J. L. (2020). Evaluación del manejo del agua en la extracción y producción de hidrocarburos con miras a la definición de alternativas de tratamiento y reúso [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78636%0Aspa
dc.relation.referencesCastañeda Jiménez, A. C., & Romero Rojas, J. (2014). Procesos de Oxidación Avanzada Aplicados en el Tratamiento de Aguas de la Industria del Petróleo. 1–47.spa
dc.relation.referencesCastillo-Carvajal, L. C., Sanz-Martín, J. L., & Barragán-Huerta, B. E. (2014). Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: A review. Environmental Science and Pollution Research, 21(16), 9578–9588. https://doi.org/10.1007/s11356-014-3036-zspa
dc.relation.referencesCruz, S. L., Rivera-García, M. T., & Woodward, J. J. (2014). Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets. Journal of Drug and Alcohol Research, 3(October), 1–8. https://doi.org/10.4303/jdar/235840spa
dc.relation.referencesD. Atoufi, H., & Lampert, D. J. (2020). Impacts of Oil and Gas Production on Contaminant Levels in Sediments. Current Pollution Reports, 6(2), 43–53. https://doi.org/10.1007/s40726-020-00137-5spa
dc.relation.referencesDaud, M. K., Rizvi, H., Akram, M. F., Ali, S., Rizwan, M., Nafees, M., & Jin, Z. S. (2018). Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1596319spa
dc.relation.referencesDe La Rubia, M. A., Villamil, J. A., & Mohedano, A. F. (2019). Anaerobic digestion for methane and hydrogen production. In Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00004-7spa
dc.relation.referencesDíaz-Báez, M. C., Espitia Vargas, S. E., & Molina Pérez, F. (2002). Anaerobic digestion an approach to technology / Digestión anaerobia una aproximación a la tecnología. Universidad Nacional de Colombia. https://books.google.com.co/books?id=A0RvuAAACAAJspa
dc.relation.referencesDíaz-Báez, María Consuelo, & Valderrama-Rincon, J. D. (2017). Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP). Journal of Hazardous Materials, 324, 599–604. https://doi.org/10.1016/j.jhazmat.2016.11.031spa
dc.relation.referencesDutta, A., Davies, C., & Ikumi, D. S. (2018). Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configurations for wastewater treatment: A comparative review and critical updates. Journal of Water Supply: Research and Technology - AQUA, 67(8), 858–884. https://doi.org/10.2166/aqua.2018.090spa
dc.relation.referencesEcopetrol S.A. (2020). Reporte integrado de gestión sostenible.spa
dc.relation.referencesErsahin, M. E., Ozgun, H., Kaya, R., Kose Mutlu, B., Kinaci, C., & Koyuncu, I. (2018). Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis. Environmental Science and Pollution Research, 25(7), 6398–6406. https://doi.org/10.1007/s11356-017-0961-7spa
dc.relation.referencesEuropean Chemicals Agency. (2022). Ethanol. https://echa.europa.eu/registration-dossier/-/registered-dossier/16105/7/8spa
dc.relation.referencesFakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044spa
dc.relation.referencesFathepure, B. Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/fmicb.2014.00173spa
dc.relation.referencesFernández - Polanco, F., & Seghezzo, L. (2015). Diseño de reactores Upflow Anaerobic Sludge Blanket (UASB). Mejora de Las Economías Regionales y Desarrollo Local, 1–124. http://www.ue-inti.gob.ar/pdf/publicaciones/cuadernillo15.pdfspa
dc.relation.referencesFolkerts, E. J., Blewett, T. A., Delompré, P., Mehler, W. T., Flynn, S. L., Sun, C., Zhang, Y., Martin, J. W., Alessi, D. S., & Goss, G. G. (2019). Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. Ecotoxicology and Environmental Safety, 180(May), 600–609. https://doi.org/10.1016/j.ecoenv.2019.05.054spa
dc.relation.referencesHedar, Y., & Budiyono. (2018). Pollution Impact and Alternative Treatment for Produced Water. E3S Web of Conferences, 31, 1–12. https://doi.org/10.1051/e3sconf/20183103004spa
dc.relation.referencesHorner, J. E., Castle, J. W., & Rodgers, J. H. (2011). A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use. Ecotoxicology and Environmental Safety, 74(4), 989–999. https://doi.org/10.1016/j.ecoenv.2011.01.012spa
dc.relation.referencesIgunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049spa
dc.relation.referencesIshak, S., Malakahmad, A., & Isa, M. H. (2012). Refinery wastewater biological treatment: A short review. Journal of Scientific and Industrial Research, 71(4), 251–256.spa
dc.relation.referencesJafarinejad, S. (2017). Pollutions and Wastes From the Petroleum Industry. In Petroleum Waste Treatment and Pollution Control. https://doi.org/10.1016/b978-0-12-809243-9.00002-xspa
dc.relation.referencesJain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272(July), 111057. https://doi.org/10.1016/j.jenvman.2020.111057spa
dc.relation.referencesJain, P., Sharma, M., Dureja, P., Sarma, P. M., & Lal, B. (2017). Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere, 166, 96–108. https://doi.org/10.1016/j.chemosphere.2016.09.081spa
dc.relation.referencesJiménez, S., Micó, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186–208. https://doi.org/10.1016/j.chemosphere.2017.10.139spa
dc.relation.referencesKhanal, S. K. (2009). Overview of anaerobic biotechnology. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, 1–27. https://doi.org/10.1002/9780813804545.ch1spa
dc.relation.referencesKitchenham, B., & Charters, S. M. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.spa
dc.relation.referencesKong, Z., Li, L., Xue, Y., Yang, M., & Li, Y. Y. (2019). Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. Journal of Cleaner Production, 231, 913–927. https://doi.org/10.1016/j.jclepro.2019.05.233spa
dc.relation.referencesLatif, M. A., Ghufran, R., Wahid, Z. A., & Ahmad, A. (2011). Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Research, 45(16), 4683–4699. https://doi.org/10.1016/j.watres.2011.05.049spa
dc.relation.referencesLefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40(20), 3671–3682. https://doi.org/10.1016/j.watres.2006.08.027spa
dc.relation.referencesLi, H., Meng, F., Duan, W., Lin, Y., & Zheng, Y. (2019). Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, 184(March), 109658. https://doi.org/10.1016/j.ecoenv.2019.109658spa
dc.relation.referencesLiden, T., Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2018). Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 643, 107–118. https://doi.org/10.1016/j.scitotenv.2018.05.386spa
dc.relation.referencesLim, S. J., & Kim, T. H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 60, 189–202. https://doi.org/10.1016/j.biombioe.2013.11.011spa
dc.relation.referencesLusinier, N., Seyssiecq, I., Sambusiti, C., Jacob, M., Lesage, N., & Roche, N. (2019). Biological treatments of oilfield produced water: A comprehensive review. SPE Journal, 24(5), 2135–2147. https://doi.org/10.2118/195677-PAspa
dc.relation.referencesMa, X., & Gao, Y. (2010). Determination of chemical oxygen demand for saline wastewater. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2010, 1. https://doi.org/10.1109/ICBBE.2010.5517026spa
dc.relation.referencesMainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (Uasb) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020043spa
dc.relation.referencesMikhak, Y., Torabi, M. M. A., & Fouladitajar, A. (2019). Refinery and petrochemical wastewater treatment. In Sustainable Water and Wastewater Processing. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816170-8.00003-Xspa
dc.relation.referencesMorales, A. (2010). Inyección de surfactantes en yacimientos. http://www.petroleoamerica.com/2011/02/inyeccion-de-surfactantes-en.htmlspa
dc.relation.referencesMoreno, M. T. V. (2011). Manual de Biogás. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). https://books.google.com.co/books?id=ACvotwEACAAJspa
dc.relation.referencesMosca Angelucci, D., Clagnan, E., Brusetti, L., & Tomei, M. C. (2020). Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading. Applied Microbiology and Biotechnology, 104(15), 6825–6838. https://doi.org/10.1007/s00253-020-10696-8spa
dc.relation.referencesNasiri, M., Jafari, I., & Parniankhoy, B. (2017). Oil and Gas Produced Water Management: A Review of Treatment Technologies, Challenges, and Opportunities. Chemical Engineering Communications, 204(8), 990–1005. https://doi.org/10.1080/00986445.2017.1330747spa
dc.relation.referencesNesic, S., & Streletskaya, V. V. (2018). An integrated approach for produced water treatment and injection. Georesursy, 20(1), 25–31. https://doi.org/10.18599/grs.2018.1.25-31spa
dc.relation.referencesNishio, N., & Nakashimada, Y. (2004). High rate production of hydrogen/methane from various substrates and wastes. Advances in Biochemical Engineering/Biotechnology, 90, 63–87. https://doi.org/10.1007/b94192spa
dc.relation.referencesNnaji, C. C. (2013). A review of the upflow anaerobic sludge blanket reactor. Desalination and Water Treatment, 52(22–24), 4122–4143. https://doi.org/10.1080/19443994.2013.800809spa
dc.relation.referencesPereira, J. (2012). Estado del arte sobre efecto de los alcoholes en las propiedades interfaciales de los surfactantes. Revista INGENIERÍA UC, 19(2), 76–85.spa
dc.relation.referencesPichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, 2016, 1–74. https://doi.org/10.1155/2016/2707989spa
dc.relation.referencesSubramanyam, R. (2013). Physicochemical and morphological characteristics of granular sludge in upflow anaerobic sludge blanket reactors. Environmental Engineering Science, 30(5), 201–212. https://doi.org/10.1089/ees.2012.0347spa
dc.relation.referencesTan, X., Acquah, I., Liu, H., Li, W., & Tan, S. (2019). A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere, 220, 1150–1162. https://doi.org/10.1016/j.chemosphere.2019.01.027spa
dc.relation.referencesU.S Environmental Protection Agency. (2012). Toluene. 1, 1–5. https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/toluene.pdfspa
dc.relation.referencesUS Enviromental Protection Agency. (2000). Phenol. Phenol, 1(1), 95–108.spa
dc.relation.referencesValderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., & Martínez Rojas, A. J. (2018). Bomba peristáltica con cabezal tipo rodamiento y portamanguera para desgaste reducido (Patent No. 20180008436).spa
dc.relation.referencesValderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., Martínez Rojas, A. J., & Arango Oviedo, J. A. (2019). Medidor de flujo de gas por desplazamiento de líquido (Patent No. 20190003208).spa
dc.relation.referencesVeeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028spa
dc.relation.referencesVidal, G., & Diez, M. C. (2005). Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents. Journal of Environmental Management, 74(4), 317–325. https://doi.org/10.1016/j.jenvman.2004.09.008spa
dc.relation.referencesXu, X., Zhang, X., Carrillo, G., Zhong, Y., Kan, H., & Zhang, B. (2019). A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water. Environmental Pollution, 251, 128–136. https://doi.org/10.1016/j.envpol.2019.04.016spa
dc.relation.referencesYang, J., Spanjers, H., Jeison, D., & Van Lier, J. B. (2013). Impact of Na+ on biological wastewater treatment and the potential of anaerobic membrane bioreactors: A review. Critical Reviews in Environmental Science and Technology, 43(24), 2722–2746. https://doi.org/10.1080/10643389.2012.694335spa
dc.relation.referencesZhao, Y., Zhuang, X., Ahmad, S., Sung, S., & Ni, S. Q. (2020). Biotreatment of high-salinity wastewater: current methods and future directions. World Journal of Microbiology and Biotechnology, 36(3), 1–11. https://doi.org/10.1007/s11274-020-02815-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.lembAguas residualesspa
dc.subject.lembSewageeng
dc.subject.lembCalidad del aguaspa
dc.subject.lembWater qualityeng
dc.subject.lembTratamiento del aguaspa
dc.subject.lembWater treatmenteng
dc.subject.proposalAgua producidaspa
dc.subject.proposalBiorreactor UASBspa
dc.subject.proposalBiodegradación anaerobiaspa
dc.subject.proposalSalinidadspa
dc.subject.proposalToluenospa
dc.subject.proposalFenolspa
dc.subject.proposalProduced watereng
dc.subject.proposalUASB bioreactoreng
dc.subject.proposalAnaerobic biodegradationeng
dc.subject.proposalSalinityeng
dc.subject.proposalTolueneeng
dc.subject.proposalPhenoleng
dc.titleDegradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratoriospa
dc.title.translatedDegradation of contaminants in oil industry wastewater using an Upflow Anaerobic Sludge Blanket Reactor (UASB) at laboratory scaleeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto de investigación MEGIA "Modelo Multiescala de Gestión Integral del Agua con Análisis de Incertidumbre de la Información para la realización de la Evaluación Ambiental Estratégica (EAE) del Subsector Hidrocarburos en el Valle Medio del Magdalena".spa
oaire.fundernameContrato RC No. FP44842-157-2018 suscrito en el convenio entre la Universidad Nacional de Colombia, Minciencias y la Agencia Nacional de Hidrocarburosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053344287.2023.pdf
Tamaño:
3.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: